WCET ANALYSISOF MULTI-LEVEL
SET-ASSOCIATIVE DATA CACHES

Benjamin Lesage, Damien Hardy and Isabelle Puaut

Abstract

Nowadays, the presence of cache hierarchies tends to be a common trend in processor architectures,
even in hardware for real-time embedded systems. Caches are used to fill the gap between the proces-
sor and the main memory, reducing access times based on spatial and temporal locality properties of
tasks. Cache hierarchies are going even further however at the price of increased complexity. In this
paper, we present a safe static data cache analysis method for hierarchies of non-inclusive caches.
Using this method, we show that considering the cache hierarchy in the context of data caches allows
tighter estimates of the worst case execution time than when considering only the first cache level. We
also present considerations about the update policy for data caches.

1. Introduction

Itis crucial in hard real-time systems to prove that tasks meet their deadlines in all situations, including
the worst-case. This proof needs an estimation of the worst-case execution time (WCET) of every task
taken in isolation. WCET estimates have to be safe, i.e. larger than or equal to any possible execution
time. Moreover, they have to be tight, i.e. as close as possible to the actual WCET. Thereof, WCET
estimation techniques have to account for all possible execution paths in the program and determine
the longest onehigh-levelanalysis). They also have to account for the hardware the task is running
on (ow-levelanalysis).

Cache memories are introduced to decrease the access time to the information due to the increasing
gap between fast micro-processors and relatively slower main memories. Architectures with caches
are now commonly used in embedded real-time systems due to the increasing demand for computing
power of many embedded applications. The presence of caches in real-time systems makes WCET
estimation difficult due to the dynamic behaviour of caches. Safely estimating WCET on architectures
with caches requires a knowledge of all possible cache contents at every program point, and requires
some knowledge of the cache replacement policy and, in case of data caches, update policy.

During the last decade, much research has been undertaken to predict WCET in architectures equipped
with caches. Regarding instruction caches, static cache analysis methods [13, 14, 18, 3] have been
designed and recently, extended to hierarchies of non-inclusive caches [7]. To overcome predictability
issues, as the ones due to the replacement policies, is the family of approaches like locking [15, 20].
The latter methods family suits well to data caches [19, 11], whose analysis suffers from imprecise
static accessed data address prediction. Indeed, if precise address prediction in the context of in-
struction caches has been mastered, for data caches, it remains an important concern. Nonetheless,
existing methods for instruction caches have also been modified [16, 17, 4] to tackle with accesses
whose target can only be over-approximated using a range of addresses.

To the best of our knowledge, no safe static cache analysis method has been proposed so far to predict
worst-case data cache behaviour in the presence of a data ¢eetashy The issues to be tackled
when designing such an analysis are twofold. On the one hand, the prediction of cache levels impacted
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by a memory reference is required to estimate the induced cachesses. On the other hand, writes

to the caches have to be considered, because they may introduce additional cache accesses. Ensuet
predictability problems may even get exacerbated by the lack of precise knowledge about accessed
addresses.

The contribution of this paper is the proposal of a new safe static cache analysis method for multi-level
non-inclusive set-associative data caches. All levels of cache are analysed sequentially. Similarly to
our previous work for instruction caches [7], the safety of the proposed method relies on the intro-
duced concept of aache access classification, defining which references may occur at every cache
level and have to be considered by the cache analysis of that level, in conjunction with the more tra-
ditional cache hit/miss classificatiorThis paper presents experimental results showing that in most
cases WCET estimates are tighter when considering the cache hierarchy than when considering the
L1 cache only.

The rest of the paper is organized as follows. Related work is surveyed in Section 2. Section 3 presents
the type of caches to which our analysis applies. Section 4 then details our proposal. Experimental
results are given in Section 5. Finally, Section 6 concludes with a summary of the contributions of
this paper, and gives directions for future work.

