Recoverable Robustness for
Railway Rolling Stock Planning

Valentina Cacchiani®, Alberto Caprara', Laura Galli',
Leo Kroon?3, Gabor Maréti®, and Paolo Toth!

! D.E.IS., University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.
{alberto.caprara,valentina.cacchiani,l.galli,paolo.toth}@unibo.it
2 Netherlands Railways, Utrecht, The Netherlands.
3 Rotterdam School of Management, Erasmus University Rotterdam, P.O. Box 1738,
NL-3000 DR, Rotterdam, The Netherlands. {gmaroti,lkroon}@rsm.nl.

Abstract. In this paper we explore the possibility of applying the no-
tions of Recoverable Robustness and Price of Recoverability (introduced
by [5]) to railway rolling stock planning, being interested in recover-
ability measures that can be computed in practice, thereby evaluating
the robustness of rolling stock schedules. In order to lower bound the
Price of Recoverability for any set of recovery algorithms, we consider an
“optimal” recovery algorithm and propose a Benders decomposition ap-
proach to assess the Price of Recoverability for this “optimal” algorithm.
We evaluate the approach on real-life rolling stock planning problems of
NS, the main operator of passenger trains in the Netherlands. The pre-
liminary results show that, thanks to Benders decomposition, our lower
bound can be computed within relatively short time for our case study.

1 Introduction

Recently [5] introduced the concept of Recoverable Robustness as a generic
framework for modelling robustness issues in railway scheduling problems. Also,
the Price of Recoverability (PoR) was defined as a measure of recoverability.
However, this notion is mainly of theoretical nature, and cannot be used in a
straightforward way for concrete problems. In particular, computing PoR re-
quires, according to [5], minimisation over a set of recovery algorithms, and it is
not clear how this can be carried out.

Reference [3] considers the robustness of shunting problems. It overcomes
these difficulties by analysing PoR for a few concrete recovery algorithms and
by proving lower and upper bounds.

The purpose of this paper is to investigate another way of bringing the theo-
retical notion of PoR closer to practice. In particular, we consider what happens
if recovery is done in the best possible way: the resulting value of PoR for this
unique “optimal” recovery algorithm is then a lower bound on the value of PoR
for any set of recovery algorithms. Under mild assumptions, this lower bound
can be computed by solving a single mathematical program.

ATMOS 2008
8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte,/2008 /1590

We address the practical evaluation of the lower bound above for a specific
case study, concerning the medium-term rolling stock planning problem of NS,
the main operator of passenger trains in the Netherlands. It arises 2-6 months
before the actual train operations, and amounts to assigning the available rolling
stock to the trips in a given timetable. The objectives of the problem that is tra-
ditionally solved, call nominal problem, are related to service quality, efficiency,
and — to a limited extent — to robustness. Reference [4] describes a Mixed Integer
Linear Programming (MILP) model for this nominal problem. Using commer-
cial MILP software, the solution times on real-life problems of NS are quite low,
ranging from a few minutes (on most instances) to a couple of hours (on some
particularly complex instances). A software tool based on this model has been
in operation within NS since 2004.

The solutions of the nominal problem are optimal under undisrupted circum-
stances only. However, infrastructure failures, bad weather, and engine break-
downs often lead to disruptions where the nominal solution cannot be carried
out any more. In such cases, disruption management must take place to come up
with an adjusted rolling stock schedule. In this re-scheduling process, the origi-
nal objective criteria are of marginal importance, the goal being to quickly find
a feasible solution that is “close” to the nominal one and can be implemented in
practice.

The computation of the lower bound on PoR mentioned above for our case
study requires the solution of a very-large Linear Programming (LP) model, in
which several possible disruption scenarios are considered. We propose a Benders
decomposition approach for the solution of this LP, leading to a subproblem for
each scenario. Our preliminary computational results on a real-life rolling stock
planning instance of NS indicate that the method takes relatively short time,
and widely outperforms the straightforward solution of the whole LP by a state-
of-the-art solver.

