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Abstract. In this note we discuss the information needed to compute
the homology groups of a topological space. We argue that the natural
class of spaces to consider are the compact absolute neighbourhood re-
tracts, since for these spaces the homology groups are finite. We show
that we need to specify both a function which defines a retraction from
a neighbourhood of the space in the Hilbert cube to the space itself,
and a sufficiently fine over-approximation of the set. However, neither
the retraction itself, nor a description of an approximation of the set in
the Hausdorff metric, is sufficient to compute the homology groups. We
express the conditions in the language of computable analysis, which is
a powerful framework for studying computability in topology and geom-
etry, and use cubical homology to perform the computations.
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1 Introduction

Homology theory is one of the cornerstones of algebraic topology. The first ho-
mology theory, simplicial homology, was developed to provide invariants of a
topological space (expressed as a simplicial complex) which could be more easily
computed than the homotopy invariants. Other homology theories, most notably
singular homology, were developed which extended the simplicial homology to
arbitrary topological spaces, topological pairs and continuous functions. For an
introduction to homology theory, see [ES52], [Mun84], [Mas91] or [Spa81]. How-
ever, while the simplicial homology can be easily computed by purely algebraic
means, it is not clear precisely what information is needed about a space in order
to compute its homology groups using a digital computer. The purpose of this
article is to discuss the computability of homology for general metric spaces.

As is standard in computability theory, we use Turing machines as the under-
lying computational model. We consider different representations of the input
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sets and/or functions in terms of symbols over some alphabet. Since the class of
compact subsets of a (infinite) separable metric space has continuum cardinality,
we need to represent these sets by streams of data, yielding successively better
approximations to the set.

Since homology groups are well defined (by the Eilenburg-Steenrod ax-
ioms [ES45]) and finite for the class of compact absolute neighbourhood retracts,
we restrict attention to these spaces. A natural way of describing a compact ab-
solute neighbourhood retract is to specify a neighbourhood retraction onto the
set. However, we shall see that this information itself is not quite sufficient to
compute the homology; we also need to give a bounding set for the set which is
a subset of the domain of the retraction.

The original approach to homology theory via simplicial complexes is well-
suited to the computation of the homology of a topological space when an explicit
construction of the space is known. However, it is less-well suited for the compu-
tation of the homology of an arbitrary continuous function, unless a homotopic
simplicial map can easily be constructed. Further, the relative simplicity of inter-
val methods for rigorous evaluation of continuous functions suggests the devel-
opment of a homology theory based on cubical complexes. The first algorithms
for the computation of cubical homology were developed in [KMŚ98,KMW99];
see [KMM04] for a self-contained exposition. More advanced algorithms have
since been developed [MMP05,MPŻ08,MB09]. The computational homology
package CHomP [KMP] contains implementations of the computation of the
homology of simplicial and cubical complexes by Kalies, Mrozek and Pilarczyk.

The main results of this paper are that the homology of a general compact
separable metric space X cannot be computable from a name of X as a compact
set, and neither can the homology of a compact absolute neighbourhood retract
X be computed from a name of a neighbourhood retraction r : U −→ X. How-
ever, the homology can be computed given both pieces of data; this is equivalent
to a name of r and a single bound on X.

2 Preliminaries

In this section we review the main concepts and results from the theory of re-
tracts, homology theory, computational cubical homology and computable anal-
ysis that we require.

2.1 Theory of retracts

Let E be a metrisable space. Recall that if X ⊂ E, then a function r : E −→ X
is a retraction if r|X = idX . If U is an open neighbourhood of X in E and
r : U −→ X is such that r|X = idX , then r is a neighbourhood retraction.
We say X is a neighbourhood retract if there exists a neighbourhood retraction
r : U −→ X. If X ⊂ E, we denote the embedding of X in E as i : X −→ E; note
that r|X = r ◦ i. We say that r : U −→ X is a weak (neighbourhood) retraction
if r|X ∼ id|X , i.e. r is homotopic to the identity of X.
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Recall that the Hilbert cube is the countably infinite product space [−1,+1]∞.
We can give a metric by

d(x, y) =

( ∞∑
k=1

(xk − yk
k

)2 )1/2

.

The relative interior of the Hilbert cube is the subset (−1,+1)∞, which is not
locally-compact.