2. Related work

Caches in real-time systems raise timing predictability issues due to their dynamic behaviour and
their replacement policy. Many static analysis methods have been proposed in order to produce a safe
WCET estimate on architectures with caches. To be safe, existing cache analysis methods determine
everypossible cache contents at every point in the execution, considering all execution paths alto-
gether. Possible cache contents can be represented as seti@te cache statg8] or by a more
compact representation callatistract cache stat§s\CS) [18, 3, 14, 13].

Two main classes of approaches [18, 13] exist for the static WCET analysis on architectures with
a single level of instruction cache. In [18] the approach is baseabstract interpretatiorj2] and

uses ACSs. In this approach, three different analyses are applied which use fixpoint computation
to determine if a memory block @lwayspresent in the cachéust analysis), if a memory block

may be present in the cach&léy analysis), or if a memory block will not be evicted after it has

been first loadedRersistenceanalysis). Acache hit/miss classificatiqie.g. always hit first miss..)

can then be assigned to every instruction based on the result of the three analyses. This approach
originally designed for set-associative instruction caches implementingakerecently useLRU)
replacement policy has been extended for different cache replacement policies in [8] for instruction
caches. In [13]static cache simulatiois used to determine every possible content of the instruction
cache before each instruction. Static cache simulation computes abstract cache states using data-flow
analysis. Acache hit/miss classificatiaa used to classify the worst-case behaviour of the cache for a
given instruction. The base approach, initially designed for direct-mapped caches, was later extended
to set-associative instruction caches in [14].

A peculiarity of data caches, compared to instruction caches, arises as the precise target of some
references may not be statically computable. A first solution is to consider these imprecise accesses
as in[17] and [4], improvements to [18]. Therefore, we base our cache analysis on these studies.

An alternative solution to deal with data caches @eehe Miss Equation€CME) [19, 11, 21]. To
estimate cache behaviour, the iteration space of loop nests is represented as a polyRedsmn.
vectors[22] are then defined between points of the iteration space. CME are set up and resolved to
accurately locate misses. This method has been successfully applied to data caches in combination



with locking [19]. However, according to the authors, this agmh suffers from a lack of support for
data dependent conditionals.

Another scarcely addressed characteristic of data caches is the impact of memory modifying instruc-
tions. In [5], an analysis was proposed based onvthite-backupdate policy. Modified data in a
cache are copied back to the main memory upon eviction. The objective is thus to estinvatiéethe
backs i.e. the moment when a modified data might be replaced in the cache. In a first step towards
a more generic solution, we chose to usemge-throughupdate policy as it removes the need of
write backsmonitoring.

Finally, about the hierarchy of data caches, we already explored a solution to this problem in [7] in
the context of instruction caches. Introducing the concepgtche access classificatig@AC), we

safely identify references that may, must or never occur at every level in the cache hierarchy. This
paper presents to which extent this approach can be applied to data caches.

3. Assumptions and notations

As this study focuses on data caches, code is assumed not to interfere with data in the different
considered caches. There is no assumption on the means used to achieve this separation, whether they
are software or hardware based. An architecture without timing anomalies, caused by interactions
between caches and pipelines [12], is however assumed.

The considered cache hierarchy is composeddevels of data caches. Each cache implements
the LRU replacement policy. Using this policy, cache blocks in a cache set are logically ordered
according to their age. If a cache set is full, upon a load in this set, the evicted block is the oldest one
whereas the most recently accessed block is the youngest one.

A datum accessed by an instruction should be located in a single memory block. Cache line size of
level L is assumed to be a multiple of the cache line size of Iével 1. However, no assumption is

made concerning the cache sizes or associativities. Furthermore, the following properties are assumed
to hold:

P1.load] A piece of information is searched for in the cache of lelvél, and only if, a cache miss
occurred when searching it in the cache of leve} 1. Cache of level is always accessed.

P2.load] Every time a cache miss occurs at cache Idvyahe entire cache line containing the miss-
ing piece of information is loaded into the cache of leel

P3.[store] The modification issued by a store instruction goes all the way through the memory hierar-
chy. Writes to the cache levels where the written memory block is already present are triggered,
along with the update of the main memory. Otherwise, if the information is absent from a cache,
this cache level is left unchanged.