This paper is structured as follows. In Section 2 we quote the definition of
the Recoverable Robustness and Price of Recoverability from [5]. In Section 3 we
describe the lower bound that we consider, based on a “best possible recovery”
policy, and the associated mathematical programming problem. Section 4 de-
scribes the railway rolling stock scheduling problem of NS. Section 5 is devoted
to our preliminary computational results. Finally, Section 6 outlines our plans
for further research.

2 The Price of Recoverability

In this section we give a short summary of the definition of the Price of Recover-
ability by [5]. The main idea is to compute a solution to an optimisation problem
and at the same time to analyse the recovery costs in case of disturbed input
data. More concretely, one considers a (limited) set of scenarios with their own
feasible regions, as well as a set of admissible recovery algorithms. The objective
is to find a solution of the original (nominal) problem and a recovery algorithm in
the given set. The requirement is that, using the recovery algorithm, the solution

of the original optimisation problem can be transformed to a feasible solution
of each scenario at “low cost”. The Price of Recoverability measures both the
objective function of the original problem and the recovery costs.

The set of admissible recovery algorithms can be chosen in several ways. One
may consider algorithms with limited (e.g. linear) running time, or algorithms
that are obtained from a particular heuristic framework (e.g. a crew re-scheduling
algorithm based on iterated crew duty swaps).

The notions of Recoverable Robustness and Price of Recoverability are de-
fined formally as follows. First of all, we are given a Nominal Problem of the
form:

NP = min{c(z) | z € K}, (1)

where x € R" is the variable vector, K C R" is the feasible region and ¢: K —
R, is the cost function.

Moreover, we are given a set & of scenarios; each scenario s € S having
its own feasible region K. (For example, a scenario may refer to the case of
cancelling some trains due to infrastructure failure, thereby requiring some kind
of recovery action.) Furthermore, we are given a set A of recovery algorithms:
a recovery algorithm A € A takes on input a nominal solution z € K and a
scenario s € § and produces a solution A(z, s) € K which is feasible in scenario
s. Finally, we are given, for s € S, a function ds : K x Ky — R, measuring the
deviation ds(x,xs) of a solution z, for scenario s from a nominal solution z, and
a monotone non-decreasing function f : RJSr — R penalising the deviation over
all scenarios.

The Recovery-Robust Optimisation Problem defined in [5] is then:
RPOP 4 = min{c(z) + f(2) |z € K, A€ A, z5 =ds(z, A(z,5)) (s€S8)}, (2)

where z = (zs,, Zs5,-..) € Rﬁ is a vector of auxiliary variables representing the
deviations.

Reference [5] chooses f(z) = maxges 25, i.€. penalises the mazimum deviation
in the objective function. A stochastic-programming approach would be to define
a probability p, for each scenario s € S, and to consider f(z) = Y s Dszs,
penalising the expected (average) deviation.

The Price of Recoverability (PoR) is then defined as the ratio between the
optimal values of the Recovery-Robust and the Nominal Problem:

RPOP 4

PoR 4 = NP (3)

Reference [5] also compares Recoverable Robustness to well-known concepts
such as stochastic programming (see e.g. [2]) or robust optimisation ([1]), and
discusses the similarities and differences of the approaches to capture robustness.

2.1 Reformulation of PoR

Define the function
Da(x) = c(z) + f (dsy (z, Az, 51)) , dsy (x, A, 52)) ...) .
Then RPOP 4 corresponds to the minimisation of the function &:

RPOP 4 = min min @ . 4
A = min min @ (z) (4)
In later sections of this paper we shall consider a simplified version for the case
in which A contains a single algorithm A only:

RPOP{A} = grcrélg @A({E). (5)

2.2 How to Compute PoR?

The definition (3) (via the definition (2)) requires minimisation over the set A
of recovery algorithms. How (and if) this can be done clearly depends on how
the set A is specified. In any case, one can follow (at least) two approaches to
compute (or approximate) PoR.

