
FROM TRUSTED ANNOTATIONS TO VERIFIED
KNOWLEDGE 1

Adrian Prantl2, Jens Knoop2, Raimund Kirner3, Albrecht Kadlec3, and
Markus Schordan4

Abstract
WCET analyzers commonly rely on user-provided annotations such as loop bounds, recursion depths,
region- and program constants. This reliance on user-provided annotations has an important draw-
back. It introduces a Trusted Annotation Basis into WCET analysis without any guarantee that the
user-provided annotations are safe, let alone sharp. Hence, safety and accuracy of a WCET analysis
cannot be formally established. In this paper we propose a uniform approach, which reduces the
trusted annotation base to a minimum, while simultaneously yielding sharper (tighter) time bounds.
Fundamental to our approach is to apply model checking in concert with other more inexpensive pro-
gram analysis techniques, and the coordinated application of two algorithms for Binary Tightening
and Binary Widening, which control the application of the model checker and hence the computa-
tional costs of the approach. Though in this paper we focus on the control of model checking by
Binary Tightening and Widening, this is embedded into a more general approach in which we apply
an array of analysis methods of increasing power and computational complexity for proving or dis-
proving relevant time bounds of a program. First practical experiences using the sample programs of
the Mälardalen benchmark suite demonstrate the usefulness of the overall approach. In fact, for most
of these benchmarks we were able to empty the trusted annotation base completely, and to tighten the
computed WCET considerably.

1. Motivation

The computation of loop bounds, recursion depths, region- and program constants is undecidable.
It is thus commonly accepted that WCET analyzers rely to some extent on user-assistance for pro-
viding bounds and constants. Obviously, this is tedious, complex, and error-prone. State-of-the-art
approaches to WCET analysis thus provide for a fully automatic preprocess for computing required
bounds and constants using static program analysis. This unburdens the user since his assistance is
reduced to bounds and constants, which cannot automatically be computed by the methods employed
by the preprocess. Typically, these are classical data-flow analyses for constant propagation and fold-
ing, range analysis and the like, which are particularly cost-efficient but may fail to verify a bound
or the constancy of a variable or term. WCET analyzers then rely on user-assistance to provide the
missing bounds which are required for completing the WCET analysis. This introduces a Trusted
Annotation Base (TAB) into the process of WCET analysis. The correctness (safety) and optimality

2Vienna University of Technology, Institute of Computer Languages, Austria, {adrian,knoop}@complang.tuwien.ac.at
3Vienna University of Technology, Institute of Computer Engineering, Austria, {raimund,albrecht}@vmars.tuwien.ac.at
4University of Applied Sciences Technikum Wien, Austria, schordan@technikum-wien.at
1This work has been supported by the Austrian Science Fund (Fonds zur Förderung der wissenschaftlichen Forschung)
within the research project “Compiler-Support for Timing Analysis” (CoSTA) under contract No P18925-N13 and within
the research project “Sustaining Entire Code-Coverage on Code Optimization” (SECCO) under contract No P20944-N13,
and by the European Union within the 7th EU R&D Framework Programme within the research project “Integrating
European Timing Analysis Technology” (ALL-TIMES) under contract No 215068.

ECRTS 2009 
9th International Workshop on Worst-Case Execution Time (WCET) Analysis 
http://drops.dagstuhl.de/opus/volltexte/2009/2282



Verified

Trusted

Annotation Base

Figure 1. The annotation base: shrinking the trusted annotation base and establishing verified knowledge about
the program

(tightness) of the WCET analysis depends then on the safety and tightness of the bounds of the TAB
provided by the user.

In this paper we propose a uniform approach, which reduces the trusted annotation base to a minimum,
while simultaneously yielding sharper (tighter) time bounds.

