
WCET-AWARE SOFTWARE BASED CACHE
PARTITIONING FOR MULTI-TASK REAL-TIME

SYSTEMS 1

Sascha Plazar2, Paul Lokuciejewski2, Peter Marwedel2

Abstract
Caches are a source of unpredictability since it is very difficult to predict if a memory access results
in a cache hit or miss. In systems running multiple tasks steered by a preempting scheduler, it is
even impossible to determine the cache behavior since interrupt-driven schedulers lead to unknown
points of time for context switches. Partitioned caches are already used in multi-task environments to
increase the cache hit ratio by avoiding mutual eviction of tasks from the cache.

For real-time systems, the upper bound of the execution time is one of the most important metrics,
called the Worst-Case Execution Time (WCET). In this paper, we use partitioning of instruction caches
as a technique to achieve tighter WCET estimations since tasks can not be evicted from their partition
by other tasks. We propose a novel WCET-aware cache partitioning algorithm, which determines the
optimal partition size for each task with focus on decreasing the system’s WCET for a given set of
possible partition sizes. Employing this algorithm, we are able to decrease the WCET depending on
the number of tasks in a set by up to 34%. On average, reductions between 12% and 19% can be
achieved.

1 Introduction

Embedded systems often operate as hard real-time systems which have to meet hard timing con-
straints. For these systems, it is mandatory to know the upper bound of the execution time for each
task and possible input data. This bound is calledWorst-Case Execution Time.

Caches have become popular to bridge the gap between high processor and low memory performance.
The latency for an access to a certain memory address highly depends on the content of the cache. If
an instruction to be fetched already resides in the cache, then a so calledcache hitoccurs and the fetch
can be usually performed within one cycle. Otherwise, it results in acache miss. The desired address
has to be fetched from the slow main memory (e.g. Flash) leading to penalty cycles depending on the
processor and memory architecture.

It is hard to determine statically if an arbitrary memory access results in a cache hit or a cache miss.
However, caches are used in real-time systems because they can drastically speed up the execution
of programs. Hence, a lot of effort has been successfully put into research to make sound prediction
about the worst-case cache performace during a program’s execution. AbsInt’saiT [2] is a tool that
performs static analyses on binary programs to predict their cache behavior and WCET.

1The research leadingto these results has received funding from the European Community’s ArtistDesign Network of
Excellence and from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement
no 216008.

2Computer Science 12 — TU Dortmund University — D-44221 Dortmund, Germany — FirstName.LastName@tu-
dortmund.de

ECRTS 2009
9th International Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2009/2286 1

In environments with preemptive schedulers running more thanone task, it is impossible to make any
assumption about the memory access patterns. This is mainly caused by interrupt-driven scheduling
algorithms causing context switches at unknown points of time. Thus, the program’s state in not
known at which a context switch occurs. It is also unknown at which address the execution of a
program continues, hence it is unknown which line of the cache is evicted next. An unknown cache
behavior forces to assume a cache miss for every memory access implying a highly overestimated
systems overall WCET. As a consequence, the underlying system has to be oversized to meet real-
time constraints resulting in higher costs for hardware.

We adapt an existing technique called software based cache partitioning [16] to make the instruction
cache (I-cache) behavior more predictable. This can be guaranteed since every task has its own
cache partition from which it can not be evicted by another task. Our novel WCET-aware cache
partitioning aims at selecting the optimal partition size for each task of a set to achieve the optimal
WCET minimization. The main contributions of this paper are as follows:

1. Compared to existing approaches which focus on minimization of average-case execution times,
our WCET-aware cache partitioning explicitly evaluates WCET data as metric for optimization.

2. In contrast to previous works which presented theories to partition a cache in software, our
approach comprises a fully functional implementation of a cache partitioning method.

3. We show that our ILP-based WCET-aware cache partitioning is effective in minimizing a sys-
tem’s WCET and outperforms existing algorithms.