In the first approach, one considers a class of small and well-behaved problems
together with a small set of recovery algorithms. Then one proves worst-case
bounds on PoR by an appropriate theoretical analysis. Reference [3] reports
such results for the shunting problem. With our notation, such an approach
essentially amounts to deriving bounds on the minimum of the function @4 for
each A € A. Note that this approach is likely to succeed on fairly simplified test
problems; real-life (railway) scheduling problems often have features that cannot
be handled easily in theoretical worst-case proofs.

In this paper we follow a second approach, namely we restrict attention to the
best possible recovery algorithm, observe that the computation of PoR for this
single algorithm leads to a lower bound on PoR for each set A, and numerically
solve a mathematical programming problem to compute the value of this lower
bound for a particular real-life railway resource scheduling problem. Therefore
the results that we obtain are of empirical nature.

3 PoR with an Optimal Recovery Algorithm

Let A be the set of all recovery algorithms and define
Aopt(z, s) = argmin{ds(z, zs) | s € Ks}. (6)

In words, for each scenario s and for each x € K, A,pt determines the solution
in K, with the smallest possible deviation from x. That is, Ayp¢ represents the
best possible recovery action. This is formalised in the following proposition.

Proposition 1 RPOP 4,, = RPOP4

all opt} :

Proof. Clearly, RPOP 4, < RPOP4_ ;. On the other hand, for each z € K,
A€ Aand s €S we have

ds(z, Az, 5)) > ds(x, Aopt(z, 8)) .

Therefore
in @ >
Jin A(x) = P, ()
and (4) yields
RPOPAaU > RPOP{AON}~

In other words, the minimum of (2) if A = A,y is attained at Agpg. This of
course implies that the minimum of (2) for a generic A cannot be better than
RPOP 4.}, as stated in the following corollary.

Corollary 2 RPOP 4 > RPOP,4, .y for every set A of algorithms.

This implies that the computation of RPOP,4 .y vields a lower bound on
RPOPy4, and therefore PoR4,,, a lower bound on PoR., for a generic set of
recovery algorithms 4. Moreover,

RPOP 4, .y = min{c(z) + f(2) |z € K, xs € Ks (s €S), zs = ds(z,75) (s €8)}.
(7)

That is, RPOP (4, .} is the optimum value of a mathematical program, which
is not the case for RPOP 4 for a generic A. This is the reason why in this paper
we focus our attention on the practical computation of the former.

3.1 Solution Methodology

For the sake of concreteness, we will restrict our attention to the case of RPOP 4
in which the following hold:

opt }

— f(2) = maxses zs, i.e. only the largest deviation is penalised in the objective
function;

— ¢(x) = c"x for a given ¢ € R", i.e. the objective function is linear;

— x € K can be expressed as Az > b for given A € R™*" and b € R™, i.e.
feasibility of a nominal solution can be expressed by linear constraints (and
possibly by the integrality of some components of z, see below);

— foreach S € S, x5 € K, can be expressed as Agxs > b, for given Ag € R™=*"
and by € R™s;

— for each S € S, z; = ds(x, x5) can be expressed as z5 = dSTx + ezxs + g, for
given dg,es € R™ and gs € R, i.e. the deviation is a linear function of the
nominal and the recovered solution.

If we include the possible integrality restriction on some of the z and zs com-
ponents, the above assumptions are not really restrictive, since they amount to
require that the nominal problem, the feasibility of a recovered solution, and

the value of the deviation can be expressed as a MILP. In the computational
experiments carried over in this paper, we will restrict attention to the case in
which such integrality restriction is not imposed. Depending on the specific ap-
plication, this may be the case, or it may lead to solution of the LP relaxation
of the actual MILP, which yields a lower bound on RPOPy,4_ ., and therefore
on RPOP 4 for each A. In any case, the Benders decomposition approach that
we illustrate can easily be modified to have integrality restrictions on the z vari-
ables. Since the purpose of this paper is to study the possibility to practically
compute lower bounds on PoR for real-world instances, it is natural to restrict
attention to LP relaxations.

