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Abstract. We prove the correctness of a formalised realisability inter-
pretation of extensions of first-order theories by inductive and coinduc-
tive definitions in an untyped A-calculus with fixed-points. We illustrate
the use of this interpretation for program extraction by some simple ex-
amples in the area of exact real number computation and hint at further
non-trivial applications in computable analysis.

1 Introduction

This paper studies a realisability interpretation of an extension of first-order
predicate logic by least and greatest fixed points of strictly positive operators.
The main results are the Soundness Theorem for this interpretation and the
Adequacy Theorem for the realisers with respect to a call-by-name operational
semantics and a domain-theoretic denotational semantics. Both results together
imply the Program FExtraction Theorem stating that from a constructive proof
one can extract a program that is provably correct and terminating.

In order to get a flavour of the system we discuss some examples within the
first-order theory of real closed fields with the real numbers as intended model.
In the first example we define a set N of real numbers (inductively) as the least
set satisfying

N(0) AVz (N(z) — N(z + 1))

More formally, N:= pX{z |z =0V 3Iy(x =y+ 1A X(y))}, i.e. Nis the least
fized point of the operator mapping a set X to the set {z | z = 0V Jy(x =
y+ 1A X(y))}. Clearly, in the intended model N is the set of natural numbers.

For the second example, set I := [-1,1] = {# | =1 < z < 1}, SD :=
{0,1, -1}, and av;(z) := (x + i)/2. Define Cy (coinductively) as the largest set
of real numbers satisfying

Va (Co(z) — Fi € SD,y € I (z = av;(y) A Co(y)))

Formally, Cy := vX.{x | 3i € SD,y € I(x = av;(y) A X(y))}, i.e. Cy is the
greatest fized point of the operator mapping X to {x | 3. € SD,y € I(x =
av;(y) A X (y))}. Classically, one easily shows that Cy = I. Hence the coinductive
definition seems to be unnecessary. However, the point is that in order to prove
constructively Co(z) for & € I, one needs the extra assumption that there is a
rational Cauchy sequence converging to x, and the (coinductive) proof gives us
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a (coiterative) program transforming the Cauchy sequence into a signed digit
representation of x.

Our third example extends the previous one to unary functions. Add a new
sort for real functions, and let I' denote the set of real functions mapping I to I.
Define a set of real functions by

Cp:=vFuG{g|3ieSD,fel (g=avio fAF(f))VVieSDG(goav;)}

One can show that C; coincides with the set of functions in I' that are (con-
structively) uniformly continuous on I. Moreover, a constructive proof of Cy(f)
contains a program that implements f as a non-wellfounded tree acting as a
(signed digit) stream transformer similar to the structures studied by Ghani,
Hancock and Pattinson [GHP06]. More precisely, this interpretation is the com-
putational content of a constructive proof the formula Vf (Cy(f) — Va (Co(z) —
Co(f(x)))), which is a special case of a constructive composition theorem for
analogous predicates C,, of n-ary functions. Details as well as concrete applica-
tions with extracted Haskell programs will be worked in a forthcoming publica-
tion.

The realisability interpretation we are going to study is related to interpreta-
tions given by Tatsuta [Tat98] and Miranda-Perea [MP05]. We try to point out
the main similarities and differences. Like Tatsuta, we use untyped programs
as realisers that allow for unrestricted recursion. The necessary termination
proof for extracted programs (which seems to be missing in Tatsuta’s paper)
is obtained by a general Adequacy Theorem relating the operational with a
(domain-theoretic) denotational semantics. Miranda extracts typed terms and
uses the more general “Mendler-style” (co)inductive definitions [Men91] which
extract strongly normalising terms in extensions of the second-order polymor-
phic A-calculus or stronger systems [Mat01,AMUOQ5]. Tatsuta studies realisabil-
ity with truth while we omit the “truth” component. From a practical point
of view the most important difference to Tatsuta’s interpretation is that we
treat quantifiers uniformly in the realisability interpretation (as Miranda-Perea
does): MrVz A(z) is defined as Vz (M r A(x)), but not Vo (M zr A(zx)), and
Mr 3z A(x) is defined as 3z (M r A(z)), but not mo (M) r A(71(M)). In general,
a realiser never depends on variables of the object language and does not produce
output in that language, i.e. the object language and the language of realisers
are kept strictly separate. Realisers are extracted exclusively from the “propo-
sitional skeleton” of a proof ignoring the first-order part which matters for the
correctness of the realisers only. This widens the scope of applications because
it is now possible to deal with abstract structures that are not necessarily “con-
structively” given. For example the real numbers in our examples above, were
treated abstractly (i.e. axiomatically) without assuming them to be constructed
in a particular way. The ignorance w.r.t. the first-order part can also be seen as a
special case of the interpretations studied by Schwichtenberg [Sch09] and Hernest
and Oliva [HO08] which allow for a fine control of the amount of computational
information extracted from proofs.

