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Abstract. A summability theorem of Landau, which classically is a
simple consequence of the uniform boundedness theorem, is examined
constructively.

Edmund Landau (1877–1938) is known for many contributions to mathemat-
ics. In this paper we examine his summability theorem,

If p, q are conjugate exponents—positive integers such that 1
p + 1

q =

1—and if a = (an)n>1 is a sequence in C such that
∑∞
n=1 anxn con-

verges for each x = (xn)n>1 in the Banach space lp, then a ∈ lq,

from the viewpoint of Bishop’s constructive mathematics (BISH)—that is,
mathematics developed with intuitionistic logic and a suitable set-theoretic foun-
dation such as the Aczel-Rathjen-Myhill CST [1, 13].

The standard functional-analytic proof goes as follows. For each x = (xn)n>1

in lp and each k define

sk(x) =

k∑
n=1

anxn.

Then

|sk(x)| 6

(
k∑

n=1

|an|q
)1/q ( k∑

n=1

|xp|p
)1/p

6

(
k∑

n=1

|an|q
)1/q

‖x‖p ,

from which it follows that sk is a bounded linear functional on lp with norm

‖sk‖ =

(
k∑

n=1

|an|q
)1/q

.
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Also, the sequence (sk(x))k>1 converges in C and so is bounded. Applying the
uniform boundedness theorem to the sequence (sk)k>1 , we now obtain M > 0

such that ‖sk‖ 6 M for each k. The partial sums of the series
∑∞
n=1 |an|

q
are

therefore bounded, so the series converges in R.
From a constructive viewpoint, there are two problems with this proof. First,

the uniform boundedness theorem in the form applied there is not the construc-
tive one. Secondly, boundedness of the partial sums of a series of positive terms
is not enough to ensure its convergence (see pages 60–64 of [5]). In fact, a Brouw-
erian example shows that Landau’s summability theorem in its classical form is
not constructively valid: under its hypotheses we cannot even prove, in general,
that an → 0 as n → ∞. To see this, take a as a binary sequence with at most
one term equal to 1, and consider the case p = q = 2. The series

∑∞
n=1 anxn

certainly converges for each x in l2. But if an → 0 as n → ∞, we can find N
such that an = 0 for all n > N ; by testing a1, . . . , aN , we can decide whether
an = 0 for all n or there exists n such that an = 1. Thus the statement

For each sequence a of complex numbers, if
∑∞
n=1 anxn converges for all

x ∈ l2, then a ∈ l2

implies the essentially nonconstructive limited principle of omniscience,

LPO: For each binary sequence a, either an = 0 for all n or else there
exists n such that an = 1 .

At this stage, it remains a possibility that, under the hypotheses of Lan-
dau’s theorem, the series

∑∞
n=1 |an|

q
has bounded partial sums. To explore this

possibility, we need some background information from constructive functional
analysis.

A linear functional φ on a normed space X is said to be normed (or
normable) if its norm

‖φ‖ = sup {‖φ(x) : x ∈ X, ‖x‖ 6 1‖}

exists. Every linear functional on a finite-dimensional Banach space is normed;
but if the same holds for an infinite-dimensional Hilbert space, then we can prove
LPO. The following is the constructive version of the representation theorem
for lp spaces ([3], Chapter 7, Theorem (3.25)).

Theorem 1. If p, q are conjugate exponents, then a bounded linear functional
φ on lp is normed if and only if there exists a (perforce unique) vector a ∈ lq
such that φ(x) =

∑∞
n=1 anxn for each x ∈ lp, in which case ‖φ‖ = ‖a‖q .

We shall also need the constructive uniform boundedness theorem:

Theorem 2. Let (Tn)n>1 be a sequence of bounded linear mappings from a Ba-
nach space X into a normed space Y, such that ‖Tn‖ → ∞ as n → ∞. Then
there exists x ∈ X such that the sequence (‖Tnx‖)n>1 is unbounded.
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Proof. See [6] (Corollary 6.2.12) or [14].

The next result follows from Theorem 7 of [8]. We include the proof here
to clarify the role played by the uniform boundedness theorem in our work, is
a general one with a corollary classically equivalent to Landau’s summability
theorem.

Theorem 3. Let (Tn)n>1 be a sequence of bounded linear mappings of a sepa-
rable Banach space X into a normed space Y, converging pointwise to a linear
mapping T : X → Y. Then T is sequentially continuous.