P4.[store] Upon a write in a cache block, wherever is the cache in the hierarchy, no block age modi-
fication is induced

P5. There are no action on the cache contents (i.e. lookup/modification) other than the ones men-

tioned above.

Property P1 rules out architectures where cache levels are accessed in parallel to speed up information
lookup. P2 excludes architectures with exclusive caches, whereas P5 filters out cache hierarchies
ensuring inclusion.

Properties P3 and P4 on the other hand address the store instructions behaviour. P3 ensures the use o

2Note that this is not a strong assumption but its alleviation is left as future work.



thewrite-throughupdate policy. In combination with P3, P4 corresponds among other things to the
write-no-allocateupdate policy for members of the cache hierarchy, as illustrated in Figure 1.

Finally, the latencies to access the different levels of the mem- . age .
ory hierarchy are assumed to be bounded and known. v [T T T [ ——
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4. Data Cache Analysis

This section introduces most of the involved steps in our ¢
putation of WCET contribution for hierarchies of data caches.
The structure of the whole method is outlined in Figure 2.

After a first step that extracts @ontrol Flow Graphfrom the analysed
executable, a data address analys§ig.Q) is performed. The objective Task Executable
is to attach to every memory reference a safe estimate of the access@mmn

addresses. oo

Then, the caches of the hierarchy are analysed one after the H#he) (| Address Analysis
based on address information. For each cache level and each instruction iS-  |vemory references
suing memory operations cache hit/miss classificatidHMC) is com- - -

. . . &MH%—.Level Cache Analysn%
puted. These classifications represent the worst-case behaviour of-this — .
cache level with regards to this instruction. Gache Hitiss Classticatior

Cache Access Classification:

To be safe, the analysis of a cache level further reliegamhe access| Wworstcase Analysis
classification{CAC, introduced ir§ 4.3) which discloses, given a mem- WCET _

ory reference, a safe approximation of whether or not it occurs at a cache ~ |Voreease Brecuton Pai
level.

In the end, a timing analysis of memory referenced.4), considering Figure 22 Complete task

data caches, is performed with the help of both the CHMC and CAC&glysis overview

each cache level. Such information may then be used to compute the longest possible execution path
and finally the WCET of the task.

4.1. Addressanalysis

The address analysis, in the context of data caches, computes for every memory reference, the memory
location it may access. Such information may however not be precisely computable, hence producing
an over-approximation to yield safe values for subsequent analyses. These over-approximations take
the form of ranges of possibly accessed memory blocks instead of a reference to a precise memory
block.

The address analysis uses data-flow analyses which first computes stack frames addresses for each
valid call context and then analyse register contents for each basic block. Considering both global and
on stack accesses, the precise address of a scalar is yielded whereas the whole array address range i
returned for accesses to array elements. Note that the analysis used below is the one proposed in [6].



4.2. Singlelevel data cache analysis

Below, a data cache analysis abstracted from the multi-level aspect is introduced. All references are
analysed and access filtering, according to other cache levels, is introducefl fa8r The analysis
method is presented along with the different mechanisms to handle the specificities of data caches,
compared to instruction caches.

Focusing on data caches, the timing analysis of memory references is performed using the worst-case
behaviour of this data cache for each memory reference. This knowledge is itself based on the cache
contents at the studied program point, thus requiring a safe estimate of memory blocks present in the
cache.

A cache hit/miss classificatigf€HMC) is used to model the defined cache behaviours with regards
to a given memory reference. To such a reference has already been attached a set of possibly accessec
memory blocks by the address analysis. This set of memory blocks is used to compute the CHMC:

always-hit(AH) : all the possibly accessed memory blocks are guaranteed to be in the cache;

first-miss(FM) : for every possibly accessed memory block, once it has been first loaded in the cache,
it is guaranteed to stay in the cache afterwards;

always-misgAM) : all the possibly accessed memory blocks are known to be absent from the cache;

content-independer€Cl) : if the behaviour of the memory reference does not depend on the cache
contents. The Cl classification is used for store instructions, which, according to our hypotheses
(§ 3) does not depend on the cache contents;

not-classifiedNC) : if none of the above applies.

