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Abstract

Static Worst-Case Execution Time (WCET) analysis derives upper bounds for the execution times of
programs. Such bounds are crucial when designing and verifying real-time systems. A key component
in static WCET analysis is the flow analysis, which derives bounds on the number of times different
code entities can be executed. Examples of flow information derived by a flow analysis are loop
bounds and infeasible paths.
Flow analysis can be performed on source code, intermediate code, or binary code: for the latter,
there is a proliferation of instruction sets. Thus, flow analysis must deal with many code formats.
However, the basic flow analysis techniques are more or less the same regardless of the code format.
Thus, an interesting option is to define a common code format for flow analysis, which also allows for
easy translation from the other formats. Flow analyses for this common format will then be portable,
in principle supporting all types of code formats which can be translated to this format. Further, a
common format simplifies the development of flow analyses, since only one specific code format needs
to be targeted.
This paper presents such a common code format, the ALF language (ARTIST2 Language for WCET
Flow Analysis).

1. Introduction

Bounding the Worst-Case Execution Time (WCET) is crucial when verifying real-time properties. A
static WCET analysis finds an upper bound to the WCET of a program from mathematical models
of the hardware and software involved. If the models are correct, the analysis will derive a timing
estimate that is safe, i.e., greater than or equal to the WCET.

To statically derive a timing bound for a program, information on both the hardware timing charac-
teristics, as well as the program’s possible execution flows, needs to be derived. The latter includes
information about the maximum number of times loops are iterated, infeasible paths, etc. The goal
of a flow analysis is to calculate such flow information as automatically as possible. A precise flow
analysis is of great importance for calculating a tight WCET estimate [18].
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The input to the flow analysis is a representation of the program to be analysed as, e.g., binary code,
intermediate code, or source code. These alternatives have different pros and cons:

Binary code. This is the code actually being run on the processor, and thus the code for which
the flow information is relevant. Analyzing the binary code therefore ensures that the correct
flow information is found. However, information available in the source code may be lost
in the binary, which can lead to a less precise flow analysis. To do a good job, an analysis
tool will have to reconstruct the high-level program structure such as the control flow graph,
function calls and returns, etc. The WCET analysis tools aiT [2] and Bound-T [7] analyze
binary code, and include both a type of instruction decoding- and program-graph reconstruction
phase [6, 19].

Source code. Source code can typically be analyzed more precisely, since there is much more in-
formation present. On the other hand, compiler optimizations can cause the control structure
of the generated binary code to be different from the one of the source code. Therefore, to
be used for WCET analysis the flow information must be transformed accordingly [10]. This
requires compiler support, which current production compilers do not offer. On the other hand,
source-code analysis can be used for other purposes such as deriving and presenting program
flow information to the developer. Thus, flow analysis of source code is definitely of interest.
Typically, when source code is analysed, the code is often translated to some type of intermedi-
ate code which is close to the source code. An example of a WCET analysis tool which works
on source code level is TuBound [16].

Intermediate code. This kind of code is typically used by compilers, for the purpose of optimizing
transformations, before the binary code is generated. It is often quite rich in information. The
intermediate code generated by the parser is usually more or less isomorphic to the source
code, while after optimizations it typically has a program flow which is close to the flow in
the generated binary code. These properties make intermediate code an interesting candidate
for flow analysis, since it can be analyzed for flow properties of both source and binary code.
On the downside, the analysis becomes dependent on a certain compiler: code generated by
another compiler cannot be analyzed. The current version of the WCET analysis tool SWEET
analyzes the intermediate format of the NIC research compiler [4].

ALF is developed with flexibility in mind. The idea behind ALF is to have a generic language for
WCET flow analysis, which can be generated from all of the program representations mentioned
above. In this paper we describe ALF, its intended use, and some current projects where ALF will be
used. For a complete description of ALF, see the language specification [3].

The rest of the paper is organized as follows: Section 2 describes the ALF language. Section 3
presents the intended uses of ALF, and in Section 4 we describe some of the current projects where
ALF is being used. Section 5 presents some related work, and in Section 6 we draw some conclusions
and discuss future work.