A countable base for the Hilbert cube is given by open sets of the form

I1 × I2 × · · · Ik × [−1,+1]× · · ·

with each Ij of the form (aj , bj), (aj ,+1], [−1, bj) or [−1,+1] for aj , bj ∈ Q. The
closures of these sets have the form

[a1, b1]× · · · × [ak, bk]× [−1,+1]× · · ·

with ai, bi ∈ Q and −1 ≤ ai < bi ≤ +1 for i = 1, . . . , k. A countable base for the
relative interior of the Hilbert cube is given by the sets

(a1, b1)× · · · × (ak, bk)× (−1,+1)× · · ·

with ai, bi ∈ Q and −1 ≤ ai < bi ≤ +1 for i = 1, . . . , k.
A space X is an absolute neighbourhood retract if, whenever it embeds as a

closed subset of a normal space Y , there is an open neighbourhood U of X in Y
and a retraction r : U −→ X. It can be shown that a separable metric space is
an absolute neighbourhood retract if, and only if, it embeds as a neighbourhood
retract in the Hilbert cube. We can therefore consider absolute neighbourhood
retracts as subsets of the Hilbert cube. A space is a Euclidean neighbourhood
retract if it embeds as a neighbourhood retract in Euclidean space Rd for some
d.

2.2 Homology Theory

Recall that a topological pair is a pair (X,A) where X is a topological space and
A is a subset of X. By a slight abuse of notation, we will sometimes write X for
the pair (X, ∅). A map of pairs f : (X,A) −→ (Y,B) is a continuous function
f : X −→ Y such that f(A) ⊂ B.

Recall that a graded abelian group G is a sequence (Gq)
∞
q=0 of abelian groups.

A homomorphism φ between graded abelian groups G and H is a sequence of
group homomorphisms φq : Gq −→ Hq. A graded abelian group G is finite if
each Gq is finite, and Gq = {e} for all but finitely many q.

Recall that a (finite or infinite) sequence of (graded) group homomorphisms

· · · −→ Gk
φk−→ Gk+1

φk+1−→ Gk+2 −→ · · ·

is exact if im(φk) = ker(φk+1) for all k.
There are a large number of homology theories, each with different properties.

However, they all satisfy the following axioms.
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Axioms 1 (Eilenberg-Steenrod) A homology theory consists of a covariant
functor H∗ from (a full subcategory of) the category of topological pairs to the
category of graded abelian groups, and a natural transformation ∂∗ of degree −1
from H∗(X,A) to H∗(A) satisfying Axioms (i) to (iv) below.

In other words, Hq(X,A) is an abelian group for q = 0, 1, . . ., if f :
(X,A) −→ (Y,B) then Hq(f) : Hq(X,A) −→ Hq(Y,B), H∗(g ◦ f) = H∗(g) ◦
H∗(f) and δq : Hq(X,A) −→ Hq−1(A).

1. Homotopy: If f0, f1 : (X,A) −→ (Y,B) are homotopic, then

H∗(f0) = H∗(f1) : H∗(X,A) −→ H∗(Y,B).

2. Exactness: Each pair (X, A) induces a long exact sequence in homology, via
the inclusions i : A −→ X and j : X −→ (X,A) by

· · · −→ Hq(A)
i∗−→ Hq(X)

j∗−→ Hq(X,A)
∂∗−→ Hq−1(A) −→ · · · .

3. Excision: If (X,A) is a pair and U is a subset of X such that U ⊂ A◦, then
the inclusion map i : (X \ U,A \ U) −→ (X,A) induces an isomorphism in
homology

i∗ : H∗(X \ U,A \ U) ≈ H∗(X,A).

4. Dimension: If P is a one-point space, then

Hq(P ) ≡

{
0 if q 6= 0

Z if q = 0.

It is well-known that the homology of a compact absolute neighbourhood
retract is uniquely determined by the axioms. For the homology of simplicial set
is determined by the axioms, and can be effectively computed from the axioms
(though the computation is usually performed in practice using the simplicial
homology theory). Additionally, any compact absolute neighbourhood retract is
dominated by a finite simplicial complex, allowing computation of the homology.
That any compact absolute neighbourhood retract has the homotopy type of a
finite simplicial complex was a long-standing open conjecture, finally proved by
West [Wes77]. We shall use a similar technique to relate the homology of a
compact absolute neighbourhood retract to that of a finite cubical complex.

