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Abstract. We prove general theorems about unique existence of effec-
tive subalgebras of classical algebras. The theorems are consequences of
standard facts about completions of metric spaces within the framework
of constructive mathematics, suitably interpreted in realizability models.
We work with general realizability models rather than with a particu-
lar model of computation. Consequently, all the results are applicable in
various established schools of computability, such as type 1 and type 2
effectivity, domain representations, equilogical spaces, and others.

1 Introduction

Given an algebra, by which we mean a set with constants and operations, is there
a largest subalgebra which carries a computable structure, and is the structure
unique up to computable isomorphism? Without further assumptions the answer
is in general negative. For example, within the context of Recursive Mathematics
every computable subfield of reals may be properly extended to a subfield which
is again computable, and this remains true even if we require the subfields to be
effectively complete. However, as was proved by Moschovakis [I], by requiring
also that the strict linear order be semidecidable, we are left with only one
choice, namely the recursive reals. An analogous result for type 2 effectivity was
established by Hertling [2].

We show how these results, as well as others, can be seen as standard facts
about completions of metric spaces in the context of constructive mathematics,
suitably interpreted in realizability models. We prove two main theorems which
together give conditions under which an algebra A, equipped with a complete
metric d, has a unique effective subalgebra B that is effectively complete and for
which the relation d(z,y) < ¢ is semidecidable in 2,y € B and ¢ € Q.

Rather than choosing a specific model of computation, we work in a general
realizability model. Thus our results apply to established schools of computable
mathematics, such as type 1 and type 2 effectivity, domain representations, equi-
logical spaces, and others.
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The outline of the extended abstract is as follows. Sections PHd] introduce
the necessary background, namely realizability models, algebras, and premetric
spaces. Section [5] states the main theorems, from which two specific important
cases are inferred in Section [ We conclude with a brief discussion of possible
further directions of research.

2 Assemblies and Realizability

Among the different kinds of realizability the most suitable one for our purposes
is relative realizability, because it subsumes type 1 and type 2 effectivity, domain
representations, equilogical spaces, and other standard models of computation,
see [3]. We review the basic definitions here and refer the readers to [4] for
background material on realizability.

A partial combinatory algebra (PCA) is a set A with a partial application
operatiorﬂ - such that there exist elements k,s € A satisfying k z y = = ancﬂ
szyz~(xz2)(y=z). APCA is a general model of computation which supports
encoding of pairs, natural numbers, recursion, partial recursive functions, etc.
An elementary sub-PCA is a subset B C A which is closed under application and
contains k and s suitable for A. For the rest of the discussion we fix a PCA A and
an elementary sub-PCA A# C A. The elements of A as “arbitrary” and those of
A# as “effective” data or programs, although the exact meaning of these words
depends on the particular choice of A and A#.

An assembly S = (S,lFg) is a set S together with a realizability relation
IFs € A x S, such that for every z € S there is at least one x € A for which
x ks . A realized map f : S — T between assemblies is a map f : S — T
between the underlying sets which is tracked by some £ € A#, which means that
whenever x IFg x therﬂ f x| and £ x IFp f(z). Note that we require maps to
be realized by the elements of the subalgebra A#. Assemblies and realized maps
form a category Asm. An assembly S is modest, or a modest set, if each realizer
realizes at most one element: for all r € A, z,y € S, if r IFg x and r IFg y then
T =y.

An assembly S is equivalent to a multi-valued representation dg : A — P(S)
via the correspondence x IFg @ <= z € dg(x). A modest set is equivalent to
a single-valued representation. Traditional schools of computable mathematics
typically use (single-valued) representations, for example:

— When A = A% = N is the first Kleene algebra, the modest sets are equivalent
to type 1 representations, or numbered sets, which are used in the study
of recursive mathematics. In this model “effective” means “computable by
(type 1) Turing machine”.

3 We write z y instead of z - y, and associate application to the left, z y z = (z y) =.

4 Kleene equality a ~ b means that if one side is defined then so is the other and they
are equal.

5 The expression ¢ | means “t is defined”.
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— When A = NV is the second Kleene algebra and A# the subalgebra of total
computable functions we get type 2 representations. In this case “effective”
means “computable by type 2 Turing machine”.

— The case A = A# = NN is the continuous version of type 2 effectivity in
which “effective” means “continuously realized”.

— When A is a universal Scott domain and A# its computable analogue, the
modest assemblies are equivalent to domain representations and computable
maps between them. Of course, “effective” is now interpreted in the sense of
domain representations.