2. ALF (ARTIST2 Language for WCET Flow Analysis)

ALF is a language to be used for flow analysis for WCET calculation. It is an intermediate level
language which is designed for analyzability rather than code generation. It is furthermore designed
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to represent code on source-, intermediate- and binary level (linked as well as unlinked) through
relatively direct translations, which maintain the information present in the original code needed to
perform a precise flow analysis.

ALF is basically a sequential imperative language. Unlike many intermediate formats, ALF has a
fully textual representation: it can thus be seen as an ordinary programming language, although it is
intended to be generated by tools rather than written by hand.

2.1. Syntax

ALF has a Lisp/Erlang-like syntax, to make it easy to parse and read. This syntax uses prefix notation
as in Lisp, but with curly brackets “{”, “}” as parentheses as in Erlang. An example is

{ dec unsigned 32 2 }

which denotes the unsigned 32-bit constant 2.

2.2. Memory Model

ALF’s memory model distinguishes between program and data addresses. It is essentially a memory
model for relocatable, unlinked code. Program and data addresses both have a symbolic base address,
and a numerical offset. Program addresses are called labels. The address spaces for code and data are
disjoint. Only data can be modified: thus, self-modifying programs cannot be modelled in ALF in a
direct way.

2.3. Program Model

ALF’s program model is quite high-level, and similar to C. An ALF program is a sequence of declara-
tions, and its executable code is divided into a number of function declarations. Within each function,
the program is a linear sequence of statements, with execution normally flowing from one statement
to the next. Statements may be tagged with labels. ALF has jumps, which can go to dynamically
calculated labels: this can be used to represent program control in low-level code. In addition ALF
also has structured function calls, which are useful when representing high-level code. See further
Sections 2.6 and 2.7

A function named “main” will be executed when an ALF program runs. ALF programs without a
main function cannot be run, but may still be analyzed.

2.4. Data Model

ALF’s data memory is divided into frames. Each frame has a symbolic base pointer (a frameref ) and
a size. A data address pointing into a frame is formed from the frameref of the frame and an offset.
The offset is a natural number in the least addressable unit (LAU) of the ALF program. The LAU is
always declared: typically it is set to a byte (8 bits).

Frames can be either statically or dynamically allocated. Statically allocated memory is explicitly
declared. There are two ways to allocate memory dynamically:
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• As local data in so-called scopes. This kind of local data is declared like statically allocated
data, but in the context of a scope rather than globally. It would typically be allocated on a
stack.

• By calling a special function “dyn alloc” (similar to malloc in C) that returns a frameref
to a newly allocated frame. This kind of data would typically be allocated on a heap.

Semantically, framerefs are actually pairs (i, n) where i is an identifier and n a natural number. For
framerefs pointing to statically allocated frames, n is zero. For frames dynamically allocated with
dyn alloc, each new allocation returns a new frameref with n increased by one. This semantics
makes it possible to perform static analysis of dynamically allocated memory, like bounding the
maximal number of allocations to a certain data area.

ALF’s data memory model can be used both for high-level code, intermediate formats, and binaries,
like in the following:

• ”High-level”: allocate one frame per high-level data structure in the program (struct, array, . . .)

• ”Intermediate-level”: use one frameref identifier for each stack, heap etc. in the runtime system,
in order to model it by a potentially unbounded “array” of frames (one for each object stored in
the data structure). Use one frame for each possible register. If the intermediate model has an
infinite register bank, then use one identifier to model the bank (again one frame per register).

• Binaries: allocate one frame per register, and a single frame for the whole main memory.

2.5. Values and Operators

Values can be:

• Numerical values: signed/unsigned integers, floats, etc.,

• Framerefs,

• Label references (lrefs), which are symbolic base addresses to code addresses (labels),

• Data addresses (f, o), where f is a frameref and o is an offset (natural number), or

• Code addresses (labels) (f, n), where f is an lref and n a natural number.

There is a special value undefined. This provides a fallback in situations where an ALF-producing
tool, e.g., a binary-to-ALF translator, cannot translate a piece of the binary code into sensible ALF.