Proof. Let (xn)n>1 be a sequence converging to 0 in X, and let ε > 0. By
Ishihara’s tricks [8] (Lemma 2), either ‖Txn‖ < ε for all sufficiently large n
or else ‖Txn‖ > ε/2 for infinitely many n. It suffices to rule out the latter
alternative. To that end, we may suppose that ‖Txn‖ > ε/2 and ‖xn‖ < 1/n for

each n. Then yn = ‖xn‖−1 xn is a unit vector such that ‖Tyn‖ > nε/2. Since
Tnx → Tx for each x ∈ X, we can construct inductively a strictly increasing
sequence (nk)k>1 of positive integers such that ‖Tnk

yk‖ > kε/2 for each k.
Applying the uniform boundedness theorem, we obtain a unit vector y ∈ X such
that the sequence (‖Tnk

y‖)k>1 is unbounded. This is absurd, since Tnk
y → Ty

as k →∞.

Corollary 1. Let p be a positive integer, and a a sequence of complex numbers
such that

f(x) =

∞∑
n=1

anxn (1)

converges for each x ∈ lp. Then f is a sequentially continuous linear functional
on lp.

Proof. Noting that

fk(x) =

k∑
n=1

anxn

defines a normed, and hence sequentially continuous, linear functional on X with

‖fk‖ =

(
k∑

n=1

|ak|q
)1/q

,

we apply Theorem 3 with X = lp.

Observe that the linear functional f in this corollary is continuous/bounded
if and only the partial sums of the series

∑∞
i=1 |ai|

q
are bounded. Indeed, if f

has a bound c > 0 and k is any positive integer, then, taking

x =
(
a∗1 |a1|

q−2
, . . . , a∗k |ak|

q−2
, 0, 0, . . .

)
,
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we obtain

k∑
n=1

|an|q =

k∑
n=1

anxn = f(x)

6 c ‖x‖p = c

(
k∑

n=1

∣∣∣a∗n |an|q−2∣∣∣p
)1/p

= c

(
k∑

n=1

|an|p(q−1)
)1/p

= c

(
k∑

n=1

|an|q
)1/p

and therefore (
k∑

n=1

|an|q
)1/q

=

(
k∑

n=1

|an|q
)1−1/p

6 c.

Conversely, if c is a positive number such that cq is a bound for the partial sums
of
∑∞
n=1 |an|

q
, then for each x ∈ l2 and each k we have

|f (x1, x2, . . . , xk, 0, 0, . . .)| =

∣∣∣∣∣
k∑

n=1

anxn

∣∣∣∣∣
6

(
k∑

n=1

|an|q
)1/q ( k∑

n=1

|xn|p
)1/p

6 c ‖x‖p .

Since (by Corollary 1) f is sequentially continuous and

x = lim
k→∞

(x1, x2, . . . , xk, 0, 0, . . .)

in lp, it follows that |f(x)| 6 c ‖x‖p. Thus our suggestion that, under the hy-

potheses of Landau’s theorem, the series
∑∞
n=1 |an|

q
has bounded partial sums

is equivalent to the corresponding linear functional, defined at (1), being contin-
uous. This equivalence, taken with work of Ishihara [7], suggests that we bring
into play the following notions.

We say that a subset S of N is pseudobounded if limn→∞ n−1sn = 0 for
each sequence (sn)n>1 in S. Following Ishihara [7], we consider the principle

BD-N Every inhabited, countable, pseudobounded subset of the set N+ of
positive integers is bounded,

which holds in the intuitionistic and recursive models of BISH, but, being inde-
pendent of Heyting arithmetic [12], is not provable within BISH. In [7], Ishihara
proved that the statement ‘Every sequentially continuous linear mapping from a
separable metric space into a metric space is pointwise continuous’ is equivalent
to BD-N.

Our next result (whose proof has, unsurprisingly, some similarities to that of
Lemma 20 in [9]) belongs to constructive reverse mathematics, a relatively new
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field in which theorems are classified according to their equivalence, over some
formal or (in this case) informal system for constructive mathematics, to certain
principles such as BD-N. For more on this topic, see [10].

Theorem 4. The following statement is equivalent to BD-N.

(*) If p, q are conjugate exponents, and a is a sequence of complex numbers such
that

f(x) =

∞∑
n=1

anxn

converges for each x ∈ lp, then
∑∞
n=1 |an|

q
has bounded partial sums.