— With Scott’s graph model A = Pw and its r.e. counterpart A# = RE we
obtain effective equilogical spaces [3].

Single-valued representations seem to be preferred to general assemblies, per-
haps because from a programmer’s perspective it makes little sense to use one
realizer for representing several things, although lately multi-valued type 2 rep-
resentations have turned out to be useful [5]. We use assemblies because they
contain the category of sets, which allows us to consider classical and effective
algebras in a single framework. Realizability toposes could be used instead, but
assemblies are easier to describe and work with.

2.1 The realizability interpretation of first-order logic

Assemblies supports an interpretation of first-order intuitionistic logic in which
a formula is deemed valid when there is an element r € A# witnessing it. The
interpretation is given in terms of a realizability relation r I+ ¢ which is read as
“r realizers ¢”, and is defined inductively on the structure of the sentence ¢:

always r I- T, and never r IF 1,

(p,q) IF ¢ A iff pl- ¢ and qlF [

— 0,0y IFp Ve iff vl ¢, and (1,x) IF ¢V 4 iffrH—wE
—riF¢p=vy iff forall qe A, if qlF ¢ then rql and rqlF %,

—rlFVeeS. o) iff forallac A, a€ S, if alkg a then ral and ral- ¢(a),
(a,r)IFJz€S.¢(x) iff for some a € S, alkg a and r I+ ¢(a),
riFa=>biff a =0.

A sentence ¢ is valid, written |= ¢, when there exists r € A% such that r IF ¢.
Note that r must be an element of the subalgebra A#. A formula with free
variables is valid when its universal closure is valid. Intuitionistic logic is sound
with respect to the realizability relation: if intuitionistic logic proves ¢ then ¢ is
valid.

(p,q) is the encoding of the pair whose components are p and q.

6
" 7 is the encoding of the natural number n.
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2.2 The role of double negation
Negation —¢ is defined as ¢ = L. This gives us

r - —¢ iff for all g € A, not qlF ¢,
r |- ——¢ iff there is q € A such that g I ¢.

A realizer r of a doubly negated formula —=—¢ does not carry any information
about the computational content of ¢, because we may replace it with any other.
Thus double negation is a way of erasing the constructive or computational
meaning of a formula.

A formula which is equivalent to its double negation is called ——-stable. Since
¢ = ——¢ is always intuitionistically provable, only the direction ——¢ = ¢ is
relevant. An important family of stable formulas are the negative ones, which
are those built from 1, T, =, =, A, =, V, and possibly other ——-stable primitive
relations. The realizers of a ——-stable formula ¢ are computationally irrelevant
in the sense that any information that can be computed with the help of a
realizer r |= ¢ can be computed without r, the extreme case of which is that r
itself can be computed from nothing, as long as it exists.

Amonoi: S — Tis——-stable when =Vz eT.(-~(x € S) = x € S), where
“r € S” is a shorthand for 3y € S.i(y) = . Up to isomorphism, such a mono
is a restriction of T to a subset S C T, and the realizability relation IFg is IFp
restricted to S. Thus the ——-stable monos of T correspond to subsets of T

A mono i : S — T is -—~-dense when = VyeT.--Jz€S.y = i(z). Such
a mono is always isomorphic to a mono ¢ : S — T such that S = T and 7 is
the identity map. Thus the —=—-dense monos play in Asm the role of reductions
between representations.

2.3 Semidecidable predicates

To illustrate how the realizability interpretation is used, and for later use, we
explain how to treat semidecidable predicates in Asm. We say that a mono
1: S — T, seen as a predicate on T, is semidecidable when

EVzeT.3fc{0,1}N.(z €8S < IneN.f(n)=1).

Here N is the modest set of natural numbers, cf. Section[3.2] and the exponential
{0,1}N is the modest set of those maps N — {0,1} which are tracked by an
element of A. Markov Principle, which is valid in Asm, states that a formula of the
form 3neN. f(n) = 1 is =—-stable. Therefore only ——-stable predicates can be
semidecidable. We assume without loss of generality that i : S — T is ~—-stable
and that ¢ is a subset inclusion. Validity of the above formula is then equivalent
to there being r € A# which works as follows: if x I 2 then, foralln € N, rx @]
and r x 7 € {0,1}, and furthermore, z € S if, and only if, r x m = 1 for some
n € N. The semidecidable predicates have the expected properties: decidable
predicates are semidecidable, and the semidecidable predicates are closed under
conjunctions and existential quantification over N.
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In type 1 effectivity our notion of semidecidability coincides with the usual
one, while in type 2 effectivity the notion is known as “r.e. open subset”. In
a purely topological model, such as the continuous version of type 2 effectivity
“semidecidable” means “topologically open”. The interpretation in Set is trivial
because there every subset is semidecidable (even decidable) thanks to the law
of excluded middle.

