
From Interval Computations to
Constraint-Related Set Computations:

Towards Faster Estimation of Statistics and
ODEs under Interval and p-Box Uncertainty

(Invited Talk)

Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA

vladik@utep.edu

Abstract. Interval computations estimate the uncertainty of the result
of data processing in situations in which we only know the upper bounds
∆ on the measurement errors. In this case, based on the measurement
result x̃, we can only conclude that the actual (unknown) value x of the
desired quantity is in the interval [x̃−∆, x̃+∆].

In interval computations, at each intermediate stage of the computation,
we have intervals of possible values of the corresponding quantities. As a
result, we often have bounds with excess width. To remedy this problem,
in our previous papers, we proposed an extension of interval technique
to set computations, where on each stage, in addition to intervals of
possible values of the quantities, we also keep sets of possible values
of pairs (triples, etc.). In this paper, we show that in several practical
problems, such as estimating statistics (variance, correlation, etc.) and
solutions to ordinary differential equations (ODEs) with given accuracy,
this new formalism enables us to find estimates in feasible (polynomial)
time.

1 Formulation of the Problem

Need for data processing. In many real-life situations, we are interested in the
value of a physical quantity y that is difficult or impossible to measure directly.
Examples of such quantities are the distance to a star and the amount of oil in
a given well. Since we cannot measure y directly, a natural idea is to measure
y indirectly. Specifically, we find some easier-to-measure quantities x1, . . . , xn
which are related to y by a known relation y = f(x1, . . . , xn); this relation may
be a simple functional transformation, or complex algorithm (e.g., for the amount
of oil, numerical solution to a partial differential equation). Then, to estimate
y, we first measure or estimate the values of the quantities x1, . . . , xn, and then
we use the results x̃1, . . . , x̃n of these measurements (estimations) to compute
an estimate ỹ for y as ỹ = f(x̃1, . . . , x̃n)

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.)
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 5-16
http://drops.dagstuhl.de/opus/volltexte/2009/2251

6 Vladik Kreinovich

-

· · ·

-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

Computing an estimate for y based on the results of direct measurements is
called data processing; data processing is the main reason why computers were
invented in the first place, and data processing is still one of the main uses of
computers as number crunching devices.

Measurement uncertainty: from probabilities to intervals. Measurement are never
100% accurate, so in reality, the actual value xi of i-th measured quantity can
differ from the measurement result x̃i. Because of these measurement errors

∆xi
def
= x̃i − xi, the result ỹ = f(x̃1, . . . , x̃n) of data processing is, in general,

different from the actual value y = f(x1, . . . , xn) of the desired quantity y.

It is desirable to describe the error ∆y
def
= ỹ − y of the result of data pro-

cessing. To do that, we must have some information about the errors of direct
measurements.

What do we know about the errors ∆xi of direct measurements? First, the
manufacturer of the measuring instrument must supply us with an upper bound
∆i on the measurement error. If no such upper bound is supplied, this means
that no accuracy is guaranteed, and the corresponding “measuring instrument”
is practically useless. In this case, once we performed a measurement and got
a measurement result x̃i, we know that the actual (unknown) value xi of the
measured quantity belongs to the interval xi = [xi, xi], where xi = x̃i −∆i and
xi = x̃i +∆i.

In many practical situations, we not only know the interval [−∆i, ∆i] of pos-
sible values of the measurement error; we also know the probability of different
values ∆xi within this interval. This knowledge underlies the traditional engi-
neering approach to estimating the error of indirect measurement, in which we
assume that we know the probability distributions for measurement errors ∆xi.

In practice, we can determine the desired probabilities of different values
of ∆xi by comparing the results of measuring with this instrument with the
results of measuring the same quantity by a standard (much more accurate)
measuring instrument. Since the standard measuring instrument is much more
accurate than the one use, the difference between these two measurement results
is practically equal to the measurement error; thus, the empirical distribution of
this difference is close to the desired probability distribution for measurement
error. There are two cases, however, when this determination is not done:

– First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When we use the largest particle accelerator to measure

From Interval Computations to Set Computations 7

the properties of elementary particles, there is no “standard” (much more
accurate) located nearby that we can use for calibration: our accelerator is
the best we have.

– The second case is the case of measurements in manufacturing. In principle,
every sensor can be thoroughly calibrated, but sensor calibration is so costly
– usually costing ten times more than the sensor itself – that manufacturers
rarely do it.