Proof. The implication from BD-N to (*) is a consequence of Corollary 1 and
the result of Ishihara mentioned immediately before the statement of this propo-
sition. For the reverse implication, assume (*) and let

S ≡ {s1, s2, . . .}

be an inhabited, countable, pseudobounded subset of N. Without loss of gener-
ality, we may assume that s1 6 s2 6 · · · . Setting

b1 ≡ q
√
s1, bn+1 ≡ q

√
sn+1 − sn,

we need only prove that
∑∞
n=1 bnxn converges for each x ∈ lp: for then the partial

sums of the series
∑∞
n=1 |bn|

q
are bounded, which implies the boundedness of

the set S. Accordingly, fix x ∈ lp; we may assume that xn > 0 for each n. Let
(nk)k>1 be a strictly increasing sequence of positive integers such that

∞∑
n=nk

|xn|p <
(

1

2k+1k

)p
(2)

for each k. Define

Ik ≡ {nk, nk + 1 , . . . , nk+1 − 1} .

Since S is pseudobounded, there exists κ such that snk+1
< k for all k > κ. For

k′ > k > κ we have∣∣∣∣∣
nk′∑
n=nk

bnxn

∣∣∣∣∣ 6
k′∑
j=k

∑
i∈Ij

bixi

 6
k′∑
j=k


q

√∑
i∈Ij

|bi|q p

√∑
i∈Ij

|xi|p


6
k′∑
j=k

sj+1

2j+1j
6

k′∑
j=k

2−j−1 < 2−k.

It readily follows that the partial sums of
∑∞
n=1 bnxn form a Cauchy sequence,

and hence that the series converges in C.
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Perhaps the most significant aspect of Theorem 4 is this: in contrast to Ishi-
hara’s original result relating BD-N and the passage from sequential to point-
wise continuity, a result proved using a relatively strange space as the domain of
the sequentially continuous mapping, Theorem 4 uses one of the standard spaces
in functional analysis.

Our next result confirms that the use of the classical uniform boundedness
theorem in proving Landau’s theorem is not just a matter of convenience.

Proposition 1. Statement (*) of Theorem 4 is equivalent to the classical uni-
form boundedness theorem in the form

UBTc If (Tn)n>1 is a sequence of bounded linear mappings of a Banach space X
into a Banach space Y such that

{Tnx : n > 1}

is bounded for each x ∈ X, then {‖Tn‖ : N > 1} is bounded.

Proof. Ishihara [11] has shown that UBTc is equivalent to BD-N. The result
now follows from Theorem 4.

The question now arises: what can we say about Landau’s theorem without
assuming BD-N? The next three lemmas take some distance in the direction of
an answer.

Lemma 1. Let p, q be conjugate exponents, let a be a sequence of complex num-
bers such that

∑∞
n=1 anxn converges for each x in lp, and let φ : N+ → R+ be

a strictly increasing mapping such that φ(k)→∞ as k →∞. Let (λk)k>1 be an
increasing binary sequence such that if λk = 1 − λk−1, then there exists ν > k
such that

∑ν
n=1 |an|

q
> φ(k). Then either λk = 0 for all k or else there exists K

such that λK = 1.

Proof. Let u be a unit vector in lq, set λ0 = 0, and define a sequence (fk)k>1

of normed linear functionals on lp as follows. For each positive integer k if λk =
λk−1, define

fk(x) = k

∞∑
n=1

unxn (x ∈ lp)

and note that ‖fk‖ = k. If λk = 1 − λk−1, then, choosing ν > k such that∑ν
n=1 |an|

q
> φ(k), define

fk(x) =

ν∑
n=1

anxn (x ∈ lp)

and note that ‖fk‖ > (φ(k))
1/q

. Clearly, ‖fk‖ → ∞ as k →∞; so, by Theorem
2, there exists a unit vector x ∈ lp such that |fk(x)| → ∞ as k → ∞. Since∑∞
n=1 anxn converges, there exists K such that

|fk(x)| > 1 +

∣∣∣∣∣
k∑

n=1

anxn

∣∣∣∣∣ (k > K) . (3)
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Suppose that λk = 1−λk−1 for some k > K. Then fk(x) =
∑ν
n=1 anxn for some

ν > k, which is absurd in view of (3). Hence λk = λK for all k > K, from which
the desired conclusion follows.