Recall that a single-valued function f : X −→ Y is a selection of a multi-
valued function F : X ⇒ Y if f(x) ∈ F (x) for all x ∈ X. It is not difficult to
show that if F : X ⇒ Y is convex-valued and f0, f1 are two continuous selec-
tions of F , then f0 and f1 are homotopic. We say that F : (X,A) ⇒ (Y,B) is a
multivalued map of pairs if F : X ⇒ Y and F (a) ⊂ B for all a ∈ A. Hence if
F : (X,A) ⇒ (Y,B) is a multivalued map of pairs with convex values, then any
continuous selections f0, f1 : (X,A) −→ (Y,B) are homotopic, and so have the
same homology. We can therefore speak of the homology of a multivalued map.
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2.3 Computational Homology

The computational homology approach begins with the computation of the ho-
mology of cubical sets which are essentially finite unions of cubes in Euclidean
space.

The following definition is modified from [KMM04, Definitions 2.1,3,9].

Definition 2 (Cubical Set). An elementary interval is a closed interval I ⊂ R
of the form I = [k, k] or I = [k, k + 1] for some k ∈ Z. An elementary cube
Q ⊂ Rd is a finite product of elementary intervals Q = I1 × I2 × · · · × Id.
An elementary cubical chain is a formal sum of oriented elementary cubes. The
boundary ∂Q of an elementary cube Q is the formal sum of the elementary cubes
of dimension dim(Q)− 1 with the natural orientation.

An elementary cubical complex Q is a set of elementary cubes Q such that
if Q ∈ Q, then any elementary cube which is a subset of Q is also an element of
Q.

A cubical complex is a set X of the form X = {sl(Q) | Q ∈ Q} where Q
is an elementary cubical complex and sl(x) = x/2l is a scaling transformation.
A cubical complex X ′ is a refinement of X if Q =

⋃
{Q′ ∈ X ′|Q′ ⊂ Q} for all

Q ∈ X .
The support |X | of a cubical complex X is the union of all elementary cubes

of X. A set X is cubical if there is a cubical complex X such that X = |X |.

Definition 3 (Cubical Map). Let X and Y be cubical complexes. A cubical
function is a multivalued function F : X ⇒ Y such that F(Q1 ∩Q2) = F(Q1) ∩
F(Q2). A cubical function is convex if |F(Q)| is convex for all Q ∈ X .

The support |F| of a cubical function F is the lower-semicontinuous multi-
valued map |F| : |X | ⇒ |Y| defined by |F|(x) = |F(Q)| for x ∈ rel int(Q). We
say that a multivalued map F : X −→ Y is cubical if there are cubical complexes
X and Y with X = |X |, Y = |Y|, and a cubical function F : X ⇒ Y such that
F = |F|.

The following theorem asserts that cubical homology is effectively computable.

Theorem 4.

1. Let (X ,A) be cubical complexes. Then the cubical homology H∗(|X |, |A|) is
effectively computable given X and A.

2. Let F : (X ,A) −→ (Y,B) be a convex cubical function. Then the cubical
homology H∗(|F|) is effectively computable given F .

Note that the cubical homology theory is essentially a combinatorial theory (for
cubical complexes and convex cubical functions) which induces a topological
theory on the supports. It is possible to show that the homology of a cubical
set (or map) does not depend on the cubical complex (or function) used for the
representation. However, the cubical theory is only defined on the special classes
of cubical sets and cubical maps. To extend the theory to arbitrary sets and
maps, we need to reduce to the cubical theory. The main results of this paper
involve showing that these reductions can be performed effectively.
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2.4 Computability Theory

In this section we give an overview of computability in analysis, following the
type-two effectivity theory of [Wei00].

Let Σ be a finite alphabet, such as the binary digits {0, 1} or the ASCII
character set. By Σ∗ we mean the set of finite words on Σ, and by Σω the set
of infinite sequences. We say a function η :⊂ Σ∗/ω × · · · × Σ∗/ω −→ Σ∗/ω is
computable if it can be evaluated by a Turing machine. The set of computable
functions is closed under composition.

We will sometimes need a computable tupling operation τ (Σ∗)ω −→ Σω,
denoted (w1, w2, . . .) 7→ 〈w1, w2, . . .〉.

Let M be a set. A notation of M is a partial surjective function ν :⊂ Σ∗ −→
M . A representation of M is a partial surjective function δ :⊂ Σω −→ M . A
δ-name of x ∈M is an element p ∈ Σω such that δ(p) = x.

If δ0, . . . , δk are representations of M0, . . . ,Mk respectively, then a function
f : M1 × · · · × Mk −→ M0 is computable if there is a computable function
η :⊂ Σω × · · · × Σω −→ Σω such that f(δ1(p1), . . . , δk(pk)) = δ0(η(p1, . . . , pk))
whenever the left-hand side is defined. If the representations of M0, . . . ,Mk being
used are clear from the context, we simply say that f is (effectively) computable.