In both cases, we have no information about the probabilities of ∆xi; the only
information we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement
result x̃i, the only information that we have about the actual value xi of the
measured quantity is that it belongs to the interval xi = [x̃i −∆i, x̃i + ∆i]. In
such situations, the only information that we have about the (unknown) actual
value of y = f(x1, . . . , xn) is that y belongs to the range y = [y, y] of the function
f over the box x1 × . . .× xn:

y = [y, y] = f(x1, . . . ,xn)
def
= {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

The process of computing this interval range based on the input intervals xi

is called interval computations; see, e.g., [4].

Outline. We start by recalling the basic techniques of interval computations and
their drawbacks, then we will describe the new set computation techniques and
describe a class of problems for which these techniques are efficient. Finally, we
talk about how we can extend these techniques to other types of uncertainty
(e.g., classes of probability distributions).

2 Interval Computations: Brief Reminder

Interval computations: main idea. Historically the first method for computing
the enclosure for the range is the method which is sometimes called “straight-
forward” interval computations. This method is based on the fact that inside
the computer, every algorithm consists of elementary operations (arithmetic op-
erations, min, max, etc.). For each elementary operation f(a, b), if we know the
intervals a and b for a and b, we can compute the exact range f(a,b). The
corresponding formulas form the so-called interval arithmetic:

[a, a] + [b, b] = [a+ b, a+ b]; [a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b),max(a · b, a · b, a · b, a · b)];

1/[a, a] = [1/a, 1/a] if 0 6∈ [a, a]; [a, a]/[b, b] = [a, a] · (1/[b, b]).

In straightforward interval computations, we repeat the computations forming
the program f step-by-step, replacing each operation with real numbers by the
corresponding operation of interval arithmetic. It is known that, as a result, we
get an enclosure Y ⊇ y for the desired range.

8 Vladik Kreinovich

From main idea to actual computer implementation. Not every real number can
be exactly implemented in a computer; thus, e.g., after implementing an oper-
ation of interval arithmetic, we must enclose the result [r−, r+] in a computer-
representable interval: namely, we must round-off r− to a smaller computer-
representable value r, and round-off r+ to a larger computer-representable value r.

Sometimes, we get excess width. In some cases, the resulting enclosure is exact;
in other cases, the enclosure has excess width. The excess width is inevitable
since straightforward interval computations increase the computation time by
at most a factor of 4, while computing the exact range is, in general, NP-hard

(see, e.g., [5]), even for computing the population variance V =
1

n
·

n∑
i=1

(xi−x)2,

where x =
1

n
·

n∑
i=1

xi (see [3]).

If we get excess width, then we can use more sophisticated techniques to get
a better estimate, such as centered form, monotonicity, bisection, etc. (see, e.g.,
[4]). These methods usually decrease the excess width, but do not completely
eliminate it.

Reason for excess width. The main reason for excess width is that intermediate
results are dependent on each other, and straightforward interval computations
ignore this dependence. For example, the actual range of f(x1) = x1 − x21 over
x1 = [0, 1] is y = [0, 0.25]. Computing this f means that we first compute
x2 := x21 and then subtract x2 from x1. According to straightforward interval
computations, we compute r = [0, 1]2 = [0, 1] and then x1−x2 = [0, 1]− [0, 1] =
[−1, 1]. This excess width comes from the fact that the formula for interval
subtraction implicitly assumes that both a and b can take arbitrary values within
the corresponding intervals a and b, while in this case, the values of x1 and x2
are clearly not independent: x2 is uniquely determined by x1, as x2 = x21.

3 Constraint-Based Set Computations

Main idea. The main idea behind constraint-based set computations (see, e.g.,
[1]) is to remedy the above reason why interval computations lead to excess
width. Specifically, at every stage of the computations, in addition to keeping
the intervals xi of possible values of all intermediate quantities xi, we also keep
several sets:

– sets xij of possible values of pairs (xi, xj);
– if needed, sets xijk of possible values of triples (xi, xj , xk); etc.

In the above example, instead of just keeping two intervals x1 = x2 = [0, 1], we
would then also generate and keep the set x12 = {(x1, x21) |x1 ∈ [0, 1]}. Then,
the desired range is computed as the range of x1 − x2 over this set – which is
exactly [0, 0.25].