Figure 1 illustrates the general principle of our approach. At the beginning the entire annotation base
that is added by the user where static analysis fails to establish the required information, is assumed
and trusted to be correct, thus we call it Trusted Annotation Base (TAB). Using model checking we
aim to verify as many of these user-provided facts as possible. In this process we shrink the trusted
fraction of the annotation base and establish a growing verified annotation base. In Figure 1 the
current state in this process is visualized as the horizontal bar. In our approach we are lowering this
bar, representing the decreasing fraction of trust to an increasing fraction of verified knowledge, and
thus transfer trusted user-belief into verified knowledge.

2. Shrinking the Trusted Annotation Base – Sharpening the Time Bounds

2.1. Shrinking the Trusted Annotation Base

The automatic computation of bounds by the preprocesses of up-to-date approaches to WCET analysis
is a step towards keeping the trusted annotation base small. In our approach we go a step further by
shrinking the trusted annotation base. In practice, we often succeed to empty it completely.

A key observation is that a user-provided bound – which the preprocessing analyses were unable to
compute – can not be checked by them either. Hence, verifying the correctness of the correspond-
ing user annotation in order to move it a posteriori from the trusted annotation base to the verified
knowledge base requires another, more powerful and usually computationally more costly approach.
For example, there are many algorithms for the detection of copy constants, linear constants, sim-
ple constants, conditional constants, up to finite constants detecting different classes of constants at
different costs [9]. This provides evidence for the variety of available choices for analyses using the
example of constant propagation and folding. While some of these algorithms might in fact well be
able to verify a user annotation, none of these algorithms is especially prepared and suited for solely
verifying a data-flow fact at a particularly chosen program location, a so-called data-flow query. This
is because these algorithms are exhaustive in nature. They are designed to analyze whole programs.

2



They are not focused towards deciding a data-flow query, which is the domain of demand-driven
program analyses [3, 6]. Like for the more expressive variants of constant propagation and folding,
however, demand-driven variants of program analyses are often not available.

In our approach, we thus propose to use model checking for the a posteriori verification of user-
provided annotations. Model checking is tailored for the verification of data-flow queries. Moreover,
the development of software model checkers made tremendous progress in the past few years and
are now available off-the-shelf. The Blast [1] and the CBMC [2] model checkers are two prominent
examples. In our experiments reported in Section 4 we used the CBMC model checker. The way
we use model checking is similar to the approach of Rieder et al. who also used model checking to
derive loop bounds [13]. However, their basic motivation of using model checking is to minimize the
implementation effort. Since they use model checking as the only program analysis technique, they
conclude that model checking in general is a very costly analysis technique. This builds an excellent
motivation for our approach where we use model checking in concert with other program analysis
techniques of different complexity.

The following example demonstrates the ease and elegance of using a model checker to verify a
loop bound, which we assume could not be automatically bounded by the program analyses used.
The program fragment on the left-hand side of Figure 2 shows a loop together with a user-provided
annotation of the loop. The program on the right-hand side shows the transformed program which is
presented to CBMC to verify or refute the user-provided annotation:

int binary_search(int x) {
int fvalue, mid, low = 0, up = 14;
fvalue = (-1); /* all data are positive */

while(low <= up){
#pragma wcet_trusted_loopbound(7)

mid = low + up >> 1;
if (data[mid].key == x) { /* found */
up = low - 1;
fvalue = data[mid].value;

}
else if (data[mid].key > x)
up = mid - 1;
else low = mid + 1;

}

return fvalue;
}

→

int binary_search(int x) {
int fvalue, mid, low = 0, up = 14;
fvalue = (-1); /* all data are positive */

unsigned int __bound = 0;
while(low <= up){

mid = low + up >> 1;
if (data[mid].key == x) { /* found */

up = low - 1;
fvalue = data[mid].value;

}
else if (data[mid].key > x)
up = mid - 1;
else low = mid + 1;

__bound += 1;
}
assert(__bound <= 7);

return fvalue;
}

Figure 2. Providing loop bound annotations for the model checker

In this example the CBMC model checker comes up with the answer “yes,” i.e., the loop bound
provided by the user is safe; allowing thus for its movement from the trusted to the verified annotation
base. If, however, the user were to provide bound ≤ 3 as annotation, model checking would fail
and produce a counter example as output. Though negative, this result would still be most valuable.
It allows for preventing usage of an unsafe trusted annotation base in a subsequent WCET analysis.
Note that the counter example itself, which in many applications is the indispensable and desired
output of a failed run of a model checker, is not essential for our application. It might be useful,
however, to present it to the user when asking for another candidate of a bound, which can then be
subject to a posteriori verification in the same fashion until a safe bound is eventually found.