3 Algebras

A signature X for an algebra is given by a list of function symbols f1, ..., f;. Each
f; has an arity, which is a non-negative integer. The set Term(X') of terms over
X is built inductively from variables x,y, z,..., and terms f(¢y,...,t,), where
f is a function symbol with arity n and t1,...,%, are terms. We assume that a
standard Godel numbering "—7: N — {x} + Term(X) of terms is givenﬂ

A Y-algebra A in a category C with finite products is given by an object |.A|
called the carrier of A, and for each function symbol f with arity n a morphism
fA . |A|" — |A|, called an operation. Each term t € Term(X) whose free variables
are among 1, ..., determines a morphism |A[¥ — |A|: a variable z; is the
i-th projection, while a term f(¢y,...,t,) is the composition of fA with the the
morphisms determined by t1,...,t,. A subalgebra of A is a Y-algebra B with
a mono B — A such that the operations in A restrict to operations in B. We
write B < A when B is a subalgebra of A.

If C and D are categories with finite products and F' : C — D a functor which
preserves finite products then a Y-algebra A in C is mapped by F' to a X-algebra
F(A) in D, where |F(A)| = F(|A|) and fF(4) = F(f4). The mapping preserves
valid equations in A, and also reflects them if F' is faithful.

A (first-order) formula ¢ over X' is a formula in first-order logic with terms
over Y. If A is a Y-algebra in C, where C is either Set or Asm, then we may
interpret such a ¢ as a statement about A: the terms are interpreted according
to A, while the logic is interpreted either in the standard set-theoretic way, as
given by Tarski, or using the realizability interpretation from Section We
write A Ec ¢ when ¢ is valid when so interpreted. We refer to interpretations
in Set as “classical” and those in Asm as “effective”. More generally the adjec-
tives “classical” and “effective” are used distinguish between the two settings.
For example, a “classical algebra” is an algebra in Set, while an “effective al-
gebra” is one in Asm. Similarly, a (classical) space is “classically complete” if
the formula expressing completeness is valid in Set, and an (effective) space is
“effectively complete” if the same formula is valid in Asm. Note however that
the exact interpretation of “effective” depends on the choice of the underlying
computational model.

8 The special value "n = « signifies that n is not a valid G6del code. This is not neces-
sary for enumeration of all terms, but we do need it when we consider enumerations
of closed terms, of which there may be none.
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3.1 Subalgebras generated by subassemblies

Suppose A is classical X-algebra, and consider a subset C' C | A| of the carrier.
Then there exists the least subalgebra Z < A such that C' C |Z|, namely the
intersection of all subalgebras that contain C. We say that 7 is generated by C
and denote it by (C) 4.

Now let A be an effective X-algebra and C — |.A| a subassembly of |A|. There
exists the least effective subalgebra (C)4 < A containing C as a subassembly.
One way of proving this is to work in the internal language of the realizability
topos RT(A, A#), where (C)4 is the intersection of all subalgebras of A that
contain the assembly C, just like in Set. A special case is the initial subalgebra
(D) 4 which is generated by the empty subassembly. It is always modest, even if
A is not, and is effectively enumerated by a realized map e : N — {x} + (0} 4
which is essentially the composition of the Gédel numbering of the closed terms
over Y with their interpretation in A.

3.2 Algebras characterized by their universal properties

When a classical algebra is characterized up to isomorphism by a universal prop-
erty, we may use the property to identify the corresponding effective algebra. It
turns out that we usually get the generally accepted “correct” computability
structure:

— The natural numbers N are the initial commutative semiring with unit. In
Asm this is the modest set N = (N, IFy) where 7 IFy n for each n € N.

— The initial commutative ring in Set are the integers Z, while in Asm it is the
modest set Z = (Z,lFz) where, for each m,n € N and k € Z, (m,n) Ikz k
when k =m —n.

— The field of fractions over the integers in Set are the rationals Q. In Asm
it is the modest set Q = (Q,lFg) where, for all k,m,n € N and ¢ € Q,
(k,m,m) kg ¢ when ¢ = (k —m)/n.