The paper is organized as follows: In the next section, we present related work. Existing techniques
to partition a cache as well as our new algorithm are explained in Section 3. Section 4 introduces
the compiler WCC used to integrate our novel cache partitioning algorithm. An evaluation of the
performance which is achieved by our WCET-aware cache partitioning, is presented in Section 5.
Finally, we conclude our work and give a brief overview of future work.

2 Related Work

The papers [16, 5, 15] present different techniques to exploit cache partitioning realized either in
hardware or in software. In contrast to our work, these implementations either do not take the impact
on the WCET into account or do not employ the WCET as the key metric for optimization which
leads to suboptimal or even degraded results. In [16], the author presents ideas for compiler support
for software based cache partitioning which serves as basis for the partitioning techniques presented in
this paper. Compared to the work in this paper, a functional implementation or impacts on the WCET
are not shown. In [5], a hardware extension for caches is proposed to realize a dynamic partitioning
through a fine grained control of the replacement policy via software. Access to the cache can be
restricted to a subset of the target cache set which is called columnization. For homogeneous on-chip
multi-processor systems sharing a unified set-associative cache, [15] presents partitioning schemes
based on associativity and sets.

A combination of locking and partitioning of shared caches on multi-core architectures is researched
in [18] to guarantee a predictable system behavior. Even tough the authors evaluate the impact of their
caching schemes on the worst-case application performance, their algorithms are not WCET-aware.
Kim et al. [11] developed an energy efficient partitioned cache architecture to reduce the energy per
access. A partitioned L1-cache is used to access only one sub-cache for every instruction fetch leading
to dynamic energy reduction since other sub-caches are not accessed.

2

The authors of [4] show the implications of code expanding optimizationson instruction cache design.
Different types of optimizations and their influence on different cache sizes are evaluated. [12] gives
an overview of cache optimization techniques and cache-aware numerical algorithms. It focuses on
the bottleneck memory interface which often limits the performance of numerical algorithms.

Puaut et al. counteract the problem of unpredictability with locked instruction caches in multi-task
real-time systems. They propose two low complexity algorithms for cache content selection in [17].
A drawback of statically locking the cache content is that the dynamic behavior of the cache gets lost.
Code is no more automatically loaded into the cache, thus code which is not locked into the cache can
not profit from it anymore.

Vera et al. [22] combine cache partitioning, dynamic cache locking and static cache analysis of data
caches to achieve predictability in preemptive systems. This eliminates overestimation and allows to
approximate the worst-case memory performance.

Lokuciejewski et. al rearrange the orders of procedures in main memory to exploit locality in the
control flow leading to a higher cache performance [13]. Worst-case calling frequencies serve as
metrics for WCET minimization but multi-task sets are not supported.

3 WCET-aware Cache Partitioning

Caches have become popular to bridge the growing gap between processor and memory performance
since they are transparent from the programmer’s point of view. Unfortunately, caches are a source of
unpredictability because it is very difficult to determine if a memory access results in a cache hit or
a cache miss. Static analysis is a technique to predict the behavior of the cache [19] and make sound
prediction about the WCET of a program which allows the profitable usage of caches in real-time
systems running a single task.

In general, real-time systems consist of more than one task which makes it often impossible to de-
termine the worst-case cache behavior. Due to interrupt driven schedulers, points of time for context
switches can not be statically determined. Thus, it is not predictable which memory address is fetched
from the next task being executed and one can not make proven assumptions which cache line is re-
placed by such an unknown memory access. Due to this fact, every memory access has to be treated
as a cache miss leading to a highly overestimated WCET caused by an underestimated cache perfor-
mance.

In a normally operating cache, each task can be mapped into any cache line depending on its memory
usage. To overcome this situation, partitioned caches are recommended in literature [16, 5, 15].
Tasks in a system with partitioned caches can only evict cache lines residing in the partition they
are assigned to. Reducing the prediction problem of replaced cache lines to one task with its own
cache partition, allows the application of well known single task approaches for WCET- and cache
performance estimation. The overall execution time of a task set is then composed of the execution
time of the single tasks with a certain partition size and the overhead required for scheduling including
additional time for context switches.