Each value in ALF has a size, which is the number of bits needed for storing it. ALF has integers
of unbounded size: these are used mainly when translating language constructs into ALF that are
not easily modelled with ALF’s predefined operators. All other values have finite size, and they are
storable, meaning that they can be stored in memory. Storable values are further subdivided into
bitstring values, which have a unique bitstring representation, and symbolic values. The latter include
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address values, since they have symbolic base addresses. Only a limited number of operations are
allowed on symbolic values.

Bitstring values are primarily numeric values. A bitstring value can be numerically interpreted in var-
ious ways depending on its use: as signed, unsigned, floating-point, etc. This is a complication when
performing a value analysis of ALF, since this analysis must take the different possible interpretations
into account. A soft type system [20] for ALF, which can detect how values are used and restrict their
possible interpretations, is under development [3].

ALF has an explicit syntax for constant values, which includes the size and the intended interpretation.
This is intended to aid the analysis of ALF programs.

Operators in ALF are of different kinds. The most important ones are the operators on data of limited
size. These operators mostly model the functional semantics of common machine instructions (arith-
metic and bitwise logical operations, shifts, comparisons, etc). ALF also has operators on data of
unbounded size. These are “mathematical” operations, typically on integers: for instance, all “usual”
arithmetic/relational operators have versions for unbounded integers. They are intended to be used to
model the functional semantics for instructions whose results cannot be expressed directly using the
finite-size-data operators. An example is the settings of different flags after having carried out certain
operations, where ALF sometimes does not provide a direct operator.

Furthermore, ALF has a few operators on bitstrings, like bitstring concatenation. They are intended
to model the semantics on a bitstring level, which is appropriate for different operations involving
masking etc. There is a variety of such operations in different instruction sets, and it would be hard
to provide direct operators for them all. ALF also has a conditional, and a conversion function from
bitstrings to natural numbers. These functions are useful when defining the functional semantics of
instructions.

Finally, ALF has a load operator that reads data from a memory address, and the aforementioned
dyn alloc function that allocates a new frame.

All these operators, except dyn alloc, are side-effect free. This simplifies the analysis of ALF
programs. Each operator takes one or several size arguments, which give the size(s) of the operands,
and the result. ALF is very explicit about the sizes of operands and operators, in order to simplify
analysis and make the semantics exact.

2.6. Statements

ALF has a number of statements. These are similar to statements in high-level languages in that they
typically take full expressions as arguments, rather than register values. The most important are the
following:

• A concurrent assignment (store), which stores a list of values to a list of addresses. Both
values and addresses are dynamically evaluated from expressions.

• A multiway jump (switch), which computes a numerical value and then jumps to a dynami-
cally computed address depending on the numerical value. For convenience, ALF also has an
unconditional jump statement.
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• Function call and return statements. The call statement takes three arguments: the
function to be called (a code address), a list of actual arguments, and a list of addresses where
the return values are to be stored upon return from the called function. Correspondingly, the
return statement takes a list of expressions as arguments, whose values are returned. The
address specifying the function to be called can be dynamically computed.

2.7. Functions

ALF has procedures, or functions. A function has a name and a list of formal arguments, which are
frames. The body of a function is a scope, which means that a function also can have local variables.
The formal arguments are similar to locally declared variables in scopes, with the difference that they
are initialized with the values of the actual arguments when the function is called.

As explained in Section 2.6, a function is exited by executing a return statement. A function is also
exited when the end of its body is reached, but the result parameters will then be undefined after the
return of the call. Functions can be recursive.

Functions can only be declared at a single, global level, and a declared function is visible in the whole
ALF program. ALF has lexical (static) scoping: locally defined variables, or formal arguments, take
precedence over globally defined entities with the same name. This is similar to C.

2.8. The Semantics of ALF

ALF is an imperative language, with a relatively standard semantics based on state transitions. The
state is comprised of the contents in data memory, a program counter (PC) holding the (possibly
implicit) label of the current statement to be executed, and some representation of the stacked envi-
ronments for (possibly recursive) function calls.