If M is a topological space, we are interested in representations which are
compatible with the topological structure. A computable topological space is a
tuple (M, τ, σ, ν) where σ is a sub-base for a T0 topology τ on M , and ν is a
notation of τ . The standard representation of (M, τ, σ, ν) is the representation δ
of M defined by

δ〈w1, w2, w3, . . .〉 = x ⇐⇒ {ν(wi) | i ∈ N} = {I ∈ σ | x ∈ I}.

In other words, p encodes a list of all sub-basic sets I containing x. By the T0
hypothesis on (M, τ), this p encodes a unique element of M .

If M is the Hilbert cube and ν is an encoding of the standard basis set β,
then the standard arithmetical operations +, −, × and ÷ are computable with
respect to the standard representation.

Given a locally-compact Hausdorff space X and a base β for X with notation
ν we can construct representations for open and compact subsets of X as follows:

1. A θ<-name of an open subset U of X encodes a list of all I ∈ β such that
Ī ⊂ U .

2. A κ>-name of a compact subset C of X encodes a list of all tuples
(J1, . . . , Jk) ∈ β∗ such that C ⊂

⋃k
i=1 Ji.

3. A κ-name of a compact subset C of X encodes a list of all tuples
(J1, . . . , Jk) ∈ β∗ such that C ⊂

⋃k
i=1 Ji and Ji ∩ C 6= ∅ for all i = 1, . . . , k.

These are standard representations with respect to the Scott topology on open
sets, and the (upper) Vietoris topology on compact sets. We can also construct
representations for continuous functions:.

4. Let U be an open subset of X, and f : U −→ Y a continuous function. A
γ-name of f encodes a list of all pairs (I, J) ∈ βX ×βY such that Ī ⊂ U and
f(Ī) ⊂ J .
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Note that a γ-name of f implicitly contains a θ<-name of dom(f). This is a stan-
dard representation with respect to the compact-open topology on continuous
functions.

3 Computability of Homology Groups

In this section we present the main results on computability and uncomputability
of homology groups. We first show that homology is uncomputable with respect
to certain representations of the space, and then find conditions under which
homology is computable.

3.1 Uncomputability of homology

We now show that the homology cannot be computed from a κ-name of X, nor
from a γ-name of a neighbourhood retract r : U −→ X alone. These results
are strong, in the sense that there is no space for which the homology can be
computed from the given data.

Theorem 5. Let X be a compact absolute neighbourhood retract. The homol-
ogy function H∗ is discontinuous at X in the Vietoris topology, and hence is
uncomputable.

Proof. It suffices to construct a sequence of compact absolute neighbourhood
retracts Xn such that Xn → X in the Vietoris topology, but H∗(Xn) does not
converge to H∗(X). Let xi be a sequence of points such that each xi 6∈ X but

limn→∞ xi = x∞ ∈ X. Let Xn = X ∪
⋃2n
i=n+1 xi. Then each Xn is an absolute

neighbourhood retract and Xn → X in the Vietoris topology on compact sets,
but H0(Xn) ≈ H0(X)⊕ Zn, so the homology does not converge.

Theorem 6. Let X ⊂ R∞ be a compact absolute neighbourhood retract. The
homology of X cannot be computed from a γ-name of a neighbourhood retraction
r : U → R∞ with r(U) = X.

Proof. Let p ∈ Σω be a γ-name of r encoding a sequence (Ik, Jk) of basic open
sets such that r(Īk) ⊂ Jk. Let U ′ be an open ball cl(U ′) ∩ cl(U) = ∅, let x′ ∈ U ′
and r′ : U ′ −→ {x′}. Let p′ be a γ-name of r′ encoding a sequence (I ′k, J

′
k) such

that r′(Ī ′k) ⊂ J ′k.

Take Û = U ∪ U ′, X̂ = X ∪ X ′ and define r̂ : Û −→ X̂ by r̂(a) = r(a) if
a ∈ U and r̂(a) = r′(a) if a ∈ U ′. Then r̂ is a retraction from Û to X̂. We can
construct names of r̂ by taking an arbitrarily long prefix of a name of r̃, and
then splicing in a name of r′. For n ∈ N, define (În,k, Ĵn,k) = (Ik, Jk) for k ≤ n,

and (În+2j−1, Ĵn+2j−1) = (In+j , Jn+j), (În+2j , Ĵn+2j) = (In+j , Jn+j) for j ∈ N.