Lemma 2. Let p, q be conjugate exponents, let a be a sequence of complex num-
bers such that

∑∞
n=1 anxn converges for each x in lp, and let φ : N+ → R+ be

a strictly increasing mapping such that φ(n) → ∞ as n → ∞. Let (λk)k>1 be
an increasing binary sequence, and (nk)k>1 an increasing sequence of positive

integers, such that if λk = 0, then
∑nk

n=1 |an|
q
> φ(k) − 1. Then there exists K

such that λK = 1.

Proof. Again let u be a unit vector in lp and set λ0 = 0. This time, for each x in
lp we define fk(x) =

∑nk

n=1 anxn if λk = 0, and fk(x) = k
∑∞
n=1 unxn if λk = 1.

This produces a sequence (fk)k>1 of normed linear functionals on lp such that
‖fk‖ → ∞ as k → ∞. Using Theorem 2, we produce a unit vector x in lp such
that |fk(x)| → ∞ as k → ∞. Since

∑∞
n=1 anxn converges, there exists K such

that (3) holds. If λK = 0, then fK(x) =
∑nK

n=1 anxn, which is absurd in view of
our choice of K. Hence λK = 1.

Lemma 3. Let p, q be conjugate exponents, let a be a sequence of complex num-
bers such that

∑∞
n=1 anxn converges for each x in lp, and let φ : N+ → R+

be a strictly increasing mapping such that φ(k) → ∞ as k → ∞. Then either∑k
n=1 |an|

q
< φ(k) for all k or else there exists k such that

∑k
n=1 |an|

q
> φ(k)−1.

Proof. Construct an increasing binary sequence (λk)k>1 such that

λk = 0⇒ ∀j6k

(
j∑

n=1

|an|q < φ(j)

)
,

λk = 1− λk−1 ⇒
k∑

n=1

|an|q > φ(k)− 1.

Now apply Lemma 1.

Proposition 2. Let p, q be conjugate exponents, let a be a sequence of complex
numbers such that

∑∞
n=1 anxn converges for each x in lp, and let φ : N+ → R+

be a strictly increasing mapping such that φ(k) → ∞ as k → ∞. Then there
exists m > K such that

∑m
n=K+1 |an|

q
< φ(m) for all m > 1.

Proof. In view of the previous lemma, we may suppose that there exists n1
such that

∑n1

n=1 |an|
q
> φ(n1)− 1. Setting λ1 = 0 and applying Lemma 3 to the

sequence (0, 0, . . . , 0, an1+1, an1+2, . . .) , we see that either
∑m
n=n1+1 |an|

q
< φ(m)

for all m > n1 or else there exists n2 > n1 such that
∑n2

n=n1+1 |an|
q
> φ(n2)−1.

In the first case we set λk = 1 and nk = n1 for all k > 2; in the second we
set λ2 = 0. Carrying on in this way, we construct an increasing binary sequence
(λk)k>1 and an increasing sequence (nk)k>1 of positive integers such that

– if λk+1 = 0, then nk+1 > nk and
∑nk+1

n=nk+1 |an|
q
> φ(nk+1)− 1;
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– if λk+1 = 1 − λk, then
∑m
n=nk+1 |an|

q
< φ(m) for all m > nk, and nj = nk

for all j > k.

Applying Lemma 2, we obtain the desired conclusion.

It follows for example, that, under the hypotheses of Landau’s theorem, for
each positive integer m there exists N such that

n∑
i=N

|ai|q < log(log(· · · (log n) · · · ))︸ ︷︷ ︸
m instances of “ log ”

for all n > N. This is a long way from showing that the partial sums of
∑∞
i=1 |ai|

q

are bounded, but it is progress of a kind.
We now have a constructive substitute for the convergence of an to 0 in

Landau’s theorem.

Proposition 3. Let p, q be conjugate exponents, and let a be a sequence of com-
plex numbers such that the series

∑∞
n=1 anxn converges for each x in lp. Then for

each ε > 0 and each positive integer ν there exists k such that
∑kν
n=(k−1)ν |an|

q
<

ε.

Proof. Fix a unit vector u in lq. For each positive integer k, construct an in-
creasing binary sequence (λk)k>1 such that

λk = 0⇒ ∀j6k

 jν∑
n=(j−1)ν

|an|q >
ε

2

 ,

λk = 1− λk−1 ⇒
jν∑

n=(j−1)ν

|an|q < ε.

Applying Lemma 2 with φ(k) = 1 + kε
2 , we see that there exists N such that

λN = 1; whence
∑kν
n=(k−1)ν |an|

q
< ε for some k 6 N.