We state most of the results without proof. Full proofs will be given in an
extended version of this paper.
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2 Induction and coinduction

We fix a first-order language L. Terms, r,s,t ..., are built from constants, first-
order variables and function symbols as usual. Formulas, A, B,C' ..., are s = t,
P(t) where P is a predicate (predicates are defined below), AAB, AVB, A — B,
Vo A, dx A. A predicate is either a predicate constant P, or a predicate variable
X, or a comprehension term Axz.A (sometimes also written {x | A}) where A
is a formula and x is a vector of first-order variables, or an inductive predicate
uX.P, or a coinductive predicate v.X.P where P is a predicate of the same arity
as the predicate variable X and which is strictly positive in X, i.e. X does not
occur free in any premise of a subformula of P which is an implication. The
application, P(t), of a predicate P to a list of terms ¢ is a primitive syntactic
construct, except when P is a comprehension term, P = {x | A}, in which case
P(t) stands for Aft/z].

It will sometimes be convenient to write € P instead of P(x) and also
P C Q for Va (P(x) — Q(x)) and PN Q for {x | P(x) A Q(x)}, etc. We also
write {¢ | A} as an abbreviation for {z | Jy (x = tAA)} where z is a fresh variable
and y = FV(¢) N FV(A). Furthermore, we introduce operators @ := AX.P (or
P(X) := P), where P is strictly positive in X, and then write ¢(Q) for the
predicate P[Q/X] where the latter is the usual substitution of the predicate Q
for the predicate variable X. We also write y® and v® for 4 X.P and v X.P. For
convenience, we also write A(X) to distinguish a particular predicate variable
X in A, and A(P) for the substitution of every free occurrence of X in A by
P. A formula, predicate, or operator is called non-computational, if it contains
neither free predicate variables nor the propositional connective V. Otherwise it
is called computational.

The proof rules are the usual ones for intuitionistic predicate calculus with
equality. In addition, we have the axioms

Closure &(u®) C ud Induction @(Q)C Q — ud C Q
Coclosure v® C &(vd) Coinduction Q@ C ¢(Q) — Q C vP

In addition we allow any axioms expressible by non-computational formulas that
hold in the intended model. In particular, it is possible to add all classical non-
computational tautologies as axioms such as, for example, 3x A < —Vz —A for
non-computational A. We write I' - A if A is derivable from assumptions in I’
in this system. If A is derivable without assumptions we write - A, or even just
A. We define falsity as | := pX.X where X is a 0-ary predicate variable (i.e. a
propositional variable). From the induction axiom for L it follows immediately
1 — A for every formula A. The following basic facts are easy to prove.

Lemma 1. (o) If I'(X) F A(X), then I'(P) + A(P).

(b)) f ' d(X) CU(X), then ' u® C ¥ and I'-vd C V0.
(¢c) PCQ— P(P)CP(Q).

(d) o(ud) = p® and S(vP) = vd.
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3 Realisability

The realisers of formulas are terms of a LISP-like untyped A-calculus with pair-
ing, injections and recursion (which in Sect. 5 will however receive a call-by-name
operational semantics). Program-terms, M, N, K, L, R... (terms for short) are
variables x,y, z, ..., the constant (), and the composite terms (M, N), inl(M),
inr(M), Ae.M, m;(M) (i = 1,2), case M of {inl(z) — L; inr(y) — R}, (M N),
recx. M. The free variables of a term are defined as usual (the constructs Az,
recz and inl(xz) —, inr(z) — in a case term bind the variable z). The usual
conventions concerning bound variables apply.