Abstract cache statg®CSs) are used to collect information along the task CFG. This abstraction
allows the modelling of a combination of concrete cache states, in terms of present memory blocks
and their relative age. This is required as all paths have to be considered altogether to yield safe
values. Different analyses, similarly to [18], are defined to collect information about cache contents
at every program point. For each analysis, fixpoint computation is applied on the program CFG, for
every call context:

aMustanalysis determines if a memory block is always present in the cache, at a given point, thus
allowing aalways-hitclassification;

a Persistencanalysis determines if a memory block will not be evicted from the cache once it has
been first loaded, as in the definition of first-missclassification;

aMay analysis determines if a memory block may be in the cache at a given point, otherwise the
block is guaranteed not to be in the cache thus possibly allowalgays-mislassification.
If, at a given point, some possibly accessed memory blocks are present in the May analysis but
neither in the Must nor the Persistence one,nbeclassifiectlassification is assumed for this
memory reference.

Then, for each memory reference, its set of possibly accessed memory block is compared to the
memory blocks inside the input ACS computed by each analysis.

Join functions : For instructions on branch reconvergence, i@, JOiNpe,sistence aNAJI0INY /4,
(respectively for the Must, Persistence and May analysis) are used as a mean to compute input ACS:

Joiny.s; computes the intersection of memory blocks present in the input ACSs, keeping for each
one its maximal age as shown in Figure 3a;

JOiNp.,sistence KEEPS the union of memory blocks present in the input ACSs, addioy,,;, the
maximal age of memory blocks is kept;



Joinyz,, computes the union of memory blocks present in the input ACSs, keeping for each one its
minimal age.

Considering data caches, these functions are the same as the ones defined for instruction caches [18].

Updatefunctions: The effects of memory references on the cache are modelled usidgdage,, ., .,
Updates., sistence @andUpdatey,,, for the Must, Persistence and May analysis respectively. In all the
cases, only load instructions have an impact on the cache contents. Store instructions have no im-
pact on ACSs{ 3, use of the write-through and write-no-allocate update policies). Considering data
caches, th&Jpdatefunction of the different analyses is of particular interest. Indeed, it has to deal
with accesses indeterminism, when a precise memory location cannot be statically defined for a load
instruction. Two options have to be considered.

On the one hand, the precise accessed memory block may have been computed by the address anal-
ysis. TheUpdatefunction is then pretty straightforward, as illustrated in Figure 3b for the Must
analysis. Thus considering thipdate,,,;, the accessed block is put at the head of its cache set and

the younger lines are shifted, i.e. made older and evicted if too old. Note that memory blocks outside
an ACS are supposed to be older than the ones present in this same ACS. Furthermore, the different
Updatefunctions behaviour in this case is the same than for instructions [18].

On the other hand, when the address analysis yields a set of possibly accessed memory blocks for
a memory reference, only one member of this set is actually accessed. To model this behaviour, a
copy of the input ACS is created, using the appropridpelatefunction, for each possibly accessed
memory block. Then, all the updated copies are unified, this time using the apprdpiratienction

to produce an ACS. This process is illustrated on Figure 3c, for the Must analysis.
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Figure 3: Update,/,s; andJoin,,; functions
Termination of theanalyses. In the context of abstract interpretation, to prove the termination of an
analysis, it is sufficient to prove the use of a finite abstract domain and the monotony of the transfer
functions. ACS domain was shown to be finite in [18]. Moreover, [18] demonstrates the monotony of
the Join, andUpdate. functions ¢ € {Must, Persistence or May}), for instructions and thus for
accesses to precise memory blocks. In our case, the modification to be proved is the one applied to
this samdJpdate,. function to handle accesses to possibly referenced memory blocks.