Infineon’s TriCore architecture does not support partitioned caches in hardware so that partitioning
has to be done in software. The following section describes the basics of software based cache parti-
tioning schemes applied in our WCET-aware cache partitioning algorithms. In Section 3.2, a heuristic
approach is applied to determine the partitioning based on the tasks’ sizes. Section 3.3 presents our
novel algorithm for selecting an optimal partition size w.r.t. the overall WCET of a system.

3

3.1 Software based Cache Partitioning

The author in [16] presents a theory to integrate software based cache partitioning into a compiler
toolchain without an existing implementation. Code should be scattered over the address space so
that tasks are mapped to certain cache lines. Therefore, all tasks have to be linked together in one
monolithic binary and a possible free space between several parts has to be filled withNOPs. Parti-
tioning for data caches involves code transformation of data references.

Line 0

Line 2

Line 16

Tag

Index Offset

Memory Address

Cache

Tag
04831

Line 1

016

Figure 1: Addressing of cache content

Thetheory to exactly position code in the address space
to map it into certain cache lines is picked up here, but
a completely different technique is applied to achieve
such a distribution. We restrict ourselves to partition-
ing of I-caches, thus only software based partitioning of
code using the new technique is discussed. However,
a partitioning of data caches w.r.t. WCET decrease is
straightforward using a modified version of our algo-
rithm.

For the sake of simplicity, in the following we assume
a direct-mapped cache. Way associative caches can be partitioned as well: The desired partition size
has to be divided by the degreed of associativity since any particular address in main memory can
be mapped in one ofd locations in the cache. In this case, predictable replacement policies (e.g.last
recently usedfor TriCore) are allowed to enable static WCET-analysis. However the replacement
policy has no influence on the partitioning procedure.

Assuming a very small cache withS = 256 bytes capacity divided intol = 16 cache lines, results
in a cache line size ofs = 16 bytes. When an access to a cached memory address is performed, the
address is split into a tag, an index, and an offset part. Our example in Figure 1 shows the 4 offset bits
addressing the content inside a cache line, whereas 4 index bits select a cache line. The remaining
address bits form the tag which is stored in conjunction with the cache line. The tag bits have to be
compared for every cache access since arbitrary memory addresses with the same index bits can be
loaded into the same line.

0x0

0x180

0x80

0x200

0x100

0x280
Task1_part3

Task2_part1

Task1_part2

Task2_part3

Task1_part1

Main Memory

Task 1

Task 2

Cache

Task2_part2

0x300

Figure 2: Mapping of tasks to cache lines

To partition a cache, it has to be ensured that a task
assigned to a certain partition only allocates memory
addresses with index bits belonging to this partition.
For an instruction cache divided into two partitions of
128 bytes, one partition ranges from cache line 0 to
line 7 and the second one from line 8 up to 15. If a
taskT1 is assigned to the first partition, each occupied
memory address must have index bits ranging from
000b up to111b accessing the cache lines 0 to 7 and arbitrary offset bits. Together, index and offset
bits correspond to memory addresses modulo cache size ranging from0x00 to 0x7f. A taskT2

assigned to the second partition has to be restricted to cover only memory addresses modulo cache
size from0x80 up to0xff.

Tasks exceeding the size of the partition they are mapped to, have to be split and scattered over the
address space. Figure 2 illustrates the partitioning for tasksT1 andT2 into such 128 bytes portions
and the distribution of these portions over the main memory. TaskT1 is allocated to portions which
are mapped to the first half of the cache since all occupied memory addresses modulo cache size

4

range from 0-127. The same has to meet for taskT2 occupying memory addresses modulo cache size
ranging from 128-255.

Obviously, partitioning does not depend on the cache line size since a contiguous part of the memory
is always mapped into the same amount of cache memory. Only the atomic size for composing
partitions is equal to the cache line size, thus the partition size must be a multiple thereof.