Of particular interest are closed terms that are built exclusively from () by
pairing (-, ) and the injections inl(-) inr(-). We call these terms data and denote
them by d,e,.... Roughly speaking, data stand for themselves and will in any
reasonable denotational semantics coincide with their value. In Section 5 we
will study such a denotational and also an operational semantics for arbitrary
program terms and prove an Adequacy Theorem.

In order to formalise realisability we need a system that can talk about math-
ematical objects and realisers. Therefore we extend our first-order language £ to
a language r(£) by adding a new sort for program terms. All logical operations,
including inductive and coinductive definitions, are extended as well. All axioms
and rules for £, including closure, induction, coclosure and coinduction and the
rules for equality, are extended mutatis mutandis for r(£). In addition, we have
as extra axioms the equations

case inl(M) of{inl(z) — L; inr(y) — R} = L[M/x] similarly for inr(M),
mi((My, M3)) = M;, (Ae.M)N = M[N/z], recx.M = Mrecx.M/x]

The realisability interpretation assigns to every L-formula A a unary r(L)-
predicate r(A). Intuitively, for any program term M the r(L)-formula r(A)(M)
(sometimes also written M r A) states that M “realises” A. The definition of r(A)
is relative to a fixed one-to-one mapping from L-predicate variables X to r(L)-
predicate variables X with one extra argument place for program terms. The
definition of r(A) is such that if the formula A has the free predicate variables
X1,...,X,, then the predicate r(A) has the free predicate variables X1,..., X,.
Simultaneously with r(A4) we define a predicate r(P) for every predicate P,
where r(P) has one extra argument place for program terms. In the definitions
we take special care of non-computational formulas and predicates in order to
get optimised realisers. If A is non-computational, then r(A4) = {() | A}. If P is
non-computational, then r(P) = {((),z) | P(x)}. In all other cases:

r(P(t) = {z | x(P)(x, )} r(A— B)={f|f(r(A) Sr(B)}
r(AV B) = inl(r(A)) Uinl(r(B)) r(AAB) = (r(A),r(B))
r(Jy A) ={z | Iy (c(A)(x))} r(vy A) = {z | vy (c(A)(z))}
r(X) =X r({e | A}) ={(y,2) | r(A) ()}
r(uX.P) = pX.r(P) r(vX.P) = vX.r(P)

If one uses for operators ® = AX.P the notation r(®) := AX.r(P) one can
shorten the last two clauses to r(u®) = pr(®) and r(vP) = vr(P).
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We call a L-formula a data formula if it contains no free predicate vari-
ables and every subformula which is an implication or of the form v®(t) is
non-computational. We also define inductively a unary predicate Data by

Data = {()} Uinl(Data) U inr(Data) U (Data, Data)
Lemma 2 (Data formulas). r(A) C Data for every data formula A.

Proof. One shows more generally: if A is a formula such that every subfor-
mula which is an implication or of the form v@(t) is non-computational, then
r(A)(Data’) C Data, where r(A)(Data’) is obtained from r(A) by replacing

every n + l-ary r(L)-predicate variable X by the predicate Data’ := {(x,y) |
Data(z)}. The easy proof is by induction on the structure of A.

Theorem 1 (Soundness). From a closed derivation of a formula A one can
extract a program term M and a derivation of r(A)(M).

We prove the Soundness Theorem in the next chapter.
Let us see what we get when we apply realisability to our examples from the
Introduction. In the first example, r(N) is the least relation such that

r(N) = {(inl(()), 0)} U {(inr(n), z + 1) [ r(N)(n, )}

Hence, we have for a data d and z € R that drN(z) holds iff z is a natural
number and d = z := inr®(inl(()))), i.e. d is a unary representation of .