2.9. An Example of ALF Code

The following C code:

if(x > y) z = 42;

can be translated into the ALF code below:

{ switch { s_le 32 { load 32 { addr 32 { fref 32 x } { dec_unsigned 32 0 } } }
{ load 32 { addr 32 { fref 32 y } { dec_unsigned 32 0 } } } }

{ target { dec_unsigned 1 1 }
{ label 32 { lref 32 exit } { dec_unsigned 32 0 } } } }

{ store { addr 32 { fref 32 z } { dec_unsigned 32 0 } }
with { dec_signed 32 42 } }

{ label 32 { lref 32 exit } { dec_unsigned 32 0 } }

The if statement is translated into a switch statement jumping to the exit label if the (negated) test
becomes true (returns one). The test uses the s le operator (signed less-than or equal), taking 32 bit
arguments and returning a single bit (unsigned, size one). Each variable is represented by a frame of
size 32 bits.
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3. Flow Analysis Using ALF

ALF will be able to offer a high degree of flexibility. Provided that translators are available, the input
can be selected from a wide set of sources, like linked binaries, source code, and compiler intermediate
formats: see Section 4.3 for some available translators. The flow analysis is then performed on the
ALF code.

If a single, standardized format like ALF is used, then it is natural to implement different flow anal-
yses for this format. This facilitates direct comparisons between different analysis methods. Also,
since different analyses are likely to be the most effective ones for different kinds of translated input
formats, the analysis of heterogeneous programs is facilitated. This can be useful in situations where
parts of the analysed program are available as, say, source code, while other parts, like library rou-
tines, are available only as binaries. Also, different parts of the program with different characteristics
may require different flow analysis methods, e.g., input dependent functions may require a parametric
analysis [12]. Flow analysis methods can be used as “plug-ins” and even share results with other
methods. Several flow analysis methods can be used in parallel and the best results can be selected.

ALF itself does not carry flow data. The flow analysis results must be mapped back as flow constraints
on the code from which the ALF code was generated. An ALF generator can use conventions for
generating label names in order to facilitate this mapping back to program points in the original code.

As a future general format for flow constraints, the Program Flow Fact (PFF) format is being devel-
oped to accompany ALF. PFF will be used to express the dynamic execution properties of a program,
in terms of constraints on the number of times different program entities can be executed in different
program contexts.

4. Current Projects Using ALF

4.1. ALL-TIMES

ALL-TIMES [5] is a medium-scale focused-research project within the 7th Framework Programme.
The overall goal of ALL-TIMES is to integrate European timing analysis technology. The project
is concerned with embedded systems that are subject to safety, availability, reliability, and perfor-
mance requirements. These requirements often relate to correct timing, notably in the automotive and
aerospace areas. Consequently, the need for appropriate timing analysis methods and tools is growing
rapidly.

ALL-TIMES will enable interoperability of the various tools from leading commercial vendors and
universities alike, and develop integrated tool chains using open tool frameworks and interfaces. The
different types of connections between the tools are:

• provision of data: one tool provides some of its analysis data to a another tool

• provision of component: the component of one tool is provided to another partner for integra-
tion in the other tool

• sharing of data: this is a bidirectional connection where similar data is computed by both tools
and the connector allows to exchange that information in both directions
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Figure 1. The use of ALF with the SWEET tool

• combination of features: the foreseen connection allows to combine features from different
tools in both directions (either by exchanging data or components)

ALF is being developed within the ALL-TIMES project, where it will contribute to the interoperabil-
ity between WCET tools.

4.2. ALF and SWEET

ALF will be used as input format for the WCET analysis tool SWEET (SWEdish Execution Time
tool), which is a prototype WCET analysis tool developed at Mälardalen University [13].

Figure 1 describes the intended use of ALF in conjunction with SWEET. Step 1 represents the reading
of the input program code, represented in different formats and levels. Step 2 describes the output
in the generic ALF format. Step 3 shows the inputs to the flow analysis, which (in Step 4) outputs
the results as flow constraints (flow facts) on ALF code entities. Using the mapping information
created earlier, these flow facts can be mapped back to the inputs formats (Step 5). The four different
translators to ALF are described shortly below.

4.3. Translators to ALF

A number of translators to ALF code are currently being developed. All three types of sources will
be covered; source code, intermediate code, and binary code.