3



Next we introduce a more effective approach to come up with a safe and even tight bound, if so ex-
isting, which does not even rely on any user interaction. Fundamental for this are the two algorithms
Binary Tightening and Binary Widening and their coordinated interaction. The point of this coordina-
tion is to make sure that model checking is applied with care as it is computationally expensive.

2.2. Sharpening the Time Bounds

2.2.1. Binary Tightening

Suppose a loop bound has been proven safe, e.g. by verifying a user-provided bound by model check-
ing or by a program analysis. Typically, this bound will not be tight. In particular, this will hold for
user-provided bounds. In order to exclude channeling an unsafe bound into the trusted annotation
base, the user will generously err on the side of caution when providing a bound. This suggests the
following iterative approach to tighten the bound, which is an application of the classical pattern of a
binary search algorithm, thus called binary tightening in our scenario.

Let b0 denote the value of the initial bound, which is assumed to be safe. Per definition b0 is a
positive integer. Then: call procedure binaryT ightening with the interval [0..b0] as argument, where
binaryT ightening([low..high]) is defined as follows:

1. Let m = d low+high
2

e.
2. ModelCheck(m is a safe bound):

3. yes: low = m: return m
low = m− 1: ModelCheck(low is a safe bound)

yes: return low no: return m
otherwise: binaryT ightening([low..m])

4. no: high = m: return false
high = m + 1: ModelCheck(high is a safe bound)

yes: return high no: return false
otherwise: binaryT ightening([m..high])

Obviously, binaryT ightening terminates. If it returns false, a safe bound tighter than that of the
initial bound b0 could not be established. Otherwise, i.e., if it returns value b, this value is the least
safe bound. This means b is tight. If it is smaller than b0, we succeeded to sharpen the bound.

Binary widening described next allows for proceeding in the case where a safe bound is not known a
priori. If a safe bound (of reasonable size) exists, binary widening will find one, without any further
user interaction.

2.2.2. Binary Widening

Binary widening is dual to binary tightening. Its functioning is inspired by the risk-aware gambler
playing roulette, who exclusively bets on 50% chances like red and black. Following this strategy, in
principle, any loss can be flattened by doubling the bet the next game. In reality, the maximum bet
allowed by the casino or the limited monetary resources of the gambler, whatever is lower, prevent this

4



strategy to work out in reality. Nonetheless, the idea of an externally given limit yields the inspiration
for the Binary Widening algorithm to avoid looping if no safe bound exists. A simple approach is to
limit the number of recursive calls of binary widening to a predefined maximum number. The version
of binary widening we present below uses a different approach. It comes up with a safe bound, if one
exists, and terminates, if the size of the bound is too big to be reasonable, or does not exist at all. This
directly corresponds to the limit set by a casino to a maximum bet.

Let b0 ≥ 1 be a positive integer, and let max be the maximum value for a safe bound consid-
ered reasonable. Then: Call procedure binaryWidening with b0 and max as arguments, where
binaryWidening(b, limit) is defined as follows:

1. if b > limit: return false

2. ModelCheck(b is a safe bound):

3. yes: return b

4. no: binaryWidening(2 ∗ b, limit)

Obviously, binaryWidening terminates.1 If it returns false, at most a bound of a size considered
unreasonably big exists, if at all. Otherwise, i.e., if it returns value b, this value is a safe bound. The
ratio behind this approach is the following: if a safe bound exists, but exceeds a predefined threshold,
it can be considered practically useless. In fact, this scenario might indicate a programming error and
should thus be reported to the programmer for inspection. A more refined approach might set this
threshold more sophisticatedly, by using application dependent information, e.g., such as a coarse
estimate of the execution time of a single execution of the loop and a limit on the overall execution
time this loop shall be allowed for.