Given the above assumptions, (7) can be formulated as follows, where X is
an auxiliary variable expressing the deviation penalty:

min ¢’z + A (8)
st. Ax > b, 9)
Az, > by, Vs e S, (10)
—dlz—elz, + X >g,, Vs e S. (11)

For solving (8) — (11) one can apply various mathematical programming
techniques. In this paper we focus on Benders decomposition (also known as
L-shaped method) (see e.g. [7]), a cutting plane method that exploits the block-
diagonal structure of the problem. This is an approach widely used for such
problems (such as for stochastic programming).

Briefly, the Benders decomposition approach keeps solving the (gradually
extended) nominal problem (8) — (9). Based on the current optimal solution, the
feasibility of the subproblem (10) — (11) is checked. The procedure terminates if
the subproblem is feasible, in which case the current optimal solution is optimal
also for (8) — (11). In case of infeasibility, inequalities in terms of x and A are
derived and added to the nominal problem, and the updated nominal problem
is re-optimised.

Benders decomposition is applicable if the subproblems are LPs, i.e. if the
x5 variables are continuous, whereas integrality on the = variables can be han-
dled, although (as already mentioned) it will be relaxed in our computational
experiments.

4 The Test Problem: Rolling Stock Re-scheduling

This section is devoted to the description of the specific real-world case study
on which we focused our attention.
4.1 The Nominal Problem

We consider the medium-term railway rolling stock scheduling problem of NS.
It arises 2-6 months before the actual railway operations, and has the task of

assigning the available rolling stock to the trips in a given timetable. In this
section we give a brief problem description. Further details about the problem
can be found in [4] and in [6].

The rolling stock consists of units. Each unit has driver’s seats at both ends
and an own engine. It is composed of a number of carriages, and cannot be split
up in every-day operations. Units are available in different types and can be
combined with each other to form compositions. This allows a fine adjustment
of the seat capacity to the passenger demand.

The timetable of NS is quite dense, and the turning time of the trains is
short, often less then 20 minutes. The rolling stock connections are explicitly
given in the input timetable by the successor trips: The units that serve in a
trip go over to the successor trip, even though certain composition changes can
take place. Due to the short turning times, the composition change possibilities
are limited to coupling or uncoupling of one or two units at the appropriate side
of the train.

The objective is three-fold. Service quality is measured by seat shortage kilo-
metres. It is computed by comparing the assigned seat capacity to the a priori
given expected number of passengers; by multiplying the number of unseated
passengers by the length of the trip; and finally by summing these values over
all trips. Efficiency is expressed by the carriage-kilometres which is roughly pro-
portional both to the electricity or fuel consumption and to the maintenance
costs. Robustness is taken into account by counting the number of composition
changes. Indeed, coupling or uncoupling of units causes additional traffic through
the railway nodes, and thereby may lead to delay propagation if some passing
trains are late.

We note again that the the nominal problem is solved several months before
the operations. This leaves enough time to plan the low-level train operations
at the railway nodes. In particular, shunting drivers are scheduled to carry out
the coupling and uncoupling operations. Moreover, the end-of-day rolling stock
balances are such that the units are at the right place for the next day’s opera-
tions.

In order to define a MILP for the problem, the set of rolling stock types is
denoted by M, the set of trips by T', the set of compositions by P, and the set
of stations by S. For any m € M, a,, denotes the number of available rolling
stock units of type m.

The main binary decision variables are x ,, expressing whether composition
p is assigned to trip ¢t. Moreover, we have the binary variables 2 , ,» whose value
is 1 if trip ¢ has composition p and if the successor of ¢t has composition p’.
The z variables are only defined for those triples (¢, p, p’) where the composition
change from p to p’ is allowed after trip ¢, i.e. the constraints on the composition
changes are implicitly represented by these variables.

The stations are modelled by the inventories. The inventory of a station at
a certain time instant consist of all units that are located there. The basic rule
is that units to be coupled to a train are pulled from the inventory immediately
upon departure, while uncoupled units are added to the inventory a certain time

(say 30 minutes) after arrival. This ensures enough time for necessary shunting
operations.