In the second example we first note that the formula SD(¢) is shorthand for
the formula i =0V i=1Vi= —1. Hence for suitable data d; (i € SD) we have
that r(Cyp) is the largest predicate such that

r(Co) = {({di, a),avi(y)) | i € SD, y € I, x(Co)(a, y)}

Hence, semantically, r(Co)(a,y) means that a = ag, a1, ... is an infinite stream
of digits a; € {0,1,—1} such that y = X227 0FY x q;.
In the third example we have

r(Cy) =vE . uG. {({d;,t),av;0 f) | i€ SD, fel', F(t, f)} U
{({to,t1,t-1), f) | Vi € SDG(t;, g o av;)}

One sees that a realiser of Ci(f) is a non-wellfounded tree with two kinds of
nodes: “writing nodes” labelled with (a representation of) a signed digit, which
means the algorithm writes that digit to the output without reading the input
stream, and “reading nodes” where the tree branches into three subtrees meaning
that the algorithm reads the first digit of the input stream and continuous with
the branch corresponding to the digit read and the tail of the input stream. Due
to the inner “ué” infinitely many writing nodes occur on each path through the
tree ensuring that in the limit an infinite output stream is produced.
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4 Proof of the Soundness Theorem

The main task in proving the Soundness Theorem (Thm. 1) is to define the
realisers of induction and coinduction and to prove their correctness.

We define program terms mapy 4, mapxp, Itsx x . p, and Coitgy x . p,
where X is a predicate variable, A is formula and P is a predicate, both strictly
positive in X. In Lemma 6 we will show that mapy p realises the monotonic-
ity of P w.r.t. X. The terms Itg, x . » and Coitg, x . » will be used to realise
induction and coinduction. In [MP05] the iterators and coiterators are given as
constants which expect map-terms as extra arguments, and the property stated
in Lemma 6 is an assumption in the Soundness Theorem.

Here, the terms mapy 4, map X Itsx x . p, and Coitgy x . p are defined by
recursion on the structure of A and P. We write M o N as an abbreviation for
Ar.M(N z) where z is fresh. mapy 4, = mapyp = AfAzr.x if X is not free in
A or P. Otherwise:

mapx p) = mMapyp

mapx anp = AfAz. (mapx 4 f (m1(z)), mapx pf (m2(2)))

mapy 4,5 = AfAT. case z of {inl(y) — mapy 4 fy; inr(z) — mapy p fz}

mapy 4_,p = AfAg.mapypfog

mapx (y|A} = Mapx 4
mapy x = Af-f

mapy ,yp = Af . Itaxy p(mapxpf)

mapy ,yp = Af . Coitixy p(mapypf)
Itax x . p = As.Tecg.somapy pg

Coithx x .p = As.recg. mapxpg o s

Lemma 3. (a) Itscx . ps = somapy p(Itac x . ps)
(b) Coitax x . ps = mapy p(Coitsy x . ps) o s

(c) mapyx ,ypg = mMapxpg o maPY,P(maPX,MY.Pg)
(d) mapy ,y.pd = maPY,P(mapx,yy.PQ) omapypg

Proof. Easy calculation using the equational axioms for the calculus.

Lemma 4 (Substitution). r(?)(r(Q)) = r(®(Q)) for every operator ¢ and
predicate Q.

Proof. Straightforward induction on the (syntactic) size of .

In the next lemmas we consider predicates in the language r(£) whose first
arguments range over predicate terms. The following definitions will be used:

Pof={lx,y) | (fz,y) eP} [xP:={(fz,y)|(z,y) €P}

Clearly, (Po f)og=Po(fog) and fx(g*P) = (f*g)*P. The rationale
for the first of the two definitions is that r(P C Q) = {f | r(P) C r(Q) o f}.
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and the Induction Axiom is an implication between inclusions of predicates. The
following easy lemma shows that the two definitions are adjoints. This will allow
us to treat induction and coinduction in a similar way.

Lemma 5 (Adjunction). Q CPof & fxQCP

Lemma 6 (Map). Let & be an operator in the language L. and X a fresh
predicate variable. Then mapx g x) realises the monotonicity of , that is

mapy ¢x) T (PCQ—o(P)C Q)

for all L-predicates P and Q. By the definition of realisability and the Adjunction
Lemma this is equivalent to each of the following two statements about arbitrary
r(L)-predicates P and Q of appropriate arity and all f:

(a) PC Qo f—r(P)(P)Cr(P)(Q)cmapy 4 x)f
(b) f+P CQ—mapxgx)f*r(®)(P) Cr(2)(Q)