When an ACS is updated using a set of possibly referenced memory blocks for an amalgsis
composition of theJpdate,, for each block, and théoin, function is performed. As the composition
of monotonic functions is monotonic, our modifications ensure monotony. U

4.3. Multi-level analysis

The cache analysis described §m.2 does not support hierarchies of caches, i.e. all references
are considered for the caches by the analysis. But, a memory reference may not occur in all the



cache levels of the hierarchy. This filtering by previous cachdble hierarchy, impacts the cache
contents. Hence, caches are analysed one after the other, from cache leXgldnibcache access
classification§CACSs), as defined in [7], are used to represent occurrences of memory refe@mce
cache levelL. This is possible as, according to our hypotheses, occurrences of memory references
on cache level (and thusL contents) only depend on occurrences of memory references on caches
levelsl < L.

Different classifications have been defined to represent if mem-

emory Cache access

ory reference is performed on cache levét references classification

Level L

Always(A) means that the accessis always performed at S
cache level,
Never(N) means that the accesss never performed at cache Cache hitmiss 5
Ieve”_, Level L "=~
Uncertain-Neve(U-N) indicates that no guarantee can be
given considering the first access to each possibly refe

WCET
{computatio
enced memory block for, but next accesses are nevef*l Fg;g';ﬁisgggsiy

.
\
.
\

-

performed at level, Level L+1 .~

Uncertain(U) indicates that no guarantee can be given about S

the fact that the access tawill or will not be performed

at levellL. Cache hit/miss__p ®
classification
. . . . . i Level L+1
For the L1 cache, CAC determination is simple as it was earlier Cache access
assumed that all memory references will be performed in this Level L+2

cache level (P1§ 3). This implies a A classification for every

memory reference, considering the L1 cache. Figure 4. Multi-level non-inclusive
data cache analysis framework

Concerning greater cache levels, the CAC for memory reference

r and cache level is defined using both the CAC and the CHMC of the previous level cache level
(see Figure 4) as in [7], to safely model cache filtering in the cache hierarchy. This is illustrated in
Table 1.

Once these classifications have been settled, they have to

be considered in the multi-level cache analysis. The mdgs, """ | AH | FM | AM | NC
ifications to handle hierarchies of data caches are sinilar A N [UN| A | U
to the modifications to handle hierarchies of instructien U’?N m U’?N U'f'N U'f'N
caches [7]. A (respectively N) classification for a given U N [UN| U | U

instruction, means that the reference is (respectively not) o

performed on the considered cache level which shouldB&le 1: Cache access classification for
modelled by the analysis. As for the U and U-N classifidgve! L (CAC:.1)

tions, both the cases are possible: the access is performed (A) or not (N) on this cache level. Similarly
to non deterministic accesses, the two alternatives are considered and their outcomes unified using
the appropriatdoin function of the analysis.

The Update, function,z € {Must, Persistence or May}, is modified to consider these classifica-

tions : Update,(ACS;y,, 1, L) it CAC, = A
Update;nl(ACSin, T, L) — AC'S”I if CACT,L =N
Join, (ACSzna Updatew (ACSZTH T, L)) if CACT7L =UVv CACT’L =UN

whereUpdaté™ represents the multi-level version of tbipdate. functions presented earlief 4.2).
This definition can be inflected tdpdat€(;,,,, Updates., ;...,... or Updat€y,, using the correspond-

ust?

ing UpdateandJoinfunctions of the Must, Persistence or May analysis respectively.



Termination of the analyses. The differences between the multi-level data cache analysis and the
single-level data cache analysis are thedate, functions,z € {Must, Persistence or May}, for

the different analyses. However these functions were proved to be monotonic in section 4.2. The
proof in [7] thus holds for data caches as well. We need to demonstrate thapdaee™ function is
monotonic for the four possible values@HAC'.

For an A accessipdate. and Updaté™ behave identically.Update, being monotonicUpdate™

is also monotonic. Considering a N accedpdaté™ is the identity function and so is monotonic.
Finally, considering an U or U-N access$pdateé™ compose$)pdate. andJoin,. These two functions
are monotonic, so is their composition. Thugdate™ is monotonic which guarantees the termination
of our analysis. U

4.4, WCET computation

CHMCs represent the worst-case behaviour of the cache given a memory reference. They are useful
to compute the contribution of references to the WCET. This contribution can then be used in existing
methods to compute the WCET. In our case, we focus on IPET based methods which estimates the
WCET by solving arinteger Linear Programmin@LP) problem [10].