From Interval Computations to Set Computations 9

To the best of our knowledge, in interval computations context, the idea of
representing dependence in terms of sets of possible values of tuples was first
described by Shary; see, e.g., [6] and references therein.

How can we propagate this set uncertainty via arithmetic operations? Let us
describe this on the example of addition, when, in the computation of f , we use
two previously computed values xi and xj to compute a new value xk := xi +xj .
In this case, we set xik = {(xi, xi + xj) | (xi, xj) ∈ xij},

xjk = {(xj , xi + xj) | (xi, xj) ∈ xij},

and for every l 6= i, j, we take

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl}.

From main idea to actual computer implementation. In interval computations,
we cannot represent an arbitrary interval inside the computer, we need an en-
closure. Similarly, we cannot represent an arbitrary set inside a computer, we
need an enclosure.

To describe such enclosures, we fix the number C of granules (e.g., C = 10).
We divide each interval xi into C equal parts Xi; thus each box xi×xj is divided
into C2 subboxes Xi×Xj . We then describe each set xij by listing all subboxes
Xi ×Xj which have common elements with xij ; the union of such subboxes is
an enclosure for the desired set xij .

This implementation enables us to implement all above arithmetic opera-
tions. For example, to implement xik = {(xi, xi + xj) | (xi, xj) ∈ xij}, we take
all the subboxes Xi ×Xj that form the set xij ; for each of these subboxes, we
enclosure the corresponding set of pairs {(xi, xi + xj) | (xi, xj) ∈ Xi ×Xj} into
a set Xi × (Xi + Xj). This set may have non-empty intersection with several
subboxes Xi ×Xk; all these subboxes are added to the computed enclosure for
xik. Once can easily see if we start with the exact range xij , then the resulting
enclosure for xik is an (1/C)-approximation to the actual set – and so when C
increases, we get more and more accurate representations of the desired set.

Similarly, to find an enclosure for

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl},

we consider all the triples of subintervals (Xi,Xj ,Xl) for which Xi ×Xj ⊆ xij ,
Xi × Xl ⊆ xil, and Xj × Xl ⊆ xjl; for each such triple, we compute the box
(Xi + Xj)×Xl; then, we add subboxes Xk ×Xl which intersect with this box
to the enclosure for xkl.

First example: computing the range of x−x. For f(x) = x−x on [0, 1], the actual
range is [0, 0], but straightforward interval computations lead to an enclosure
[0, 1]− [0, 1] = [−1, 1]. In straightforward interval computations, we have r1 = x
with the exact interval range r1 = [0, 1], and we have r2 = x with the exact
interval range x2 = [0, 1]. The variables r1 and r2 are dependent, but we ignore
this dependence.

In the new approach: we have r1 = r2 = [0, 1], and we also have r12:

10 Vladik Kreinovich

×

×

×

×

×

r1

r2

For each small box, we have [−0.2, 0.2], so the union is [−0.2, 0.2].

If we divide into more pieces, we get an interval closer to 0.

Second example: computing the range of x − x2. In straightforward interval
computations, we have r1 = x with the exact interval range interval r1 = [0, 1],
and we have r2 = x2 with the exact interval range x2 = [0, 1]. The variables
r1 and r2 are dependent, but we ignore this dependence and estimate r3 as
[0, 1]− [0, 1] = [−1, 1].

In the new approach: we have r1 = r2 = [0, 1], and we also have r12. First,
we divide the range [0, 1] into 5 equal subintervals R1. The union of the ranges
R2

1 corresponding to these 5 subintervals R1 is [0, 1], so r2 = [0, 1]. We divide
this interval r2 into 5 equal sub-intervals [0, 0.2], [0.2, 0.4], etc. We now compute
the set r12 as follows:

– for R1 = [0, 0.2], we have R2
1 = [0, 0.04], so only sub-interval [0, 0.2] of the

interval r2 is affected;

– for R1 = [0.2, 0.4], we have R2
1 = [0.04, 0.16], so also only sub-interval [0, 0.2]

is affected;

– for R1 = [0.4, 0.6], we have R2
1 = [0.16, 0.36], so two sub-intervals [0, 0.2]

and [0.2, 0.4] are affected, etc.