The integer variables y; ,, count the inventories of the units of type m at
the departure station of trip ¢ right after the departure of trip ¢. The beginning-
of-day and end-of-day inventories of station s of type m are represented by the
variables y . and y2,,.

Letting the successor of trip ¢ be denoted by o(t), the departure station of ¢
be denoted by d(t), ¢, d be appropriate objective function coefficients, and «, 3,y
be appropriate inventory coefficients, a MILP formulation is the following.

minz Z CtpTt,p + Z Z Z dipp' Ztp,p' (12)

teT peP teT peP p’eP
sty mp=1, VteT, (13)
peEP
Tip= Y Zipp, VLET,pEP, (14)
p’eP
Lo(t),p = Z Zt,p,p VteT,p € P, (15)
peEP

0
Ytom = Ya),m + § § § Qt,t',p,p’ ,;mZt' ,p,p’

t'eT peP p'cP

(16)
+ Z Z Bt p,mTt’ p, VteT,me M,

t'eT peP
Yom = yg(t),m + Z Z Z Vet pmTep, Yt €T, m e M, (17)

t’'eT pePp eP
Zygﬁm = am, Ym e M, (18)
ses
Ttp, Zt,p,p Dinary, VteT,pe Pp' €P, (19)
yt7m,yg7m,y§f’m > 0, integer, VteT,seS,me M. (20)

The objective (12) takes into account the trip assignments and the composi-
tions of consecutive trips. Constraints (13) state that each trip gets exactly one
composition. Constraints (14) and (15) link the z variables to the x variables.
Constraints (16) and (17) compute the inventories with appropriate coefficients
a, 3 and ~. Constraints (18) specify the available rolling stock.

The objective function can incorporate a wide variety of objective criteria
related to service quality, efficiency and robustness. Experience shows that, for
the practically meaningful objective coefficients, the LP relaxation of the model
above is very tight, the associated lower bound being always within a few per-
cents of the MILP optimum. The MILP model can be solved for medium-sized
instances of NS within a few seconds to optimality. Simple LP rounding heuris-
tics turned out to be powerful for the most challenging problem instances.

4.2 The Scenarios and the Associated Deviations

In our robustness framework, the solutions of the nominal problem are to be
operated subject to disruption scenarios. Each scenario is obtained by assuming
that a certain part of the network is blocked for a certain time interval of several
hours. All the trips that interfere with the infrastructure blockage are removed.
Such disruptions are quite common in practice. These are the ones that require
significant resource re-scheduling.

It is worthwhile to note that the timetabling and resource scheduling deci-
sions are strictly separated. In the Netherlands, for example, an independent
infrastructure managing authority is responsible for the timetable adjustments,
while the railway operators themselves are responsible for resource re-scheduling.
Therefore from the resource planning’s point of view, the adjusted timetable that
takes care of the disruption is to be considered as input.

We assume that a disruption becomes known at the beginning of the blockage.
The task is then to re-schedule the rolling stock from that point on till the end of
the day. The solution has to fulfil the same requirements as the nominal problem,
the only additional option being to cancel a trip.

In this research we also assume that the exact duration of the disruption
is known at its beginning. Admittedly, this assumption is very optimistic for
practical purposes. On the other hand, it simplifies the mathematical model,
and still enables one to gain insight of the recovery capacity of rolling stock
schedules.

The three main criteria in re-scheduling are as follows (in decreasing order of
importance): () minimise the number of cancelled trips; (i) minimise the num-
ber of newly introduced couplings and uncouplings; (#i) minimise the deviation
of the planned end-of-day rolling stock balance. The first criterion limits the
passenger inconvenience. The second criterion aims at keeping the schedule of
the shunting drivers intact. The third criterion tries to restrict the consequences
of the disruption on a single day.