WCC’s workflow employs the linker to achieve such a distribution of code over the address space.
Individual linker scripts are used (compare Listing 1 for the aforementioned example) with relocation
information for every task and its portions it is divided into. For linker basics refer to [3].

1.text: {
2_text_begin = .;
3*(.task_part1)
4. = _text_begin + 0x80;
5*(.task2_part1)
6. = _text_begin + 0x100;
7*(.task1_part2)
8. = _text_begin + 0x180;
9*(.task2_part2)
10. = _text_begin + 0x280;
11*(.task2_part3)
12} > PFLASH-C

Listing 1: Linker script example

The output section.text, to be created in the output binary
(line 1), is aligned to a memory address which is a multiple of
the cache size to ensure that the mapping starts at cache line
0. Line 3 allocates the assembly input section.task1 part1
at the beginning of the.text output section, thus the begin-
ning of the cache. The content of this section must not exceed
128 bytes since line 4 sets the relocation counter to the address
128 bytes beyond the start address, which is mapped into the
first line of the second cache half. Line 5 accomplishes the re-
location of section.task2 part1 to the new address. The
othersections are mapped in the same manner.

On the assembly level, each code portion which should be mapped to a partition, has to be attached to
its own linker section to cause a relocation by the linker; e.g..task part1 for the first 128 bytes
memorypartition of taskT1. To restore the original control flow, every memory partition has to be
terminated by an additional unconditional branch to the next memory partition of the task unless the
last instruction of this block already performs an unconditional transfer of control.

For further jump corrections required by growing displacements of jump targets and jump sources
refer to [16].

3.2 Size-driven Partition Size Selection

The author in [16] propose to select a task’s partition size depending on its size relative to the size
of the complete task set. For our example, a task set withm = 4 tasksT1 − T4 having a size of
s(T1) = 128 bytes,s(T2) = 256 bytes,s(T3) = 512 bytes ands(T4) = 128 bytes should be assumed.
Hence, the complete task set has an overall code size of 1 kB, whereas we use the assumed cache
from the previous section with a capacity ofS = 256 bytes.

According to its size, taskTi’s partition size computes as follows:

p(Ti) =
s(Ti)

∑n

j=1
s(Tj)

∗ Scache (1)

e.g.T1 is assigned to a partition with128 bytes/1024 bytes = 1/8 of the cache size. Accordingly the
assigned partition sizes are:p(T1) = 32 bytes,p(T2) = 64 bytes,p(T3) = 128 bytes andp(T4) = 32
bytes.

3.3 WCET-driven Partition Size Selection

The size of a cache may have a drastic influence on the performance of a task or an embedded system.
Caches with sufficient size can decrease the runtime of a program whereas undersized caches can lead

5

to a degraded performance due to a high cache miss ratio. Hence,it is essential to choose the optimal
partition size for every task in order to achieve the highest possible decrease of the system’s overall
WCET.

Current approaches select the partition size depending on the code size or a tasks priority [16, 18].
They aim at improving a system’s predictability and examine the impact of partitioning on the WCET
but do not explicit aim at minimizing its WCET.

In this section, we present our novel approach to find the optimal partition sizes for a set of tasks w.r.t.
the lowest overall WCET of a system. We use integer linear programming (ILP) to select the partition
size for each task from a given set of possible partition sizes.