2.2.3. Coordinating Binary Tightening and Widening

Once a safe bound has been determined using binary widening, binary tightening can be used to com-
pute the uniquely determined safe tight bound. Because of the exponential resp. logarithmic behaviour
in the selection of arguments for binary widening and tightening, model checking is called moderately
often. This, together with the application of other program analyses, which leaves model-checking
to the “hard” cases, is the key for the practicality of our approach. We implemented this approach
in our WCET analyzer TuBound, as described in Section 3. The results of practical experiments we
conducted with the prototype implementation are promising. They are reported in Section 4.

3. Implementation within TuBound

3.1. TuBound

TuBound [11] is a research WCET analyzer tool working on a subset of the C++ language. It is
unique for uniformly combining static program analysis, optimizing compilation and WCET calcula-
tion. Static analysis and program optimization are performed on the abstract syntax tree of the input

1In practice, the model checker might run out of memory before verifying a bound, if it is too large, or may take too much
time for completing the check.

5



assertions(..., Statement, AssertedStatement) :-
Statement = while_stmt(Test, basic_block(Stmts, ...), ...),
get_annot(Stmts, wcet_trusted_loopbound(N), _),

counter_decl(’__bound’, ..., CounterDecl),
counter_inc(’__bound’, ..., Count),
counter_assert(’__bound’, N, ..., CounterAssert),

AssertedStatement =
basic_block([CounterDecl,

while_stmt(Test, basic_block([Count|Stmts], ...), ...),
CounterAssert], ...).

Figure 3. Excerpt from the source-to-source transformer T

program. TuBound is built upon the SATIrE program analysis framework [14] and the TERMITE
program transformation environment.2 TuBound features an array of algorithms for loop analysis of
different accuracy and computation cost including sophisticated analysis methods for nested loops. A
detailed account of these methods can be found in [10].

3.2. Implementation

The Binary Widening/Tightening algorithms are implemented by means of a dedicated TERMITE
source-to-source transformer T . For simplicity and uniformity we assume that all loops are struc-
tured. In our implementation unstructured goto-loops are thus transformed by another source-to-
source transformer T ′ into while-loops beforehand, where possible. On while-loops the transformer
T works by locating the first occurrence of a wcet trusted loopbound(N) annotation in the pro-
gram source and then proceeding to rewrite the encompassing loop as illustrated in the example of
Figure 3.3 Surrounding the loop statement, a new compound statement is generated, which accom-
modates the declaration of a new unsigned counter variable which is initialized to zero upon entering
the loop. Inside the loop, an increment statement of the counter is inserted at the very first location.
After the loop, an assertion is generated which states that the count is at most of value N , where N is
extracted from the annotation (cf. Figure 2).

The application of the transformer is controlled by a driver, which calls the transformer for every
trusted annotation contained in the source code. Depending on the result of the model checker and
the coordinated application of the algorithms for binary widening and tightening, the value and the
status of each annotation is updated. In the positive case, this means the status is changed from trusted
annotation to verified knowledge, and the value of the originally trusted bound is replaced by a sharper,
now verified bound. Figure 4 shows a snapshot of processing the janne complex benchmark from the
Mälardalen WCET benchmark suite. In this figure, the status and value changes are highlighted by
different colors.

4. Experimental Results

We implemented our approach as an extension of the TuBound WCET analyzer and applied the ex-
tended version to the well-known Mälardalen WCET benchmark suite. As a baseline for comparison
we used the 2008 version of TuBound, which took part in the 2008 WCET Tool Challenge [5]. In the

2http://www.complang.tuwien.ac.at/adrian/termite
3For better readability, the extra arguments containing file location and other bookkeeping information are replaced by
“...”.

6



...
int complex(int a, int b)
{
while(a < 30) {

#pragma wcet_trusted_loopbound(30)
while(b < a) {

#pragma wcet_trusted_loopbound(30)
if (b > 5)
b = b * 3;

else
b = b + 2;

if (b >= 10 && b <= 12)
a = a + 10;

else
a = a + 1;

}
a = a + 2;
b = b - 10;

}
return 1;

}
...