The timing of the memory referenee with regards to the data caches, is divided in two pafiisst
andnext respectively distinguish the first and successive iterations of loops. We d&fing"_first(r)
and COST next(r) as the respective contribution to the WCET of memory referenfer the
first and successive iterations of the loop in which the reference is enclosed 2if Hryo loop
encloses:, COST_first(r) will be implicitly preferred, by the ILP solver, over'OST next(r)
as he cost ofr. IndeedCOST_first(r) accounts for all first misses of memory referencard
COST_first(r) > COST -next(r).

With freq, a variable computed in the context of IPET analysis and representing the execution fre-
guency ofr along the worst-case execution path of the task, the following constraints are defined:
freq, = freqrivsty + fregnest, and freqpi.o, < 1. The WCET contribution of the referencavith
regards to data caches is then defined as:

WCET _data_contribution(r) = COST_first(r) X freqrirstr + COST next(r) X freqnest,r

As we focus on an architecture without timing anomalies, it is safe to consider that NC references
behave like AM ones, which are the worst-case on our architecture. Therefore, U accesses to a
cache level behave as A ones, from the timing analysis considering data caches point'ofMew
definealways_contribute(r) andnever_contribute(r) as he sets of memory hierarchy levels which
respectively always or never contribute to the execution latency of memory referewdd M =

N + 1 the main memory in the memory hierarchy:
never_contribute(r) = {L |1 < L < M ANCAC, =N}

always_contribute(r) = {L|1<L<MA(CAC, =AVCAC,=U)}
One option to deal with a FM classification for referencen cache levelL would be to con-
sider, for every execution of, that cache leveL + 1 is accessed:.CAC,; = U-N = L €
always_contribute(r). However, it might be overly pessimistic with regards to the semantic of
the FM and the de facto inherited U-N classifications. We need additional notations to depict this
behaviour and tighten contribution to the WCET.

Given a memory referenceand a cache level, let memory_blocks, i, be the set of target mem-
ory blocks on cache level, as computed by the address analysis. This information is computed

SRenmember that- is contextual and attached to a unique instruction. A memory reference tied to the same instruction, but
another context may be enclosed in different loops.
4From the ACS computing point of view, they keep different meanings.



using the cache blocks size of cache lelel We only need to know a bound on the size of this
setfmemory_ blocks, | = [525L44e—] with Addr_range, the size of the address range com-

puted by the address analysis for memory referen@edcache_block_size;, the size of level. cache
blocks.

Furthermore, we defingwax_freq, as the maximum statically computable execution frequency of
referencer. Such an information is computed as the product of the maximum number of iterations of
all loops containing: maz_freq: = [ e oops(r) Maz-iteri,, WhereLoops(r) are the loop contain-

ing the memory referenceandmax _iter;,, the maximum iteration attribute for lodp. Note that the
whole task is itself considered to be a loop enclosing all memory references andmdnoseéer = 1,
ersuring that thenax_freq attribute of an otherwise not enclosed in a loop memory referenkce is

Each element ofnemory_block, ;, produces at most one miss in the cache Idvethe first time it
is accessed, according to the definition of the FM classification. Thus, referemtenot produce
more thanmin(maz_freg., |memory_blocks, 1,|) misses on cache levél

Note thatmin(freq,, |memory_blocks, r|), with freg, the execution frequency of on the worst-
case execution path of the task, would be a tighter bound. However, this bound is required to compute
freq, and vice versa thus leading to a chicken-and-egg problem.