We assume that there is a set ofm tasks which are scheduled periodically. There is a schedule interval
within each taskTi ∈ T is executed exactlyci times, which is repeated continuously. The length of
this interval is the least common multiple of them tasks’ periods. Furthermore, we assume a setP
of given partition sizes with|P | = n partitions, e.g.P = {0, 128, 256, 512, 1024} measured in bytes.
Let xij be a binary decision variable determining if taskTi is assigned to a partition with sizepj ∈ P :

xij =

{

1, if Ti assigned topj

0, else

To ensure that a task is assigned to exactly one partition, the followingm constraints have to be met:

∀i = 1..m :
n

∑

j=1

xij = 1 (2)

Input: Set of tasksT , set of partition sizes
P , execution countsC, cache sizeS

Output: Set of partitioned tasksT

begin1

for ti ∈ T do2

for pj ∈ P do3

partitionTask(ti, pj);4

WCETij = determineWCET(ti);5

WCET = WCET ∪ WCETij;6

end7

end8

ilp = setupEquat(T , P , WCET , C, S);9

X = solveILP(ilp);10

forall xij ∈ X : xij = 1 do11

partitionTask(ti, pj);12

end13

returnT ;14

end15

Algorithm 1: Pseudo code of cache partition-
ing algorithm

WCETij is Ti’s WCET for a single execution
if assigned to partitionpj, then the WCET for a
single taskTi is calculated as follows:

WCET (Ti) =
n

∑

j=1

xij ∗ WCETij

Since we focus on WCET minimization, we de-
fine the cost function to be minimized for the
whole task set:

WCET =
m

∑

i=1

n
∑

j=1

xij ∗ ci ∗ WCETij (3)

To keep track of the limited cache sizeS we in-
troduce another constraint:

m
∑

j=1

n
∑

i=1

xij ∗ pj ≤ S (4)

Using equations 2 to 4, we are able to set up the
cost function andm + 1 constraints as input for

6

an ILP solver likelp solve[1] or CPLEX[10]. After solving the set of linear equations, the minimized
WCET and all variablesxij = 1, representing the optimal partition sizes for all tasks, are known.

The number of necessary WCET analyses depends on the number of tasks and the number of possible
partition sizes which have to be taken into account:#AnalysesWCET = |T | ∗ |P | = m ∗ n

To determine the WCETs, to set up all equations and to apply partitioning, Algorithm 1 is employed.
A given task set, the instruction cache size and a set of possible partition sizes for the tasks are required
as input data. The algorithm iterates over all tasks (line 2) and temporary partitions each task (line
3 to 4) for all given partition sizes. Subsequently, the WCET for the partitioned task is determined
invoking AbsInt’s static analyzer aiT (line 5). Exploiting the information about tasks, partition sizes,
cache size and gathered WCETs, an ILP model is generated regarding equations 3 to 4 (line 8) and
solved in line 9.

Afterwards, the setX includes exactly one decision variablexij per taskTi with the value 1 whereas
pj is Ti’s optimal partition size w.r.t. minimization of the system’s WCET. Finally, in lines 11 to 12 a
software-based partitioning of each task with its optimal partition size, as described in Section 3.1, is
performed.

4 Workflow

Software based cache partitioning needs the support of an underlying compiler to collect WCET-data,
perform the required code modifications and scatter the code over the address space. We employ
our WCET-aware C compiler framework, calledWCC[8], intended to develop various high- and low-
level optimizations. WCC is a compiler for the Infineon TriCore TC1796 processor coupling AbsInt’s
static WCET analyzeraiT [2] which provides WCET data that is imported into the compiler backend
and made accessible for optimizations.

aiT WCET
Analysis

ICD-C
Parser

LLIR Code
Selector

ANSI-C
Sources &
Flow Facts

High-Level
ICD-C

Code
Generator

Low-Level
LLIR

WCET-aware
Software

Based Cache
Partitioning

Memory
Hierarchy

Specification

WCET-
Optimized
Assembly

Linker
Script

Figure 3: Workflo w of the WCET-aware C
compiler WCC

Figure 3 depicts WCC’s internal structure reading the
tasks of a set in the form of ANSI-C source files with user
annotations for loop bounds and recursion depths, called
flow facts. These source files are parsed and transformed
into our high-level intermediate representation (IR)ICD-
C [6]. Each task in a set is represented by its own IR.