Furthermore, setting in (a) P:= Qo f and in (b) Q:= f *P one obtains

(¢c) x(@)(Qo f) C r(P)(Q) c mapx 4(x)f
(d) mapy g(x)f *r(®)(P) Cr(®)(f *P)

Proof. We show a slight generalisation of (a). Let ¢ be an operator of n + 1 ar-
guments, and X,Y fresh predicate variables. Let @ = O, ..., 9, be predicates
in the language r(£). Then for all f, P, Q

PCQof—r(P)(P,Q) Cr(P)(Q, Q) omapyqx)f

The proof is by induction on the structure of #(X,Y"). In the proof we allow
ourselves to switch between (a) and (b) whenever convenient. We only carry out
in detail the difficult cases, namely when @ is defined by induction or coinduction.

Case (XY ) = pZ.8y(X,Y,Z). Then r(®)(X,Y) = pZ.x(d)(X,Y, 2).

Assume P C Qo f. Setting R :=r(®)(Q, Q) = 12 .x(Po)(Q, Q, Z), we have to
show pZ.r(®9)(P, Q,Z) C Romapy s(x,y)f- We induct on uZ.x(®0)(P, Q, 2).

Hence, we have to show r(®)(P, Q,R omapy ¢x,y)f) € Romapyx,y)f-

r(®0)(P,Q,Ro mapx,¢(X,Y)f)
ih.(c)
C  r(®)(P,Q,R)omapy4,(x,v,z)(MapPxqsx v f)

i.h.(a)
- r(0)(Q,Q,R)o maPX,qsg(X,Y,z)f omapyze,(x,vy,z) (mapX,qf'(X,Y)f)
L. 3 (¢)
=" 1(®)(Q,Q,R)o mapX,@(X,Y)f
= I'(@())(Q, Qv /,(,ZI‘(@O)('P7 Qv Z)) 0 mapX,@(X,Y)f
Fixe:d P.

HZ-T(@O)(Qa Q, Z) © mapX,@(X,Y)f

= Romapyxgx v/



56 Ulrich Berger

Case B(X,Y) = vZ.Py(X,Y,Z). Then r(®)(X,Y) = vZ.x(d)(X,Y,Z).
Obviously, it is now more convenient to show (b). Assume f*P C Q. Setting R :=
r(®)(P, Q) = vZ.r(®o)(P, Q,Z) we use coinduction to show mapy g(x y)f *

R CvZ.x(P)(Q, Q, Z). The proof is exactly dual to the inductive proof above
(using the i.h. in the form (d) and (b)).

Proof of the Soundness Theorem (Thm. 1). As usual, one shows by in-
duction on derivations the following more general statement: From a derivation
Biy,...,B, F A one can extract a program term M with free variables among
X1,..., 2y such that v(By)(z1),...,v(Bn)(x,) F r(A)(M). The only interesting
cases are induction and coinduction.

Induction. By the Substitution Lemma, we have

r(P(Q) € Q— pud C Q) ={f | Vs (r(®)(r(Q)) Cr(Qos — ur(®) Cr(Q)ofs)}
Hence, in order to show that It ) (=: M) realises induction, we assume
r(®)(r(Q)) Cr(Q)os

and show pr(®) C r(Q)olIt,,)s. We use induction on ur(®), which reduces the
problem to showing r(®)(r(Q) o It,,)s) C r(Q) o Ity (a)s.

Map Lemma (c)

r(®)(r(Q) o Tty (q))s < r(®)(r(Q)) o map,)(Ity(a)s)
assumption
- I‘(Q) o somap, ) (Ittp(a)s)

Lemma 3 (a)

r(Q)olt, s

Coinduction. Similar, using the Map Lemma (d) and Lemma 3 (b).

5 Semantics of program terms

Now we study a call-by-name operational semantics of program terms which al-
lows us to use the program terms extracted from a formal proof to compute data.
As an intermediate step we employ a domain-theoretic denotational semantics.
The denotational semantics is of independent interest since it directly reflects
the intuitive mathematical meaning of program terms.