× × ×

× ×

×

× ×

×

r1

r2

For each possible pair of small boxes R1×R2, we have R1−R2 = [−0.2, 0.2],
[0, 0.4], or [0.2, 0.6], so the union of R1 −R2 is r3 = [−0.2, 0.6].

If we divide into more and more pieces, we get the enclosure which is closer
and closer to the exact range [0, 0.25].

From Interval Computations to Set Computations 11

How to compute rik. The above example is a good case to illustrate how we
compute the range r13 for r3 = r1 − r2. Indeed, since r3 = [−0.2, 0.6], we divide
this range into 5 subintervals [−0.2,−0.04], [−0.04, 0.12], [0.12, 0.28], [0.28, 0.44],
[0.44, 0.6].

– For R1 = [0, 0.2], the only possible R2 is [0, 0.2], so R1 −R2 = [−0.2, 0.2].
This covers [−0.2,−0.04], [−0.04, 0.12], and [0.12, 0.28].

– For R1 = [0.2, 0.4], the only possible R2 is [0, 0.2], so R1 − R2 = [0, 0.4].
This interval covers [−0.04, 0.12], [0.12, 0.28], and [0.28, 0.44].

– For R1 = [0.4, 0.6], we have two possible R2:

• for R2 = [0, 0.2], we have R1 − R2 = [0.2, 0.6]; this covers [0.12, 0.28],
[0.28, 0.44], and [0.44, 0.6];

• for R2 = [0.2, 0.4], we have R1 −R2 = [0, 0.4]; this covers [−0.04, 0.12],
[0.12, 0.28], and [0.28, 0.44].

– For R1 = [0.6, 0.8], we have R2
1 = [0.36, 0.64], so three possible R2: [0.2, 0.4],

[0.4, 0.6], and [0.6, 0.8], to the total of [0.2, 0.8]. Here, [0.6, 0.8]− [0.2, 0.8] =
[−0.2, 0.6], so all 5 subintervals are affected.

– Finally, for R1 = [0.8, 1.0], we have R2
1 = [0.64, 1.0], so two possible R2:

[0.6, 0.8] and [0.8, 1.0], to the total of [0.6, 1.0]. Here, [0.8, 1.0] − [0.6, 1.0] =
[−0.2, 0.4], so the first 4 subintervals are affected.

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

r1

r3

Limitations of this approach. The main limitation of this approach is that when
we need an accuracy ε, we must use ∼ 1/ε granules; so, if we want to compute the
result with k digits of accuracy, i.e., with accuracy ε = 10−k, we must consider
exponentially many boxes (∼ 10k). In plain words, this method is only applicable
when we want to know the desired quantity with a given accuracy (e.g., 10%).

Cases when this approach is applicable. In practice, there are many problems
when it is sufficient to compute a quantity with a given accuracy: e.g., when
we detect an outlier, we usually do not need to know the variance with a high
accuracy, an accuracy of 10% is more than enough.

Let us describe the case when interval computations do not lead to the exact
range, but set computations do – of course, the range is “exact” modulo accuracy
of the actual computer implementations of these sets.

12 Vladik Kreinovich

Example: estimating variance under interval uncertainty. Suppose that we know
the intervals x1, . . . ,xn of possible values of x1, . . . , xn, and we need to compute

the range of the variance V =
1

n
·M− 1

n2
·E2, where M

def
=

n∑
i=1

x2i and E
def
=

n∑
i=1

xi.

This problem is important, e.g., in detecting outliers. Outliers are useful in
many application areas. For example, in medicine, to detect possible illnesses,
we analyze the healthy population, compute the averages E[x] and the standard
deviations σ[x] of different characteristics x, and if for some person, the value of
a blood pressure, weight, body temperature, etc., is outside the corresponding 2-
or 3-sigma interval [E[x]− k0 · σ[x], E[x] + k0 · σ[x]], then we perform additional
tests to see if there is any hidden problem with this person’s health. Similarly,
in geophysics, when we look for rare minerals, we know the typical values for a
given area, and if at some location, the values of the geophysical characteristics
are outliers (i.e., they are outside the corresponding interval), then these area
are probably the most promising.