In the next step, theLLIR Code Selectortranslates the
high-level IRs into low-level IRs calledICD-LLIR [7].
On these TriCore TC1796 specific assembly level IRs,
the software based cache partitioning can be performed.
To enable such a WCET-aware optimization, AbsInt’s
aiT is employed to perform static WCET analyses on the
low-level IRs. Therefore, mandatory information about
loop bounds and recursion depth is supplied by flow fact
annotations.

Optimizations exploiting memory hierarchies such as our novel software based cache partitioning
require detailed information about available memories, their sizes and access times. For this purpose,
WCC integrates a detailed memory hierarchy specification available onICD-LLIR level.

Finally, WCC emits WCET-optimized assembly files and generates suitable binaries using a linker
script reflecting the utilized internal memory layout.

7

5 Evaluation

Thissection compares the capability of our WCET-driven cache partitioning to existing partition size
selection heuristic based on tasks sizes. We use different task sets from media and real-time bench-
mark suites to evaluate our optimization on computing algorithms typically found in the embedded
systems domain. Namely, tasks from the suitesDSPstone[21], MRTC[14] andUTDSP[20] are eval-
uated. WCC supports the Infineon TriCore architecture whose implementation in form of the TC1796
processor is employed for the evaluation. The processor integrates a 16 kB 2-way set associative I-
cache with 32 bytes cache line size.

Overall, the used benchmark suites include 101 benchmarks so that we have to limit to a subset of
tasks for cache partitioning. For lack of specialized benchmarks suites, sets of tasks stemming from
the mentioned benchmark suite, as proposed in [9], are generated and compiled with the optimization
level -O3. Using these sets, we benchmark the capability of decreasing the WCET achieved by
standard partitioning algorithms compared to our WCET-aware approach.

Different numbers of tasks (5, 10, 15) in a set are checked to determine their effect on the WCET. To
gather presentable results, we compute the average of 100 sets of randomly selected tasks for each
considered cache sizes and the differing task set sizes. Seven cache sizes with the power of two are
taken into account, ranging from 256 bytes up to 16 kB. Thus, the overall number of ILPs for every
benchmark suite, which has to be generated and solved, is:

|ILPs| = 3 ∗ 100 ∗ 7 = 2100

256 512 1024 2048 4096 8192 16384
40%

50%

60%

70%

80%

90%

100%

5 Tasks 10 Tasks 15 Tasks

Cachesize [Bytes]

R
e

la
ti
ve

 W
C

E
T

Figure 4: Optimized WCET for DSPstone
Floating Point relative to standard approach

256 512 1024 2048 4096 8192 16384
40%

50%

60%

70%

80%

90%

100%

5 Tasks 10 Tasks 15 Tasks

Cache size [Bytes]

R
e

la
ti
ve

 W
C

E
T

Figure 5: Optimized WCET for MRTC relative
to standard approach

Due to the fact that we do not take scheduling into ac-
count for benchmarking, the tasks execution frequen-
ciesci (cf. equation (3.3)) are set to one, thus, the sys-
tem’s WCET is composed of the task’s WCETs for a
single execution.

Figure 4 shows the relative WCETs for the bench-
mark suiteDSPstone Floating Point, achieved by
our novel optimization presented in Section 3.3 as
percentage of the WCET achieved by the standard
heuristic presented in Section 3.2. The nominal sizes
of the task sets range on average from 1.5 kB for 5
tasks up to 5 kB for 15 tasks. Substantial WCET re-
ductions can only be obtained for smaller caches of
up to 1 kB since almost all tasks fit into the cache
from 4 kB on. There, WCET reductions between 4%
and 33% can be observed. In general, larger task sets
result in higher optimization potential for all cache
sizes.

Figure 5 depicts the average WCET for theMRTC
benchmark suite. The average code size of the gen-
erated task sets is comparatively large with 6 kB for
5 tasks, 12 kB for 10 tasks and 19 kB for 15 tasks.
Hence, there is more potential to find a better distri-
bution of partition sizes. This can be seen in a nearly

8

linear correlation of the optimization potential and the quotientof task set size and cache size. For 5
tasks in a set, WCET reductions up to 30% can be gained. 10 tasks per set have a higher optimization
potential, so that 7% to 31% decrease of WCET can be observed. Optimizing the sets of 15 tasks, 9%
up to 31% lower WCETs can be achieved.