— The reals R are the Cauchy-complete archimedean ordered field. The coun-
terpart in assemblies is the modest set R = (R,IFg) where x IFg 2 when
x € A represents a fast Cauchy sequenceﬂ of rational numbers converging
toz,and R = {z € R|3x€ A.x IFg z}. Depending on the PCA A the set R
could consist just of the computable reals, or all reals, or all reals computable
with respect to an oracle, etc.

Unfortunately, such universal characterizations are not always available.

Apart from first-order formulas over a signature 3 we shall also consider more
general first-order formulas which additionally refer to the natural numbers N,
the integers Z, and the rationals Q. We call them extended formulas over the
signature X. When they are interpreted in Set, the symbols N, Z, Q receive
their usual meaning, whereas in Asm we interpret them as the corresponding
assemblies N, Z, and Q, as described above. An extended formula may not refer

9 A sequence (an)n is fast Cauchy if |am — an| < 27 ™0™ for all m,n € N.
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directly to the real numbers because Propositions [T] and [2] fail for formulas that
refer to the reals. An extended formula over X' which is also negative is called
extended negative formula over X.

3.3 Transfer of algebras from sets to assemblies

Every set S may be represented as a constant assembly VS = (S,lFys) where
r kg z holds for allr € A and z € S. In other words, in V.S every realizer realizes
every element. Every function f : S — T between sets S and T is realized as a
map Vf : VS — VT, for example by the realizer skk. This gives us a full and
faithful embedding V : Set — Asm.

The functor V preserves finite limits, and finite products in particular. There-
fore, V maps a X-algebra A in Set to a X-algebra VA in Asm. The mapping
preserves and reflects equations because V is faithful. Even more, it preserves
all negative formulas:

Proposition 1. Let A be a X'-algebra in Set and ¢ an extended negative formula
over X. Then A Ese ¢ if, and only if, VA Easm ¢.

A ——-dense subalgebra B < A in Asm is a subalgebra for which the mono
|B| — |A] is =—-dense. We may assume that |B| = |A| and that the mono
|B] — |A| is the identity map.

Proposition 2. Let A be an effective X-algebra and B < A a ——-dense subal-
gebra. Then A and B satisfy the same extended negative formulas over X.

The proofs of both propositions are standard exercises in performing an in-
duction over the structure of ¢. The deeper reason for their truth is the fact that
sets are precisely the sheaves for the double negation topology on the realizability
topos RT(A, A¥).

4 Premetric spaces

A metric algebra is a X-algebra A whose carrier is a metric space and the op-
erations are continuous maps. A metric algebra is complete if its carrier is a
complete metric space. We face a difficulty when we try to transfer metric alge-
bras from sets to assemblies: V maps a metric d : S xS — R to the realized map
Vd: VS x VS — VR, which is not a metric anymore because its codomain VR
is not the object R of real numbers in Asm. To overcome the problem we use
a formulation of metric spaces which does not directly refer to real numbers, is
classically equivalent to the usual metric spacesm and is constructively accept-
able. Such a notion, namely premetric spaces, was defined by Fred Richman [6].
We use a slight variation:

10 We allow infinite distances but that is inessential.
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Definition 1. A premetric space (X, d) is a set X with a ternary relation d C
X x X xQ satisfying the following conditions, where we write d(x,y) < q instead
1. if ¢ <0 then not d(z,y) < q,

2. d(z,y) <0 if, and only if, x =y,

3. if d(z,y) < q then d(y,x) < g,

4. if d(z,y) < q and d(y,z) <r then d(x,z) < q+r,

5. d(z,y) < q if, and only if, d(z,y) <r for allr > q.

Richman’s definition also requires that for all x,y € X there is a rational ¢ > 0
such that d(z,y) < g. We omit the requirement because we do not need it, and
because it is the only axiom which is not a negative formula.

Every metric space (M, d) is a premetric space (M, d") with d’' = {(z,y,q) €
X x X xQ | d(z,y) < ¢}. Classically, the converse holds if we allow infinite
distanceﬁ because the metric d may be recovered from the premetric d’ as
d(z,y) = inf{qg € Q| d'(x,y) < ¢}. Constructively however the infimum need
not exist.

The basic theory of premetric spaces parallels that of metric spaces. The
notions of completeness, continuity, density, etc., are all easily expressed in terms
of the premetric. In fact, the whole theory is constructively valid (even without
choice), as was shown by Richman [6]. Despite our allowing infinite distances,
the following theorem still holds constructively, and is therefore valid both in
Set and Asm.