→

...
int complex(int a, int b)
{

while(a < 30) {
#pragma wcet_loopbound(16)

{
unsigned int __bound = 0U;
while(b < a){

#pragma wcet_trusted_loopbound(30)
++__bound;

if (b > 5)
b = b * 3;

else
b = b + 2;

if (b >= 10 && b <= 12)
a = a + 10;

else
a = a + 1;

}
assert(__bound <= 30U);

}
a = a + 2;
b = b - 10;

}
return 1;

}
...

Containing two trusted loop annotations Outer loop annotation verified and tightened, inner being checked

Figure 4. Illustrating trusted bound verification and tightening

spirit of the WCET Tool Challenge [4, 5] we do encourage authors of other WCET analyzers to carry
out similar experiments.

Our experiments conducted were guided by two questions: “Can the number of automatically bounded
loops be significantly increased?” and “How expensive is the process?”. The benchmarks were per-
formed on a 3 GHz Intel Xeon processor running 64-bit Linux. The model checker used was CBMC
2.9, which we applied to testing loop bounds up to the size of 213 = 8192 using a timeout of 600
seconds, a maximum virtual memory size of 8 GiB and a maximum unroll factor of 213 + 1 [7]. The
“compress” and “whet” benchmarks contained unstructured goto-loops; as indicated in Section 3.2
these were automatically converted into do-while loops beforehand by a TERMITE source-to-source
transformation.

Our findings are summarized in Table 1. Column three of this table shows the percentage of loops that
can be bounded by the 2008 version of TuBound; column four shows the total percentage of loops the
extended version of TuBound was able to bound. The last column shows the accumulated runtime of
the model checker for the remaining loops.

Comparing columns three and four reveals the superiority of the extended version of TuBound over
its 2008 variant. The extended version succeeds to bound 67% of the loops the 2008 version could
not bound.

Considering column five, it can be seen that the model checker terminates quickly on small prob-
lems but that the runtime and space requirements can increase to practically infeasible amounts on
problems suffering from the state explosion problem. Such a behaviour can be triggered, if the initial-
ization values which are part of the majority of the Mälardalen benchmarks are manually invalidated
by introducing e.g. a faux dependency on argc. This demonstrates that model checking is to be

7



Benchmark Loops TuBound 2008 with Model Checking Runtime
bs 1 0.0% 100.0% 0.03s
duff 2 50.0% 50.0% 0s
fft1 11 54.5% 81.8% 0.43s
janne complex 2 0.0% 100.0% 0.18s
minver 17 94.1% 100.0% 0.06s
nsichneu 1 0.0% 100.0% 5.59s
qsort-exam 6 0.0% 66.6% 0.02s
statemate 1 0.0% 100.0% 0.06s
whet 11 90.9% 90.9% 0s
adpcm 18 83.3% 83.3% out of memory
compress 8 25.0% 25.0% out of memory
fir 2 50.0% 50.0% out of memory
insertsort 2 0.0% 0.0% out of memory
lms 10 60.0% 60.0% out of memory
select 4 0.0% 0.0% out of memory
bsort100 3 100.0% 100.0% –
cnt 4 100.0% 100.0% –
cover 3 100.0% 100.0% –
crc 3 100.0% 100.0% –
edn 12 100.0% 100.0% –
expint 3 100.0% 100.0% –
fdct 2 100.0% 100.0% –
fibcall 1 100.0% 100.0% –
jfdctint 3 100.0% 100.0% –
lcdnum 1 100.0% 100.0% –
ludcmp 11 100.0% 100.0% –
matmult 5 100.0% 100.0% –
ndes 12 100.0% 100.0% –
ns 4 100.0% 100.0% –
qurt 1 100.0% 100.0% –
sqrt 1 100.0% 100.0% –
st 5 100.0% 100.0% –
recursion 0 – – –
Total Percentage 77.0% 84.7%

Table 1. Results for the Mälardalen benchmarks

8



Model Checking

Constant Propagation

Interval Analysis

Constraint Propagation

Profiling

. . .