Traditional algorithms for detecting outliers assume that we know the exact
values xi of the corresponding characteristics but in practice, these values often
come from estimates or crude measurements. For example, most routine blood
pressure measurements performed at health fairs, in drugstores, at the dentist
office, etc., are very approximate, with accuracy 10 or more; their objective is
not to find the exact values of the corresponding characteristics but to make sure
that we do not miss a dangerous anomaly. When we estimate the mean and the
standard deviations based on these approximate measurements, we need to take
into account that these values are very approximate, i.e., that, in effect, instead
of the exact value xi (such as 110), we only know that the actual (unknown)
value of the blood pressure is somewhere within the interval [x̃i−∆i, x̃i +∆i] =
[110− 10, 110 + 10] = [100, 120].

In all these situations, we need to compute the range on the variance V under
the interval uncertainty on xi.

A natural way to to compute V is to compute the intermediate sums Mk
def
=

k∑
i=1

x2i and Ek
def
=

k∑
i=1

xi. We start with M0 = E0 = 0; once we know the pair

(Mk, Ek), we compute (Mk+1, Ek+1) = (Mk +x2k+1, Ek +xk+1). Since the values
of Mk and Ek only depend on x1, . . . , xk and do not depend on xk+1, we can
conclude that if (Mk, Ek) is a possible value of the pair and xk+1 is a possi-
ble value of this variable, then (Mk + x2k+1, Ek + xk+1) is a possible value of
(Mk+1, Ek+1). So, the set p0 of possible values of (M0, E0) is the single point
(0, 0); once we know the set pk of possible values of (Mk, Ek), we can compute
pk+1 as

{(Mk + x2, Ek + x) | (Mk, Ek) ∈ pk, x ∈ xk+1}.

For k = n, we will get the set pn of possible values of (M,E); based on this set,

we can then find the exact range of the variance V =
1

n
·M − 1

n2
· E2.

From Interval Computations to Set Computations 13

What C should we choose to get the results with an accuracy ε ·V ? On each
step, we add the uncertainty of 1/C; to, after n steps, we add the inaccuracy of
n/C. Thus, to get the accuracy n/C ≈ ε, we must choose C = n/ε.

What is the running time of the resulting algorithm? We have n steps; on
each step, we need to analyze C3 combinations of subintervals for Ek, Mk, and
xk+1. Thus, overall, we need n · C3 steps, i.e., n4/ε3 steps. For fixed accuracy
C ∼ n, so we need O(n4) steps – a polynomial time, and for ε = 1/10, the
coefficient at n4 is still 103 – quite feasible.

For example, for n = 10 values and for the desired accuracy ε = 0.1, we need
103 · n4 ≈ 107 computational steps – “nothing” for a Gigaherz (109 operations
per second) processor on a usual PC. For n = 100 values and the same desired
accuracy, we need 104 · n4 ≈ 1012 computational steps, i.e., 103 seconds (15
minutes) on a Gigaherz processor. For n = 1000, we need 1015 steps, i.e., 106

computational steps – 12 days on a single processor or a few hours on a multi-
processor machine.

In comparison, the exponential time 2n needed in the worst case for the exact
computation of the variance under interval uncertainty, is doable (210 ≈ 103 step)
for n = 10, but becomes unrealistically astronomical (2100 ≈ 1030 steps) already
for n = 100.
Comment. When the accuracy increases ε = 10−k, we get an exponential increase
in running time – but this is OK since, as we have mentioned, the problem of
computing variance under interval uncertainty is, in general, NP-hard.

Other statistical characteristics. Similar algorithms can be presented for comput-
ing many other statistical characteristics. For example, for every integer d > 2,

the corresponding higher-order central moment Cd =
1

n
·

n∑
i=1

(xi− x)d is a linear

combination of d moments M (j) def
=

n∑
i=1

xji for j = 1, . . . , d; thus, to find the exact

range for Cd, we can keep, for each k, the set of possible values of d-dimensional

tuples (M
(1)
k , . . . ,M

(d)
k), where M

(j)
k

def
=

k∑
i=1

xji . For these computations, we need

n · Cd+1 ∼ nd+2 steps – still a polynomial time.

Another example is covariance Cov =
1

n
·

n∑
i=1

xi · yi −
1

n2
·

n∑
i=1

xi ·
n∑

i=1

yi.