Proposition 3. Let X be a premetric space and e : X — Y its completion, i.e.,
an isometry with a dense image into a complete premetric space Y. Then every
locally uniformly contmuouﬁ f: X — Z to a complete premetric space Z has
a unique locally uniformly continuous extension f:Y — Z along e.

An easy consequence of the theorem is that any two completions of a premetric
space are isometrically isomorphic.

When a premetric space (X,d) is transferred from Set to Asm by V, the
relation d C X x X x Q is mapped to the mono Vd — VX x VX x VQ, which is
——-stable. The axioms for premetric structure are extended negative formulas,
so by Proposition [1| they are preserved. This proves the following proposition:

Proposition 4. If (X,d) is a classical premetric space then (VX,Vd) is an
effective premetric space. Furthermore, (X,d) and (VX,Vd) satisfy the same
extended negative formulas.

Moreover, V preserves the completeness property, which follows easily from
the observation that the exponential assembly (VX)N is isomorphic to V(XV):

Proposition 5. A classical premetric space (X, d) is classically complete if, and
only if, (VX,Vd) is effectively complete.

11 With Richman’s extra axiom the correspondence between metric and premetric
spaces is exact, classically.

12°A map is locally uniformly continuous if it is uniformly continuous on every closed
ball.
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4.1 Complete subalgebras

When A is a classical complete premetric X-algebra we may ask whether every
subalgebra B < A is contained in the least complete subalgebra B < A. The
premetric closure |B| in |.A| is an obvious candidate. For it to be a subalgebra,
each operation & : |B|" — |B| must extend to a map 5 : @n — |B|, which
it does by Theorem [3| as long as the operations on B are locally uniformly
continuous. We have proved the following proposition.

Proposition 6. Let A be a classical complete X -algebra. The closure @ of the
carrier of a subalgebra B < A is the least complete subalgebra of A containing
B, provided the operations on B are locally uniformly continuous.

The argument which proved Proposition [f] is constructively valid. Its inter-
pretation in Asm gives the following effective version.

Proposition 7. Let A be an eﬁectivﬂ complete X'-algebra. The effective clo-
sure |B| of the carrier of a subalgebra B < A is the least effective complete
subalgebra of A containing B, provided the operations on B are effectively locally
uniformly continuous.

We remark that the complete subalgebra B generated by B is modest if B is
modest, even if A is not.

5 Main Theorems

The results of the previous sections give us a method for finding canonical effec-
tive subalgebras of classical algebras. Let A be a classical premetric X-algebra.
In general there will be many effective subalgebras B < VA, each carving out
a different piece of A with its own effective structure. Our first theorem gives
conditions which severely cut down the number of possibilities. Define the rela-
tion d(z,y) < q for z,y € |A| and ¢ € Q by d(z,y) < ¢ < FreQ.d(z,y) <
rAr<gq.

Theorem 1. Suppose A is a classical premetric X-algebra in which the initial
subalgebra (D) 4 is classically dense. Up to isomorphism, there is at most one
effectively complete subalgebra B < VA on which the relation d(z,y) < q is
semidecidable.

We omit the proof, and just note that B, if it exists, is the effective completion
of the initial subalgebra (()v 4.

When the initial subalgebra ({}) 4 is not dense, Theorem [I| cannot be applied.
Quite often this can be fixed with a judicious addition of new constants and
operations. For example, the initial subring of the ring C[0,1] of continuous
real functions on the closed unit interval is the ring of integers (embedded as

13 To be precise, we are talking about an “effectively complete effectively premetric
effective X-algebra”.
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constant functions), which is not dense. If we adjoin the identity function and
1

the constant function 5 as primitive constants, the initial subalgebra will be the
ring of polynomials whose coefficients are dyadic rationaISE which is dense by
the (classical) Stone-Weierstrafl theorem.

Another way to deal with non-dense initial subalgebra is to replace (P) 4 in
Theorem [I] with a chosen dense subalgebra D < A, but then the statement is
that there is at most one effectively complete subalgebra of V.A containing VD
for which d(x,y) < ¢ is semidecidable.

The next theorem complements Theorem [1| by giving conditions for existence

of subalgebras.

Theorem 2. Let A be a classical complete premetric X-algebra. Suppose the
relation d(z,y) < q is semidecidable on (D)v.4 and the operations of (B)v.a
are effectively locally uniformly continuous. Then VA has an effective complete
subalgebra on which the relation d(x,y) < q is semidecidable.