By a domain a Scott-domain, i.e. an algebraic, countably based, bounded
complete, dcpo [GHKT03]. Note that every domain has a least element | w.r.t.
the domain ordering C. Let D be the least solution of the domain equation

D=14+D+D+DxD+[D— D]

where 1 is the one-point domain {()}, and +, x, [ — -] denote the usual domain
operations, separated sum, cartesian product, and continuous function space (of
course, the domain equation holds only “up to isomorphism”). Hence, every
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element of D is of exactly one of the following forms: L, (), inl(a), inr(a), (a,b),
abst(f), where a,b € D and f € [D — D]. It follows from standard facts in
domain theory that every program term M defines in a natural way a continuous
function [M] : DV& — D. For example, [Ax.M]¢ = abst(f) where f(a) =
[M]&[x — a] and [rec 2. M€ is the least fixed point of f. Furthermore, if [M]¢ =
abst(f), then [M N]¢ = f([N]¢), otherwise the result is L.

If Ax is a set of non-computational L-axioms we denote by r(Ax) the system
of r(£)-axioms consisting of the axioms in Ax together with the extra axioms
introduced in Sect. 3. If M is a model of Ax, then we denote by r(M) the obvious
expansion of M to a model of r(Ax) using the definition above of the value of
a program term. Again, it follows from standard results in domain theory that
r(M) satisfies the axioms for program terms and hence is indeed a model of
r(Ax). Note that in this model the interpretation of the predicate Data defined
in Sect. 3 is the least subset [Data] of D such that

[Data] = {()} Uinl([Data]) U inr([Data]) U ([Data], [Data])

Hence, if Data(M) is provable, then [M] € [Data].

Now we introduce the operational semantics of program terms. A closure is
a pair (M, n) where M is a program term and 7 is an environment, i.e. a finite
mapping from variables to closures, such that all free variables of M are in the
domain of 7. Note that this is an inductive definition on the meta-level. A value
is a closure (M,n) where M is an intro term, i.e. a term of the form (), or
inl(My), or inr(My), or (My, Ma), or A\x.My. We let ¢, ¢/, ... range over closures
and v,v’, ... range over values. We inductively define the relation ¢ — v (big-
step reduction):

n(x) — v

(z,m) — v
(M,n) — (inl(Mo), ") (Lynlz— (Mo, n)]) — v

(case M of {inl(z) — L; inr(y) = R},n) — v
(M, n) — (M1, Ms),n') — (Mi,n) — v
mi(M) — v
(M,n) — (A\x.Mo,n") (Mo, ' [x — (N,n)]) — v
(M N,n) —wv

(M,n[z — (recxz.M,n)]) — v
(recx. M,n) — v

v—r v

sim. inr(Mp).

Finally, in order to compute data we need a ‘print’ relation ¢ = d between
closures ¢ and data terms d.
c— (0,n) ¢ — (inl(M),n)  (M,n) =d
c=() ¢ = inl(d)
c — ((My, Mz),n)  (My,n) = da (Mz,n) = dy
c — <d1, d2>

sim. inr(M)
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The inductive definition of ¢ = d gives rise to an algorithm computing d from
c in a call-by-name fashion. It follows that whenever M — d, then in a call-
by-name language such as Haskell the evaluation of the program corresponding
will terminate with a result corresponding to d.

To every closure ¢ we assign a term ¢ by ‘flattening’, i.e. removing the struc-
ture provided by the nested environments: (M,n) = Mn(x)/z | x € dom(n)].

Lemma 7 (Correctness).

(a) If c — v, then € =T is provable.
(b) If c = d, then ¢ = d is provable.

Theorem 2 (Adequacy). If [M] = d, then (M,)) = d.

The proof of the Adequacy Theorem is uses a technique that has been used for
a similar purpose in [Win93] and [CS06]. It can be viewed as transformation of
Plotkin’s Adequacy Theorem for PCF [Plo77] to the untyped setting. To carry
out the proof, we first exploit the algebraicity of the domain D. Every element of
D is the directed supremum of compact elements, which are generated at some
finite stage in the construction of D. Let Dy be the set of compact elements of
D. There is a rank function rk(-) : Dy — N satisfying:

(rk1) The images of the injections inl(-),inr(-), and the pairing function (,-) are
compact iff their arguments are. Injections and pairing increase rank.