Although the model (12) — (20) was originally developed for the nominal
problem, it can be adjusted for rescheduling as well. That is, the feasibility of
a recovered solution and the associated recovery costs can be computed as a
variant of the model above. We express the model for a single scenario, omitting
the index s that represents the scenario and noting that here s stands for the
index of a station.

First of all, constraints (13) — (20) with variables 7, z, §° and 7> are to be
stated for the trips of each scenario. In this case, as anticipated, we also allow
the empty composition @), where Z; 9 = 1 means that trip ¢ is cancelled. Then,
one has to impose constraints that the rolling stock schedule is not changed until
the beginning of the disruption, adding the constraints z; , = x¢ , for each p € P
and trip t € T ending before the disruption. Finally, the model is extended to

express the recovery costs:

)\2012@7@4—622@4-2 Z dg.m, (21)
t

teT seSmeM

o > Y = U, Vs €S,me M, 22
23

24

ds;m = Ygom = Ysoms Vs e S,me M,

wy = Z (2tpp | p— P is coupling or uncoupling), Vt € T,

€ > Wy — wy, VteT,

26

27
28

dsm >0, Vs e S,me M,

(22)

(23)

(24)

wy = Z (Ztpp | p— P’ is coupling or uncoupling), Vt € T, (25)

(26)

(27)

& >0, VteT. (28)

The auxiliary variables d measure the deviation of the planned end-of-day

rolling stock inventories (i.e. that of the nominal solution) from the realised

end-of-day rolling stock inventories (i.e. those in the scenario). The value of the

auxiliary variable w; is 0 or 1 depending on whether the nominal solution has

a composition change (i.e. coupling or uncoupling of units) after trip ¢. Similar

role is played by w; in the scenario. The auxiliary variable e; has a value at least

1 if a new shunting is introduced after trip ¢, i.e. if there was no composition

change after trip ¢ in the nominal solution whereas there is one in the recovered

solution. The objective penalises the variables d and € as well as all variables &
that assign an empty composition to a trip.

5 Computational Results

We implemented the robust scheduling problem (8) — (11) with the rolling stock
(re-)scheduling model described in Section 4 for the so called 3000 line of NS.
This is an Inter-City line with a closed rolling stock circulation. The instance
contains about 400 trips connecting 8 stations, and is served by two rolling stock
types with 11 and 24 units, respectively. The 3000 line is one of the medium-sized
rolling stock instances of NS.

The nominal problem is based on the actual timetable of NS. The scenar-
ios have been generated artificially using a program of [8], which simulates the
decisions of the infrastructure manager about train cancellations, including the
successors of the trips after disruption. In that respect, the input data of the
scenarios follow the same rules and assumptions as the nominal problem.

As already discussed, the goal of our preliminary computational tests is to
investigate whether the suggested optimisation framework can be used at all
to assess PoR for our rolling stock scheduling problem. Therefore we restricted
ourselves to the solution of LP relaxations.

We implemented two solution methods: (¢) solving (8) — (11) directly as
a single LP; (ii) applying a canonical Benders decomposition Approach. Our

10

computer codes are written in C and run on a personal computer, solving the
LPs by ILOG CPLEX 10.0. The master problem has about 14,500 variables,
8,600 constraints and 310,000 non-zeros in the matrix.

The solution approaches have been tested with 2—20 scenarios, implying that
the LPs solved by method (i) feature 43,000-305,000 variables, 25,000-180,000
constraints and 950,000-6,500,000 non-zeros.

For each number of scenarios, we solved two variants of the problem: Test-I
and Test-Il. They share the same constraint matrix but differ in the objective
function. The cost coefficients are given in Table 1. Test-| focuses on service qual-
ity (by penalising seat shortages more heavily) while Test-1l emphasises efficiency
(by penalising carriage kilometres more heavily).

Table 1. Coefficients for the nominal objective function as well as for the recovery
costs.