Figure 5. Pool of complementary analysis techniques with different complexity

used with care or the model checker be fed with additional information guiding and simplifying the
verification task.

The fully-fledged variant of our approach, which we highlight in the next section is tailored towards
this goal.

5. Extensions: The Fully Fledged Approach

The shrinking of the trusted annotation base and sharpening of time bounds, as described in Section 2,
is based on model checking. Based on our experience, we believe that the model checking approach
can be especially valuable in the real world when (i) it is combined with advanced program slicing
techniques to reduce the state space and (ii) the results of static analyses (like TuBound’s variable-
interval analysis) are used to narrow the value ranges of variables, thus regaining a feasible problem
size. This leads to the following extension of our approach to improve efficiency:

1. By using a pool of analysis techniques with different computational complexity: As shown in
Figure 5, model checking is considered as one of the most complex analysis methods. On the
other side, techniques like constant propagation or interval analysis are relatively fast. Thus
we are interested in exploiting the fast techniques wherever beneficial and using the relatively
complex techniques rarely.

2. By using a smart activation mechanism for the different analysis techniques: As shown on the
right of Figure 5 we are interested in the interaction of the different analysis techniques. We
do not aim to use the pool of analysis techniques in waves of different complexity, i.e., first
applying the fast techniques and then gradually shifting towards the more complex techniques.
Instead we aim for a smart interaction of the different analysis techniques. For example, when-
ever a technique with relatively high computational complexity has been applied, we can again
apply techniques of relatively simple complexity to compute the closure of flow information
based on previously obtained results; thus squeezing the annotation base.

We also think that profiling techniques are useful to guide the heuristics to be used within our static
analysis techniques. For example, execution samples obtained by profiling can be used to elicit propo-
sitions to be verified by model checking.

9



The fully fledged approach envisioned in this section provides the promising potential as a research
platform for complementing program analysis techniques.

6. Conclusions

Model checking has been used before in the context of WCET analyzers. For example, Metzer has
used model checking to bound the WCET based on binary search [8]. In this case, the model checker
provides a positive result if the proposed WCET bound is sucessfully verified. Examples of our
own related work are the ForTAS [15], MoDECS [16], and ATDGEN projects [12, 13], which are
concerned with measurement-based WCET analysis. In these three projects, model checking is used
to generate test data for the execution of specific program paths. Intuitively, in these applications the
model checker is presented with formulae stating that a specific program path is infeasible. If these
formulae can be refuted by the model checker, the counter examples generated provide the test data
ensuring the execution of the particular paths. Otherwise, the paths are known to be infeasible. Hence,
the search for test data is in vain. In these applications the counter examples generated in the course
of failing model checker runs are the truly desired output, whereas successful runs are of less interest
stopping just the search for test data for the path under consideration. Similar to our approach, Rieder
et al. has also used model checking to derive loop bounds [13]. They used model checking as the only
approach, because of its low implementation effort. However, they conclude that model checking in
general is a very costly analysis technique.

These applications of model checking are in contrast and opposite to our application of shrinking the
trusted annotation base. In our application, the counter example of a failed model checker run is of
little interest. We are interested in successful runs of the model checker as they allow us to change a
trusted annotation into verified knowledge. To counteract the critical conclusions on model checking
drawn by Rieder et al. we use model checking in concert with other analysis techniques of different
complexity. This opens a new application domain for model checking in the field of WCET analysis.
Our preliminary practical results demonstrate the practicality and power of this approach.

References

[1] BEYER, D., HENZINGER, T., JHALA, R., AND MAJUMDAR, R. The software model
checker Blast. International Journal on Software Tools for Technology Transfer (STTT) 9, 5-
6 (October 2007), 505–525.

[2] CLARKE, E., KROENING, D., AND LERDA, F. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2004) (2004),
K. Jensen and A. Podelski, Eds., vol. 2988 of Lecture Notes in Computer Science, Springer,
pp. 168–176.