Once these elements have been defined, we can bound the number of occurrences of memory refer-
encer on cache level: =

if L € never_contribute(r)

mazr_freqr if L € always_contribute(r)
mazx_occurrence(r, L) =
min(|memory_blocks, r,_1|, mazx_occurrence(r,L — 1)) if CHMCy 1 =FM

maz_occurrence(r,L — 1) otherwise
Intuitively, if cache levelL is never (respectively always) accessed by memory referentteere
cannot be any (respectively more thanz_freq,) occurrences of oncache level.. Similarly, there
cannot be more occurrencesain cache level than on cache levél—1. Finally, f CHMC,.;_, =
FM, only the first accesses to memory blocks belongingtowory_blocks, ;1 will occur on cache
level L.

The definition ofCOST _next(r) is pretty straightforward, as we only have to count the access latency
of cache leveld. which are guaranteed to always contribute to the timing.oDther accesses are
considered ilCOST_first(r):

ACCESS latencyy, ifris aload of data

Le always_contribute(r)

COST-next(r) = §  STORE_latency if r is a store of data

0 otherwise

COST_first(r) is a bit harder to define. In some cases, we have a bound on the number of occur-
rences of a memory refereneeon cachelL. As previously stated, the solution of not considering
these bounds might be unnecessary pessimistic. Therefore, we chose to diggSthiefirst(r) to

hold these additional latencies. It could be understood as considering all the possible first misses in
the first execution of, in addition to all the always accessed cache levels latencies:

ACCESS_ latencyr, + > ACCESS latencyr, X max_occurrence(r,L) if rloads data
Le always_contribute(r) CAC’I‘,L:U-N

COST-first(r) = \  STORE_latency if r stores data

0 otherwise



5. Experimental results
5.1. Experimental setup

Cache analysisand WCET estimation. The experiments were conducted on MIPS R2000/R3000
binary code compiled with gcc 4.1 with no optimization and with the default linker memory layout.
The WCETSs of tasks are computed by the Heptane timing analyser [1], more precisely its Implicit
Path Enumeration Technique (IPET). The timing of memory references with regards to data caches is
evaluated using the method introduced in Section 4.4. The analysis is context sensitive (functions are
analysed in each different calling context). To separate the effects of caches from those of the other
parts of the processor micro-architecture, WCET estimation only takes into account the contribution
of caches to the WCET. The effects of other architectural features are not considered. In particular,
timing anomalies caused by interactions between caches and pipelines, as defined in [12] are disre-
garded. The cache classificatioot-classifieds thus assumed to have the same worst-case behaviour
asalways-missluring the WCET computation in our experiments. The cache analysis starts with an
empty cache state.

Name Description Codesize | Datasize | Bsssize | Stack size
(bytes) (bytes) (bytes) | (bytes)

crc Cyclic redundancy check computation 1432 272 770 72

fft Fast Fourier Transform 3536 112 128 288

insertsort | Insertsort of an array of 11 integers 472 0 44 16

jfdctint Fast Discrete Cosine Transform 3040 0 512 104

ludcmp Simultaneous Linear Equations by LU Deg- 2868 16 20800 920
composition

matmult | Product of two 20x20 integer matrixes 1048 0 4804 96

minver Inversion of floating point 3x3 matrix 4408 152 520 128

ns Search in a multi-dimensional array 600 5000 0 48

qurt Root computation of quadratic equations | 1928 72 60 152

sqrt Square root function implemented by Taylor544 24 0 88
seies

statemate| Automatically generated code by STAR[ 8900 32 290 88
(STAtechart Real-time-Code generator)

Table 2: Benchmark characteristics

Benchmarks. The experiments were conducted on a subset of the benchmarks maintained by Malardalel
WCET research group Table 2 summarizes the characteristics characteristics (size in bytes of sec-
tionstext data bss(unitialized data) andtack.

Cache hierarchy. The results are obtained on a 2-level cache hierarchy composed of a 4-way L1 data
cache of 1KB with a cache block size of 32B and a 8-way L2 data cache of 4KB with a cache block
size of 32B. A perfect private instruction cache, with an access latency of one cycle, is assumed. All
caches are implementing a LRU replacement policy. Latencies of 1 cycle (respectively 10 and 100
cycles) are assumed for the L1 cache (respectively the L2 cache and the main memory). Upon store
instructions a latency of 150 cycles is assumed to update the whole memory hierarchy.