A similar situation can be observed in Figure 6 for theUTDSPbenchmark suite. The average code
sizes for the task sets range from 9 kB to 27 kB. This leads to an optimization potential of 4% for a
5 task set completely fitting into the cache and 17% up to 36% for a 15 task set especially for small
cache sizes. For this benchmark suite, the same behavior can be observed: for smaller cache sizes
and larger code sizes our algorithm achieves better results compared to the standard approach.

256 512 1024 2048 4096 8192 16384
40%

50%

60%

70%

80%

90%

100%

5 Tasks 10 Tasks 15 Tasks

Cache size [Bytes]

R
e

la
ti
ve

 W
C

E
T

Figure 6: Optimized WCET for UTDSP relative
to standard approach

Using caches larger than 16 kB, our algorithm is not
able to achieve better or only marginal better results
than if the standard method from section 3.2 is ap-
plied. This comes from the fact that mostly there is
no optimization potential if all tasks fit into the cache.
For realistic applications, the cache would be much
smaller than the amount of code. There is also no case
where the standard algorithm performs better than our
approach since we use ILP models to always obtain
the optimal partition size distribution.

Compilation Time

To consider compilation and optimization time on the
host system, we utilize an Intel Xeon X3220 (2.40 GHz). A complete toolchain iteration is decom-
posed into the three phases compilation, WCET analysis, and optimization. The stage WCET analysis
comprises all aiT invocations necessary to compute the tasks’ WCETs for possible partition sizes.

The time required for a combined compilation and optimization phase ranges from less than one
second (firfrom MRTC) to 30 seconds foradpcmfrom UTDSP. Compared to this, the duration for
performing static WCET analyses used for construction of an ILP is significantly higher with up to
10 hours .

6 Conclusions and Future Work

In this paper, we show how to exploit software based cache partitioning to improve the predictability
of worst-case cache behavior in focus of multi-task real-time systems. Employing partitioned caches,
every task has its own cache area from which it can not be evicted by other tasks. We introduce a
novel algorithm for WCET-aware software based cache partitioning in multi-task systems to achieve
predictability of cache behavior. The linker is exploited to achieve a restriction of tasks to be mapped
into certain cache lines. An ILP model, based on the tasks’ WCETs for different partition sizes, is set
up and solved to select the optimal partition size for each task w.r.t. minimizing the systems WCET.

The new technique was compared to simple partition size selection algorithms in order to demonstrate
its potential. The results show that our algorithm always finds better combinations of tasks’ partition
sizes than the size-based approach. Inspecting small task sets, we are able to decrease the WCET up
to 30% compared to the standard approach. Better results can be achieved for larger task sets with up
to 33% WCET reduction.

On average, we were able to outperform the size-based algorithm by 12% for 5 tasks in a set, 16% for
task sets with 10 tasks, and 19% considering tasks sets with 15 tasks.

9

In general, the larger the task sets (and by association the codesizes) are, the better the results. This
means: the algorithm performs best for realistic examples and less well for small (more academic)
examples.

In the future, we intend to extend our algorithm to support partitioning of data caches. This enables
predictable assumptions for the worst-case behavior of data caches accessed by multiple tasks in em-
bedded systems with preempting schedulers. Another goal is the tightly coupling of offline scheduling
algorithm analyses to automatically prefer those tasks during optimization which miss their deadlines.

References

[1] lp solve reference guide.http://lpsolve.sourceforge.net/5.5/. v. 5.5.0.14.

[2] ABSINT ANGEWANDTE INFORMATIK GMBH. Worst-Case Execution Time Analyzer aiT
for TriCore.http://www.absint.com/ait.