Let p̂n be the encoding of the sequence (În,i, Ĵn,i). Then for all n ∈ N, p̂n is an
encoding of r̂, but limn→∞ p̂n = p, which is a name of r. This means that given
the name p of r, at no point can we deduce p is a name of r and not r̂, and so
at no point can we deduce H0(X).
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We note that while the first result is due to an argument that the homology
is discontinuous, for the second we needed to consider the details of the repre-
sentation. This suggests that the homology can “almost” be computed from a
name of a neighbourhood retraction. In the next section we shall see that this is
indeed the case.

3.2 Homology of Euclidean neighbourhood retracts

To give an idea of the general method, we first prove effective computability of
H∗(X) for a Euclidean neighbourhood retract X.

Theorem 7. Let X be a compact Euclidean neighbourhood retract. Then H∗(X)
can be effectively computed from a γ-name of a retraction r : U −→ X with U
an open subset of Rd, and from a κ>-name of X as a compact subset of Rd.

Proof (Proof (Sketch)). From the κ>-name of X and a θ<-name of U we can
effectively compute a cubical set C such that X ⊂ C◦ and C ⊂ U . Since r(C) =
X ⊂ C◦, every point x of C has a basic open neighbourhood I such that f(Ī) ⊂ J
with J ⊂ C. From a γ-name of r, we can therefore compute a convex-valued
cubical map R : C ⇒ C such that r(x) ∈ R(x) for all x. Since C is a cubical set
and R is a cubical map, H∗(C) and H∗(R) can be computed using Theorem 4.

Let i : X −→ C be the embedding of X in C, and p : C −→ X be the
restriction of r to C. Then p ◦ i = idX , so H∗(p ◦ i) = idH∗(X). Hence H∗(p) is
surjective and H∗(i) is injective. Since i ◦ p = r|C , the cubical map R is an over-
approximation to i ◦ p, so H∗(i ◦ p) = H∗(R). Then H∗(X) = H∗(p)(H∗(C)) ≈
H∗(i)(H∗(p)(H∗(C))) = H∗(i◦p)(H∗(C)) = H∗(R)(H∗(C)), so can be effectively
computed.

The presentation of H∗(X) is as a subgroup of H∗(C) for which we have an
explicit presentation. The subgroup is the image of H∗(C) under the homo-
morphism H∗(R). Notice that H∗(R) is a projection on H∗(C), since H∗(R) =
H∗(i ◦ p) = H∗(i ◦ (p ◦ i) ◦ p) = H∗(i ◦ p ◦ i ◦ p) = H∗(i ◦ p)2 = H∗(R)2.

3.3 Computation of homology for compact absolute neighbourhood
retracts

Lemma 8. Let (X,A) be a pair of compact absolute neighbourhood retracts em-
bedded in the Hilbert cube. Then given κ>-names of X and A, and γ-names
of rX : UX −→ X and rA : UA −→ A, it is possible to effectively compute
a pair (X̂, Â) of cubical sets, and maps of pairs i : (X,A) −→ (X̂, Â) and
p : (X̂, Â) −→ (X,A) such that p ◦ i ∼ idX,A.

Proof. By the effective Urysohn lemma [Wei01], we can construct a function
φ : UX −→ [0, 1] such that φ(x) = 1 on a small neighbourhood of A, and φ(x) = 0
outside UA. We define q : UX −→ X by q(x) = rX(φ(x)rA(x) + (1− φ(x))x). It
is straightforward to verify that q maps a small neighbourhood VA of A in UX
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to A, that q|X is homotopic to the identity, and that we can compute a γ-name
of q.

Since X ⊂ UX , and using the topology of the Hilbert cube, we can effectively
compute a cubical subset X̂ of Rd such that X ⊂ X̂◦ × (−1,+1)∞ and X̂ ×
[−1,+1]∞ ⊂ UX . Further, we can ensure that X̂ has a cubical subset Â such
that A ⊂ Â◦ × (−1,+1)∞ and Â× [−1,+1]∞ ⊂ VA.

We take i : (X,A) −→ (X̂, Â) as i(x) = π(x), which is clearly computable,
and p : (X̂, Â) −→ (X,A) by p(x) = q(x, 0, . . .). Since q is homotopic to the
identity on (X,A), we find p ◦ i ∼ idX,A by the homotopy extension theorem.