5.2. Considering the cache hierarchy

To evaluate the interest of considering the whole cache hierarchy, two configurations are compared in
Table 3. In the first configuration, only the L1 cache is considered and all accesses to the L2 cache
are defined as misseB/(C ET};, column 1). In the other configuratioM{C ET}1¢12, column 2),

both the L1 and the L2 caches are analysed using our multi-level static cache agady8)s Table 3
presents these results for the two cases using the tasks WCET as computed by our tool and based on
our multi-level static analysis. The presented WCET are expressed in cycles.

Shitp://www.mrtc.mdh.se/projects/wcet/benchmarks.html
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The third column of Table 3 represents the improvement, for eaclysed task, attributable to the

consideration of the second cache level of the hierar

WLET —WCET 1812
Gy~ WCETL, .

Considering the L2 cache using our

Benchmark | WCET consid- | WCET consid- | Improvement multi-level static analysis, may lead
eringonly aLl | ering both L1 | considering the 0/ i
cache andl2eche | L2 eache up to 55.07% improvement for tHé
(cycles) (cycles) task. In average, the results are still in-
crc 9373240 9119240 2.7 % ; 0 0 :
it 14068000 6320470 55.07 % teresting 10.67% (6.23% whithofit)
i?dsertsort 456911 456911 0% with the exceptions of a subset of tasks
jfdctint 597239 464239 22.26 % : et .
ludemp 1778460 1778460 0% not taking any benefl'F in the consider-
matmult ggggggoo ggggggoo %"7 ” ation of the L2 cacheirfsertsort lud-
minver . (0}
ns 861575 861575 0% cmp matmult nsandsqrt).
qurt 622711 520531 16.4 %
sart 94509 94509 0% The issues raised by these tasks are
statemate 1303760 1129380 13.37 %

twofold. On the one hand, tasks like

Table 3: Evaluation of the static multi-level n-way analysisdrtandinsertsortuse little data. This

(4-way L1 cache, 8-way L2 cache, cache sizes of 1KB (respiall working set fits in the L1 cache.

4KB) for L1 (resp. L2)). Thus, the L2 cache is only accessed
upon the very first misses. On the

other hand are tasks likedcmp matmultandns accessing large amount of data that fit neither in

the L1 nor the L2 cachdudcmpaccesses a small portion of a large array of floats, which probably

shows temporal locality but, as our address analysis returns the whole array range, this precision is

lost. Concerningnatmultandns, they consist of loop nests running through big arrays. Again, there

is temporal locality between the different iterations of the most nested loop. However, this locality is

not captured as the FM classification applies to the outermost loop in such cases, and thus consider

the whole array as being persistent or not.

Other tasks exhibit such small data set but, due to the analysis pessimism, some memory blocks might
be considered as shifted outside the L1. However, they are detected as persistent irfifthédcaft,
minver, qurt, statemateand to a lesser extentc).

6. Conclusion

In this paper we presented a multi-level data cache analysis. This approach considers LRU set-
associative non-inclusive caches implementingviiée-through write-no-allocateupdate policies.
Results shows that considering the whole cache hierarchy is interesting with a computed WCET con-
tribution of data caches being in average 10.67% smaller than the contribution considering only the
first level of cache. Furthermore, the computation time is fairly reasonable, results for the eleven
presented benchmarks being computed in less than a couple of minutes.

Keeping the same study context, future researches include the definition of less pessimistic constraints
on the number of misses or improving the precision of the different analyses to handle tighter clas-
sifications (e.g. a classification per accessed block instead of per memory reference). Extending the
analysis to other data cache configurations, whether speaking of replacement policies (e.g. pseudo-
LRU) or update policies (e.g. write-back or write-allocate) might be the subject of other studies.
Finally, the extension of the analysis context to handle multi-tasking systems or multi-core architec-
tures is left as future works.
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