Criterion in nominal problem Test-I Test-1l
seat shortage km 100 50
carriage km 9 100
composition change 5 10
Criterion for recovery Test-I Test-ll
cancellation 1,000,000 1,000,000
inventory deviation 20,000 20,000
new shunting 10,000 10,000

The computational results with the two solution approaches are summarised
in Table 2. It turns out that the huge LPs in method (i) are barely solvable.
For more than 6 or 7 scenarios, the solution time exceeds our time limit of 1800
seconds. The cases with 10 or more scenarios appear to be far from being solved
after several hours of CPU time. The Benders decomposition approach, on the
other hand, is able to cope with the problems. After applying 24—640 and 30-360
Benders cuts for Test-l and Test-ll, respectively, optimality was reached within
the time limit.

The above results prove that, at least for our case study, the general lower
bound on PoR that we propose can be computed within reasonable time.

6 Summary and Future Research

In this paper we summarised our understanding of the Price of Recoverability.
In addition, we proposed a mathematical programming approach to compute
a lower bound on the Price of Recoverability for real-life railway scheduling
problems.

A Benders decomposition approach has been implemented for a medium-sized
rolling stock scheduling problem of NS. The preliminary computational results
indicate the problem is widely tractable with up to 20 disruption scenarios. Note

11

Table 2. The number of applied Benders cuts as well as the running times in seconds
for the Benders decomposition approach and for the direct solution of the whole LP
(referred to as ‘CPLEX’) on Test-l and Test-ll. A dash indicates the running time of
CPLEX exceeding 1800 seconds.

Test-I Test-1l
Benders CPLEX Benders CPLEX
scens. # cuts CPU time CPU time # cuts CPU time CPU time
2 24 22 122 32 30 75
3 27 27 366 24 25 372
4 140 224 795 100 141 880
5 175 264 1,055 125 175 1,078
6 168 277 1,962 150 209 —
7 210 319 — 140 205 —
8 248 454 — 152 223 —
9 288 603 — 171 278 —
10 320 688 — 190 332 —
11 352 734 — 209 364 —
12 384 798 — 228 400 —
13 325 662 — 234 439 —
14 420 1,014 — 252 499 —
15 450 1,090 — 300 653 —
16 480 1,163 — 320 698 —
17 595 1,710 — 306 642 —
18 540 1,380 — 324 701 —
19 570 1,459 — 342 730 —
20 640 1,840 — 360 816 —

that the whole problem (a single LP) cannot be solved within several hours even
with just 10 scenarios.

In order to improve the proposed method, we will go on with more thor-
ough computational tests. First, the preliminary computations concern the LP
relaxation of the rolling stock scheduling problem; we are going to study the
original MILP models as well. Second, the current way of selecting the Benders
cuts is very simple; we are going to evaluate the effect of more sophisticated
cut selection methods. Third, Benders decomposition is not the only possible
approach for solving (8) — (11). In our future research we are going to explore
other mathematical programming techniques, such as convex optimisation (e.g.
through the subgradient algorithm). Last but not least, we are going to investi-
gate implications of the Price of Recoverability to railway practice.

Acknowledgment
This work was partially supported by the Future and Emerging Technologies

Unit of EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project
ARRIVAL).

12

References

1. D. Bertsimas and M. Sim. The Price of Robustness. Operations Research, 52(1):
35-53, 2004.

2. J. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, New
York, 1997.

3. S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Robust
Algorithms and Price of Robustness in Shunting Problems. In Proceedings of the 7th
Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS), 2007.

4. P. Fioole, L. Kroon, G. Maréti, and A. Schrijver. A rolling stock circulation model
for combining and splitting of passenger trains. FEuropean Journal of Operational
Research, 174:1281-1297, 2006.

5. C. Liebchen, R. Mohring, M. Liibbecke, and S. Stiller. Recoverable robustness.
Technical Report ARRIVAL-TR-0066, ARRIVAL Project, 2007.

6. G. Maréti. Operations Research Models for Railway Rolling Stock Planning. PhD
thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2006.

7. G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.

8. L. Nielsen. Disruption Generator for Railway Rolling Stock Re-scheduling, 2008.
Software.

13