To compute covariance, we need to keep the values of the triples (Covk, Xk, Yk),

where Covk
def
=

k∑
i=1

xi ·yi, Xk
def
=

k∑
i=1

xi, and Yk
def
=

k∑
i=1

yi. At each step, to compute

the range of

(Covk+1, Xk+1, Yk+1) = (Covk + xk+1 · yk+1, Xk + xk+1, Yk + yk+1),

we must consider all possible combinations of subintervals for Covk, Xk, Yk,
xk+1, and yk+1 – to the total of C5. Thus, we can compute covariance in time
n · C5 ∼ n6.

14 Vladik Kreinovich

Similarly, to compute correlation ρ = Cov/
√
Vx · Vy, we can update, for each

k, the values of (Ck, Xk, Yk, X
(2)
k , Y

(2)
k), where X

(2)
k =

k∑
i=1

x2i and Y
(2)
k =

k∑
i=1

y2i

are needed to compute the variances Vx and Vy. These computations require
time n · C7 ∼ n8.

Systems of ordinary differential equations (ODEs) under interval uncertainty. A
general system of ODEs has the form ẋi = fi(x1, . . . , xm, t), 1 ≤ i ≤ m. Interval
uncertainty usually means that the exact functions fi are unknown, we only
know the expressions of fi in terms of parameters, and we have interval bounds
on these parameters.

There are two types of interval uncertainty: we may have global parameters
whose values are the same for all moments t, and we may have noise-like pa-
rameters whose values may different at different moments of time – but always
within given intervals. In general, we have a system of the type

ẋi = fi(x1, . . . , xm, t, a1, . . . , ak, b1(t), . . . , bl(t)),

where fi is a known function, and we know the intervals aj and bj(t) of possible
values of ai and bj(t).

Example. For example, the case of a differential inequality when we only know
the bounds f

i
(x1, . . . , xn, t) and f i(x1, . . . , xn, t) on fi(x1, . . . , xn, t) can be de-

scribed as
f̃i(x1, . . . , xn, t) + b1(t) ·∆(x1, . . . , xn, t),

where f̃i(x1, . . . , xn, t)
def
= (f

i
(x1, . . . , xn, t) + f i(x1, . . . , xn, t))/2,

∆(x1, . . . , xn, t)
def
= (f i(x1, . . . , xn, t)− f i(x1, . . . , xn, t))/2,

and b1(t) = [−1, 1].

Solving systems of ordinary differential equations (ODEs) under interval uncer-
tainty. For the general system of ODEs, Euler’s equations take the form

xi(t+∆t) = xi(t) +∆t · fi(x1(t), . . . , xm(t), t, a1, . . . , ak, b1(t), . . . , bl(t)).

Thus, if for every t, we keep the set of all possible values of a tuple

(x1(t), . . . , xm(t), a1, . . . , ak),

then we can use the Euler’s equations to get the exact set of possible values of
this tuple at the next moment of time.

The reason for exactness is that the values xi(t) depend only on the previous
values bj(t−∆t), bj(t− 2∆t), etc., and not on the current values bj(t).

To predict the values xi(T) at a moment T , we need n = T/∆t iterations.
To update the values, we need to consider all possible combinations ofm+k+l

variables x1(t), . . . , xm(t), a1, . . . , ak, b1(t), . . . , bl(t); so, to predict the values at
moment T = n ·∆t in the future for a given accuracy ε > 0, we need the running
time n · Cm+k+l ∼ nk+l+m+1. This is is still polynomial in n.

From Interval Computations to Set Computations 15

Additional advantage of our technique: possibility to take constraints into ac-
count. Traditional formulations of the interval computation problems assume
that we can have arbitrary tuples (x1, . . . , xn) as long as xi ∈ xi for all i. In
practice, we may have additional constraints on xi. For example, we may know
that xi are observations of a smoothly changing signal at consequent moments
of time; in this case, we know that |xi − xi+1| ≤ ε for some small known ε > 0.
Such constraints are easy to take into account in our approach.

For example, if know that xi = [−1, 1] for all i and we want to estimate the
value of a high-frequency Fourier coefficient f = x1 − x2 + x3 − x4 + . . .− x2n,
then usual interval computations lead to an enclosure [−2n, 2n], while, for small
ε, the actual range for the sum (x1 − x2) + (x3 − x4) + . . . where each of n
differences is bounded by ε, is much narrower: [−n · ε, n · ε] (and for xi = i · ε,
these bounds are actually attained).