[3] CHAMBERLAIN, S., AND TAYLOR, I. L. Using ld, 2000. Version 2.11.90,http://www.
skyfree.org/linux/references/ld.pdf.

[4] CHEN, W. Y., CHANG, P. P., CONTE, T. M., AND HWU, W. W. The Effect of Code Expanding
Optimizations on Instruction Cache Design.IEEE Trans. Comput. 42, 9 (1993).

[5] CHIOU, D., RUDOLPH, L., DEVADAS, S., AND ANG, B. S. Dynamic Cache Partitioning via
Columnization. InProceedings of DAC(2000).

[6] ECKART, J., AND PYKA, R. ICD-C Compiler Framework.http://www.icd.de/es/
icd-c, 2009. Informatik Centrum Dortmund, Embedded Systems Profit Center.

[7] ECKART, J., AND PYKA, R. ICD-LLIR Low-Level Intermediate Representation.http:
//www.icd.de/es/icd-llir, 2009. Informatik Centrum Dortmund, Embedded Systems
Profit Center.

[8] FALK, H., LOKUCIEJEWSKI, P., AND THEILING, H. Design of a wcet-aware c compiler.
In Proceedings of WCET(http://ls12-www.cs.tu-dortmund.de//research/
activities/wcc, 2006).

[9] HARDY, D., AND PUAUT, I. WCET Analysis of Multi-Level Non-Inclusive Set-Associative
Instruction Caches. InProceedings of RTSS(2008).

[10] ILOG. CPLEX. http://www.ilog.com/products/cplex.

[11] KIM, C., CHUNG, S., AND JHON, C. An Energy-Efficient Partitioned Instruction Cache Ar-
chitecture for Embedded Processors.IEICE - Trans. Inf. Syst., 4 (2006).

[12] KOWARSCHIK, M., AND WEI, C. An Overview of Cache Optimization Techniques and
Cache-Aware Numerical Algorithms. InAlgorithms for Memory Hierarchies(2003), Springer.

[13] LOKUCIEJEWSKI, P., FALK, H., AND MARWEDEL, P. WCET-driven Cache-based Proce-
dure Positioning Optimizations. InProceedings of ECRTS(Prague/Czech R., 2008).

[14] MÄLARDALEN WCET RESEARCH GROUP. M̈alardalen WCET benchmark suite.http:
//www.mrtc.mdh.se/projects/wcet, 2008.

10

[15] MOLNOS, A., HEIJLIGERS, M., COTOFANA, S. D., AND EIJNDHOVEN,J. Cache Parti-
tioning Options for Compositional Multimedia Applications. InProceedings of ProRISC(2004).

[16] MUELLER, F. Compiler Support for Software-Based Cache Partitioning.SIGPLAN Not. 30,
11 (1995).

[17] PUAUT, I., AND DECOTIGNY, D. Low-Complexity Algorithms for Static Cache Locking in
Multitasking Hard Real-Time Systems. InProceedings of RTSS(Washington, DC, USA, 2002),
IEEE Computer Society.

[18] SUHENDRA, V., AND MITRA, T. Exploring Locking & Partitioning for Predictable Shared
Caches on Multi-Cores. InProceedings of DAC(New York, USA, 2008).

[19] THEILING, H., FERDINAND, C., AND WILHELM, R. Fast and Precise WCET Prediction by
Separated Cache and Path Analyses.Real-Time Syst. 18, 2-3 (2000).

[20] UTDSP Benchmark Suite. http://www.eecg.toronto.edu/∼corinna/DSP/
infrastructure/UTDSP.html, 2008.

[21] V. ZIVOJNOVIC, J. MARTINEZ, C. S., AND MEYR, H. DSPstone: A DSP-Oriented Bench-
marking Methodology. InProceedings of ICSPAT(Dallas, TX, USA, 1994).

[22] VERA, X., LISPER, B., AND XUE, J. Data Caches in Multitasking Hard Real-Time Systems.
In Proceedings of RTSS(Cancun, Mexico, 2003).

11