Again, we omit the proof. We know from the previous theorem that the desired
subalgebra must be the completion of ((})v 4, from which a concrete represen-
tation can be computed: because ((}}v 4 is essentially represented by a Godel
numbering of closed terms, its completion is represented by sequences of (Gddel
codes of) closed terms that are fast Cauchy.

6 Applications

In this section we apply the results to two common scenarios.

6.1 Discrete premetric spaces

The simplest kind of complete premetric algebras are the discrete ones. Let A
be a classical X-algebra and define the discrete premetric on |A| by

dlz,y) <q <= (¢<1 = z=y),

which of course corresponds to the metric that takes on only values 0 and 1. In the
discrete premetric every set is complete and every map is uniformly continuous.
Therefore, half of the conditions in Theorems [I] and [2] are trivially satisfied.
Furthermore, a discrete premetric is semidecidable on B < VA if, and only if,
equality is semidecidable on B, because z = y <= d(z,y) < 1 and d(z,y) <
¢ < (¢ >1Vz=y). Thus we obtain the following result.

Proposition 8. Suppose A is a finitely generated classical X'-algebra. Up to iso-
morphism, there is at most one effective structure on A for which the operations
and the gemerators are effective, and equality is semidecidable. Furthermore, if
there is such an effective structure, it is isomorphic to the effective subalgebra
({a1,...,an})va of VA generated by the generators ay,...,an for A.

14 A dyadic rational is one of the form n/2F.
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More precisely, the first part of the proposition states that there is at most one
realizability relation IF4 on the set |A| which turns the classical algebra A into
an effective on such that equality is semidecidable. The second part gives an
explicit description of the effective structure, and also implies that the resulting
assembly is modest.

In the context of type 1 effectivity Proposition 8| was first proved by Mal’cev,
see [7] and [8, Theorem 4.1.2]. He actually considered two versions, one with gen-
eral recursive functions and another with partial recursive functions. Our result
corresponds to the partial recursive case because all partial recursive functions
are representable in a PCA.

6.2 The real numbers

The real numbers form a classical ordered field, and a classical complete pre-
metric space with the usual premetric d(z,y) < ¢ <= |z —y| < ¢ A
slight complication is division because it is a partial operation. The journal
version of this extended abstract will include a proper treatment of partial op-
erations. For now, we circumvent division by viewing the real numbers as a ring
R = (R,0,1, %, +,—, X) with a primitive constant % The initial subalgebra is
the ring of dyadic rationals, which is dense in R. The relation |z — y| < ¢ is
semidecidable, even decidable when x and y are dyadic rationals and ¢ a ratio-
nal. The operations are easily seen to be effectively locally uniformly continuous.
Thus the conditions of both main theorems are satisfied. Up to isomorphism
there is exactly one effectively complete effective subring R < VR on which
the relation d(z,y) < ¢ is semidecidable. We may replace semidecidability of
d(x,y) < g with semidecidability of the strict order relation z < y because
d(z,y) <q < —q<z—y<qand

T <y =
Jq,r€Q.3keN. (d(x,q) <27Fad(y,r) <27FAg+27F2 <)

The dyadic rationals have approximate division: for all k € N and dyadic ra-
tionals a and b # 0 there exists a dyadic rational ¢ such that d(a,bc) < 27F.
The completion of a premetric ring with approximate division is always a field,
constructively speaking. By putting all these observations together we get the
following result.

Proposition 9. Up to isomorphism, there is exactly one effectively complete ef-
fective subfield of the real numbers for which the strict linear order is is semide-
cidable.

When the proposition is specialized to type 2 effectivity it gives Hertling’s
result [2] about type 2 representations of reals, while the interpretation in type 1
effectivity corresponds to a result of Moschovakis [I].

15 This means that the operations and generators are realized by elements of A¥.
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7 Conclusion

The relation d on a premetric space (X, d) induces a uniform structure on X
whose (basic) entourages are E, = {(z,y) € X x X | d(z,y) < ¢}, for rational
q > 0. This suggests that one should look for a generalization to uniform spaces.
We would first need a suitable constructive treatment of uniform spaces and
their completions.

Another direction which might be worth investigating follows the work of
Blanck et al. [9] who formulated general results about stability of effective al-
gebras in type 1 effectivity. Their theorems do not translate into our settings
easily, because they assume a structure which is not metric, but rather like that
of sequential or limit spaces. Again, to incorporate such results we would require
a constructive theory of limit spaces and their completions.
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