Computation of f means computing the values fk = x1−x2+. . .+(−1)k+1·xk
for k = 1, . . . At each stage, we keep the set sk of possible values of (fk, xk), and
use this set to find

sk+1 = {(fk + (−1)k · xk+1, xk+1) | (fk, xk) ∈ sk & |xk − xk+1| ≤ ε}.

In this approach, when computing f2k, we take into account that the value x2k
must be ε-close to the value xk and thus, that we only add ≤ ε. Thus, our
approach leads to almost exact bounds – modulo implementation accuracy 1/C.

In this simplified example, the problem is linear, so we could use linear pro-
gramming to get the exact range, but set computations work for similar non-
linear problems as well.

Classes of probability distributions and p-boxes: a reminder. Often, in addition
to the interval xi of possible values of the inputs xi, we also have partial infor-
mation about the probabilities of different values xi ∈ xi. An exact probabil-
ity distribution can be described, e.g., by its cumulative distribution function
Fi(z) = Prob(xi ≤ z). In these terms, a partial information means that instead
of a single cdf, we have a class F of possible cdfs.

A practically important particular case of this partial information is when, for
each z, instead of the exact value F (z), we know an interval F(z) = [F (z), F (z)]
of possible values of F (z); such an “interval-valued” cdf is called a probability
box, or a p-box, for short; see, e.g., [2].

Propagating p-box uncertainty via computations: a problem. Once we know the
classes Fi of possible distributions for xi, and a data processing algorithms
f(x1, . . . , xn), we would like to know the class F of possible resulting distri-
butions for y = f(x1, . . . , xn).

Idea. For problems like systems of ODES, it is sufficient to keep, and update,
for all t, the set of possible joint distributions for the tuple (x1(t), . . . , a1, . . .).

16 Vladik Kreinovich

From idea to computer implementation. We would like to estimate the values
with some accuracy ε ∼ 1/C and the probabilities with the similar accuracy
1/C. To describe a distribution with this uncertainty, we divide both the x-
range and the probability (p-) range into C granules, and then describe, for each
x-granule, which p-granules are covered. Thus, we enclose this set into a finite
union of p-boxes which assign, to each of x-granules, a finite union of p-granule
intervals.

A general class of distributions can be enclosed in the union of such p-boxes.
There are finitely many such assignments, so, for a fixed C, we get a finite
number of possible elements in the enclosure.

We know how to propagate uncertainty via simple operations with a finite
amount of p-boxes (see, e.g., [2]), so for ODEs we get a polynomial-time algo-
rithm for computing the resulting p-box for y.

For p-boxes, we need further improvements to make this method practical. For-
mally, the above method is polynomial-time. However, it is not yet practical
beyond very small values of C. Indeed, to describe a p-subbox, we need to at-
tach one of C probability granules to each of C x-granules; these are ∼ CC such
attachments, so we need ∼ CC subboxes. For C = 10, we already get an unreal-
istic 1010 increase in computation time. (In contrast, for interval computations,
we need a feasible number C = 102 of subboxes.)

Acknowledgments. This work was supported in part by the National Science
Foundation grant HRD-0734825, by Grant 1 T36 GM078000-01 from the Na-
tional Institutes of Health, and by Grant MSM 6198898701 from MŠMT of
Czech Republic.

References

1. M. Ceberio, S. Ferson, V. Kreinovich, et al., “How To Take Into Account Depen-
dence Between the Inputs: From Interval Computations to Constraint-Related Set
Computations”, Proc. 2nd Int’l Workshop on Reliable Engineering Computing, Sa-
vannah, Georgia, February 22–24, 2006, pp. 127–154; final version in Journal of
Uncertain Systems, 2007, Vol. 1, No. 1, pp. 11–34.

2. S. Ferson. RAMAS Risk Calc 4.0. CRC Press, Boca Raton, Florida, 2002.
3. S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, “Computing

Variance for Interval Data is NP-Hard”, ACM SIGACT News, 2002, Vol. 33, No. 2,
pp. 108–118.

4. L. Jaulin et al., Applied Interval Analysis, Springer, London, 2001.
5. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complexity and

feasibility of data processing and interval computations, Kluwer, Dordrecht, 1997.
6. S. P. Shary, “Solving tied interval linear systems”, Siberian Journal of Numerical

Mathematics, 2004, Vol. 7, No. 4, pp. 363–376 (in Russian).