(rk2) If abst(f) is compact, then for every a € D, f(a) is compact with rk(f(a)) <
rk(abst(f)), and there exists a compact ag C a with rk(ag) < rk(abst(f))
and f(ao) = f(a).

These properties allow us to define for every compact a a set Cl(a) of closures,
by recursion on rk(a): Cl(L) is the set of all closures, otherwise

CI(() ={c|Tn(c—(0.m)}
Cl(inl(a)) = {c| I(M,n) € Cl(a) (¢ — (inl(M),n))}
Cl(inr(a)) = {c| I(M,n) € Cl(a) (¢ — (inr(M),n))}
Cl((a1,az2)) = {c | IM1, Ma,n ((M1,n) € Cl(ar) A (Mz2,n) € Cl(az) A

— ((M1, M3),n))}
Cl(abst(f)) = {c| Jz, M,n(c — (Az.M,n) AVa € Dy (rk(a) < rk(abst(f))
— V' € Cl(a) (M,n[z — ]) € Cl(f(a))))}

Alternatively, one could use Pitt’s method [Pit94] to define similar “candidate”
sets. Using (rk1) and (rk2) one can prove:

Lemma 8. (a) If a,b are compact with a C b, then Cl(a) 2 CI1(b).
(b) ¢ € Cl(a) iff there exists a value v with ¢ — v and v € Cl(a).
(c) If c € C1(d), where d is a data, then c = d.

In the following we write n € C1(§) if for all z € dom(n), &(z) is compact and

n(z) € CL(¢(x)).
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Lemma 9 (Approximation). If n € Cl(§) and a is compact with a C [M]E,
then (M,n) € Cl(a).

Proof. Let [M]"¢ denote the n-th stage in the definition of [M]¢. Hence, [M]°¢ =
1 and e.g. [Az.M]""1¢(a) = [M]™E[— al, e.t.c. Since the [M]"¢ form an in-
creasing chain in D with [M]€ as its supremum, it follows that if a is compact and
a C [M]¢, then a T [M]"€ for some n. Hence, it is enough to show by induction
on n that if n € C1(§) and a is compact with a C [M]™¢, then (M,n) € Cl(a).

Proof of the Adequacy Theorem (Thm. 2). Assume [M] = d for some data
d. Since d is compact, it follows, by the Approximation Lemma, (M, () € Cl(d).
Hence (M, )) = d, by Lemma 8 (c).

Theorem 3 (Program extraction). From a proof of a data formula A one
can extract a program term M with the property that (M,0) = d for some data
d provably realising A, i.e. v(A)(d) is provable.

Proof. By the Soundness Theorem, we obtain from a proof of A a program term
M and a proof of r(A)(M). By Lemma 2, Data(M) is provable and therefore true
in D, ie. [M] = d for some data d. By the Adequacy Theorem, (M, ()) = d,
and by Lemma 7, M = d is provable. It follows that r(A)(d) is provable.

6 Conclusion and further work

In this paper we laid the logical and semantical foundations for the extraction of
programs from proofs involving inductive and coinductive definitions. The main
results where the Soundness Theorem for a realisability interpretation stating
that the extracted program provably realises the proven formula, and the Ad-
equacy Theorem stating that for data formulas the realisers can be computed
into canonical form via a call-by-name operational semantics.

We restricted ourselves to simple examples illustrating the method. More sub-
stantial applications are to be published in forthcoming papers. Strictly speak-
ing our results do not apply to loc. cit. because there realisers are typed (with
Haskell or ML style polymorphic types) while our realisers are untyped. We
plan to recast our results with typed realisers, which will probably technically
more complicated, but will have the advantage that the category-theoretic jus-
tification of induction and coinduction can be used to “derive” the realisability
interpretation. Moreover, this will allow for a direct interpretation of realisers as
programs in a call-by-name typed programming language such as Haskell.

A major piece of work that remains to be done is to implement the re-
alisability interpretation in an interactive theorem prover and carry out case
studies. We expect this to tie in nicely with recent work on implementations
of inductive and coinductive definitions and proofs [CDGO06,Ber07], exact real
arithmetic [MREQ7,GNSW07,EH02,Sch09], realisability [BS07], and functional
interpretation [HOO08].
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