C/C++ source code to ALF translator. This C/C++ to ALF translator is developed within the
ALL-TIMES project. It is based on the SATiRE framework [17], developed by the Compilers and
Languages Group of the Institute of Computer Languages at TU Vienna. SATIrE integrates compo-
nents of different program analysis tools and offers an infrastructure for building new code analysis
tools. The C to ALF translator is available on the MELMAC web site [14]. The mapping of flow con-
straints back to the source code will use the Analysis Results Annotation Language (ARAL) format,
which is a part of the SATiRE framework.

IAR intermediate code to ALF translator. This translator converts a proprietary intermediate code
format, used by the embedded systems compiler vendor IAR Systems AB [8], into ALF.
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Binary code to ALF translators. Two binary translators are currently under development at Mälar-
dalen University, within the ALL-TIMES project. They translate CRL2 to ALF. CRL2 is a data format
maintained by AbsInt GmbH [1], which is used by the aiT WCET analysis tool. CRL2 is mainly used
to represent various types of assembler code formats with associated analysis results. By using CRL2
as source, the existing binary readers of aiT can be used to decode the binaries.

The first translator1 translates CRL2’s representation of NECV850E assembler code to ALF, and the
second translator2 converts PowerPC code into ALF. To allow SWEET’s analysis results to be given
back to CRL2, a mapping between CRL2’s and ALF’s different code and data constructs will be
maintained. For both translators the generated flow constraints will be transferred to aiT using the
AIS format, which is the annotation format used by aiT.

4.4. ALF interpreter

An ALF interpreter is currently being developed at Mälardalen University3. The interpreter will be
used for debugging ALF programs (or, indirectly, translators generating ALF), and other purposes.

4.5. ALF file linking

An embedded systems project may involve a variety of code sources, including code generated from
modelling tools, C or C++ code, or even assembler. To form a binary executable program, the source
files are compiled and linked together with other object code files and libraries [11]. The latter are
often not available in source code format [15].

To handle this issue ALF must support the “linking” of several ALF files into one single ALF file.
Since ALF is supposed to support reverse engineering of binaries and object code, it cannot have an
advanced module system with different namespaces. Instead ALF provides, similar to most object
code formats [11], a set of exported symbols, i.e., lrefs or frefs visible to other ALF files, as
well as a set of symbols that must be imported, i.e., lrefs or frefs used but not declared in the
ALF file.

Forthcoming work includes the development of an ALF linker, i.e., a tool able to “link” ALF files
generated from many different code sources. It will here be interesting to see if it is also possible
to “link” (maybe partial) flow analysis results for individual ALF files to form a flow analysis result
valid for the whole program.

5. Related Work

Generic intermediate languages have been used for other purposes. One example is the hardware
description language TDL [9] which was designed with the goal to generate machine-dependent post-
pass optimizers and analyzers from a concise specification of the target processor. TDL provides a
generic modelling of irregular hardware constraints that are typical for many embedded processors.
The part of TDL that is used to describe the semantics of instruction sets resembles ALF to some
degree.

1http://www.mdh.se/ide/eng/msc/index.php?choice=show&id=0875
2http://www.mdh.se/ide/eng/msc/index.php?choice=show&id=0917
3http://www.mdh.se/ide/eng/msc/index.php?choice=show&id=0830
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6. Conclusions and Future Work

ALF can be seen as a step towards an open framework where flow analyses can be available and
freely used among several WCET analysis research groups and tool vendors. This framework will
ease the comparison of different flow analysis methods, and it will facilitate the future development
of powerful flow analysis methods for WCET analysis tools.

There may be other uses for ALF than supporting flow analysis for WCET analysis tools. For instance,
ALF can be used as a generic representation for different binary formats. Thus, very generic tools
for analysis, manipulation, and reverse engineering of binary code may be possible to build using
ALF. Possible examples include generic binary readers that reconstruct control flow graphs, and tools
that can reconstruct arithmetics for long operators implemented using instruction sets for shorter
operators. The latter can be very useful when performing flow analysis for binaries compiled for
small embedded processors, where the original arithmetics in the source code must be implemented
using an instruction set for short operators.

It would be simple to define an XML syntax for ALF. We might do so in the future, in order to
facilitate the use of standard tools for handling XML. Future work also includes further development
of the PFF format for flow facts and the format for input value annotations.
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