Corollary 2. Let p, q be conjugate exponents, and let a be a sequence of complex
numbers such that the series

∑∞
n=1 anxn converges for each x in lp. Then there

exists a sequence (nk)k>1 of positive integers such that for each k, nk+k < nk+1

and
nk+k∑

n=nk+1

|an|q < 2−k.

Proof. By Proposition 3, there exists n1 such that |an1
|q < 2−1. Having com-

puted nk with the desired properties, apply Proposition 3 to the sequence (an)n>nk+k
,

to produce nk+1 > nk + k such that
nk+1+k+1∑
n=nk+1+1

|an|q < 2−k−1. This completes the

inductive construction of the sequence (nk)k>1 .
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The conclusion of Corollary 2 holds for any binary sequence with at most
one term equal to 1, and so is not enough to yield constructively the result that,
under the hypotheses of that corollary and with p = q = 2, an → 0 as n→∞.

We conclude the paper by proving a constructive version of Landau’s summa-
bility theorem that is classically equivalent to the classical version but has
stronger hypotheses and conclusion than Corollary 1. For this we recall the
constructive least-upper-bound principle:

In order that an inhabited set S of real numbers that is bounded above
have a supremum, it is necessary and sufficient that S be order located,
in the sense that for all positive α, β with α < β, either β is an upper
bound for S or else there exists x ∈ S such that x > α ([3], page 37,
Proposition (4.3)).

Theorem 5. Let p, q be conjugate exponents, and let a be a sequence of complex
numbers such that

∑∞
n=1 anxn converges for each x in lp. Then the following are

equivalent.

(i) The series
∑∞
n=1 |an|

q
is convergent.

(ii) For all α, β with 0 < α < β, either
∑k
n=1 |an|

q
< β for all k or else there

exists k such that
∑k
n=1 |an|

q
> α.

Proof. It is clear that if
∑∞
n=1 |an|

q
converges, then (ii) holds. Conversely, as-

suming (ii), construct an increasing binary sequence (λk)k>1 and an increasing
sequence (nk)k>0 of positive integers with n0 = 0, such that

B if λk = 0, then nk > nk−1 and
∑nk

i=1 |ai|
q
> k, and

B if λk = 1, then nk = nk−1 and
∑j
i=1 |ai|

q
< k + 1 for all j.

To do so, first observe that either
∑j
i=1 |ai|

q
< 2 for all j or else there exists

n1 > 1 such that
∑n1

i=1 |ai|
q
> 1. In the first case set λ1 = n1 = 1; in the second,

set λ1 = 0. Now suppose we have found λk−1 and nk−1 with the applicable
properties. If λk−1 = 1, set λk = 1 and nk = nk−1. If λk−1 = 0, then by (ii),

either
∑j
i=1 |ai|

q
< k + 1 for all j, in which case we set λk = 1 and nk = nk−1;

or else there exists nk such that
∑nk

i=1 |ai|
q
> k. In the latter case, replacing

nk by a sufficiently large positive integer, we may assume that nk > nk−1; we
then set λk = 0 to complete the inductive construction. Taking φ(k) = k + 1
in Lemma 2, we obtain K such that λK = 1. The partial sums of

∑∞
i=1 |ai|

q

are therefore bounded above by K + 1. It follows from (ii) and the constructive
least-upper-bound principle that

∑∞
i=1 |ai|

q
converges in R.

In view of the constructive least-upper-bound principle, it is curious that
condition (ii) is used to prove that the partial sums of

∑∞
n=1 |an|

2
are bounded

before it is again invoked to prove that their supremum exists.
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For related work within the framework of Weihrauch’s theory of Type Two
Effectivity [15], see [4]. For connections between that theory and Bishop-style
constructive mathematics, see [2].
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6. D.S. Bridges and L.S. Vı̂ţă, Techniques of Constructive Analysis, Universitext,
Springer-New-York, 2006.

7. H. Ishihara, ‘Continuity properties in constructive mathematics’, J. Symbolic Logic
57, 557–565, 1992.

8. H. Ishihara, ‘Sequential continuity of linear mappings in constructive analysis’, J.
Univ. Comp. Sci. 3(11), 1250–1254, 1997.

9. H. Ishihara, ‘Sequential continuity in constructive mathematics’, in: Combina-
torics, Computability and Logic (C.S. Calude, M.J. Dinneen and S. Sburlan, eds),
5–12, Springer-Verlag, London, 2001.

10. H. Ishihara, ‘Reverse mathematics in Bishop’s constructive mathematics’, Phil.
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