Lemma 9. Let (X̂, Â) and (Ŷ , B̂) be cubical sets, and f : (X̂, Â) −→ (Ŷ ◦, B̂◦).
Then given a γ-name of f , it is possible to effectively compute a convex cubical
map F : (X̂, Â) −→ (Ŷ , B̂) such that f is a selector of F .

Proof. Given a γ-name of f , we list all pairs (I, J) such that f(Ī) ⊂ J , that
J̄ ⊂ Ŷ ◦ and J̄ ⊂ B̂◦ if I ∩ A 6= ∅. We eventually obtain an open cover of X̂ by
such sets I. By refining X̂ if necessary, we can assume that each cell Q of X̂ lies
in some I with corresponding J . We define F(Q) = {Q′ ∈ K(Ŷ ) | J ∩Q′ 6= ∅}.
It is easy to verify that |F| is the required convex cubical map.

We can now compute the homology of an arbitrary topological pair.

Theorem 10. Let (X,A) be a pair of compact absolute neighbourhood retracts
embedded in the Hilbert cube. Then the homology H∗(X,A) can be effectively
computed from κ>-names of X and A, and γ-names of rX and rA.

Proof. Let i : (X,A) −→ (X̂, Â) and p : (X̂, Â) −→ (X,A) be as given by
Lemma 8, so that p◦i ∼ idX,A. Then H∗(p◦i) = idH∗(X,A) so H∗(p) is surjective,

and H∗(i) is injective, and hence H∗(X,A) ≈ H∗(i ◦ p)(H∗(X̂, Â)). By Lemma 9
we can effectively compute a cubical map P : (X̂, Â) ⇒ (X̂, Â) such that i◦p is a
selection of P . Since i◦p is a selection of P , H∗(i◦p) = H∗(P ). The result follows
since we can compute the homology of H∗(X̂, Â) and H∗(P ) by Theorem 4.

We now consider the computation of the homology of a map of pairs.

Theorem 11. Let (X,A) and (Y,B) be compact absolute neighbourhood re-
tracts, equipped with the information needed to compute the homology. Let
f : (X,A) −→ (Y,B) be a map of pairs. Then the homology H∗(f) can be
computed from a γ-name of f .

Proof. From Lemma 8, the approximate projection p : (X̂, Â) −→ (X,A) can be
effectively computed, as can the approximate embedding i : (Y,B) −→ (Ŷ , B̂).
Then iY,B ◦ f ◦ pX,A : (X̂, Â) −→ (Ŷ , B̂) can be effectively computed. We

can therefore compute a cubical map f̂ : (X̂, Â) −→ (Ŷ , B̂) which is an
over-approximation to iY,B ◦ f ◦ pX,A. The homology of f is then given by

H∗(f) ≈ H∗(pY,B) ◦ H∗(f̂), since H∗(pY,B) is a projection of H∗(Ŷ , B̂) onto

H∗(Y,B) considered as a subgroup of H∗(Ŷ , B̂).
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4 Conclusions

In this paper, we have considered the information required to compute the ho-
mology groups of compact absolute neighbourhood retracts. We have shown that
the homology can be computed given a bound for the set, and the name of a
neighbourhood retract from a subset of the Hilbert cube to the space. The deriva-
tions use standard homotopy arguments to reduce the problem to a problem of
computing cubical homology.

An interesting question for further research is whether the requirements that
X be a compact absolute neighbourhood retract can be weakened. If X is not
compact, then the homology groups are not finite, but X still has the homotopy
type of a (now infinite) simplicial complex. If X is not an absolute neighbourhood
retract, then it cannot be embedded in Euclidean space or the Hilbert cube as
a neighbourhood retract, and so a different representation of X is required.

An alternative approach would be to reduce the problem to the problem of
computing simplicial homology. However, since existing numerical approaches
work better with interval arithmetic and cubical sets, the cubical approach is
closer to existing implementations.

References

[ES45] Samuel Eilenberg and Norman E. Steenrod. Axiomatic approach to homol-
ogy theory. Proc. Nat. Acad. Sci. U. S. A., 31:117–120, 1945.

[ES52] Samuel Eilenberg and Norman Steenrod. Foundations of algebraic topology.
Princeton University Press, Princeton, New Jersey, 1952.

[KMM04] Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Compu-
tational homology, volume 157 of Applied Mathematical Sciences. Springer-
Verlag, New York, 2004.

[KMP] William Kalies, Marian Mrozek, and Pawe l Pilarczyk. Homol-
ogy software [in:] computational homology program. available at:
http://chomp.rutgers.edu/.
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