[3] DUESTERWALD, E., GUPTA, R., AND SOFFA, M. L. A practical framework for demand-
driven interprocedural data flow analysis. ACM Transactions on Programming Languages and
Systems 19, 6 (1997), 992 – 1030.

[4] GUSTAFSSON, J. The WCET tool challenge 2006. In Preliminary Proc. 2nd International
IEEE Symposium on Leveraging Applications of Formal Methods, Verification and Validation
(Paphos, Cyprus, November 2006), pp. 248 – 249.

10



[5] HOLSTI, N., GUSTAFSSON, J., (EDS.), G. B., BALLABRIGA, C., BONENFANT, A.,
BOURGADE, R., CASSÉ, H., CORDES, D., KADLEC, A., KIRNER, R., KNOOP, J., LOKU-
CIEJEWSKI, P., MERRIAM, N., DE MICHIEL, M., PRANTL, A., RIEDER, B., ROCHANGE,
C., SAINRAT, P., AND SCHORDAN, M. WCET Tool Challenge 2008: Report. In Proc.
8th International Workshop on Worst-Case Execution Time Analysis (WCET 2008) (Prague,
Czech Republic, July 2008), Österreichische Computer Gesellschaft, pp. 149–171. ISBN: 978-
3-85403-237-3.

[6] HORWITZ, S., REPS, T., AND SAGIV, M. Demand interprocedural dataflow analysis. In Proc.
3rd ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-3) (1995),
pp. 104 – 115.

[7] KROENING, D., AND CLARKE, E. The CPROVER User Manual. Available online at
http://www.cprover.org/cbmb/doc/manual.pdf. (C) 2001-2008, Computer Sys-
tems Institute, ETH Zurich, Computer Science Department, Carnegie Mellon University.

[8] METZNER, A. Why model checking can improve WCET analysis. In Proc. 16th International
Conference on Computer Aided Verification (2004), Springer, pp. 334–347. LNCS 3114.

[9] MUCHNICK, S. S. Advanced Compiler Design & Implementation. Morgan Kaufmann Pub-
lishers, Inc., 1997. ISBN 1-55860-320-4.

[10] PRANTL, A., KNOOP, J., SCHORDAN, M., AND TRISKA, M. Constraint solving for high-
level wcet analysis. In Proc. 18th International Workshop on Logic-based methods in Program-
ming Environments (WLPE 2008) (Udine, Italy, December 2008), pp. 77–89.

[11] PRANTL, A., SCHORDAN, M., AND KNOOP, J. TuBound – a conceptually new tool for
worst-case execution time analysis. In Proc. 8th International Workshop on Worst-Case Execu-
tion Time Analysis (WCET 2008) (Prague, Czech Republic, July 2008), Österreichische Com-
puter Gesellschaft, pp. 141–148. ISBN: 978-3-85403-237-3.

[12] RIEDER, B. Measurement-Based Timing Analysis of Applications written in ANSI-C. PhD
thesis, Technische Universität Wien, Vienna, Austria, Jun. 2009.

[13] RIEDER, B., PUSCHNER, P., AND WENZEL, I. Using model checking to derive loop bounds
of general loops within ANSI-C applications for measurement-based WCET analysis. In Proc.
6th International Workshop on Intelligent Solutions in Embedded Systems (WISES 2008) (Re-
gensburg, Germany, July 2008).

[14] SCHORDAN, M. Source-To-Source Analysis with SATIrE – an Example Revisited. In Proceed-
ings of Dagstuhl Seminar 08161: Scalable Program Analysis (April 2008), Germany, Dagstuhl.

[15] VIENNA UNIVERSITY OF TECHNOLOGY AND TU DARMSTADT. The ForTAS project.
Web page (http://www.fortastic.net). Accessed in June 2009.

[16] WENZEL, I., KIRNER, R., RIEDER, B., AND PUSCHNER, P. Measurement-based timing
analysis. In Proc. 3rd International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (Porto Sani, Greece, October 2008).

11




