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Abstract. It has been shown (see [10]), that there are strongly Martin-
Löf-ε-random ω-words that behave in terms of complexity like random
ω-words. That is, in particular, the a priori complexity of these ε-random
ω-words is bounded from below and above by linear functions with the
same slope ε. In this paper we will study the set of these ω-words in
terms of Hausdorff measure and dimension.
Additionally we find upper bounds on a priori complexity, monotone
and simple complexity for a certain class of ω-power languages.

1 Introduction

The present paper is a continuation of [10] where it has been shown that
oscillation-free ε-random sequences exist, for every computable ε, 0 < ε < 1.
To this end two methods were developed. The first one, by diluting random
sequences, led to a method for a general “construction” of ε-random sequences
from random sequences whereas the second one exhibited ε-random sequences as
maximally complex sequences in certain computably definable sets of sequences
(ω-languages).

Here we address mainly two questions. The first one is about the Hausdorff
dimension and the Hausdorff measure of the set of oscillation-free ε-random
sequences. As every random sequence is also ε-random the set of ε-random se-
quences has Hausdorff dimension 1. We prove a result analogous to Ryabko’s
estimate of the dimension of the set of sequences of a certain asymptotic rel-
ative complexity (cf. [6, 9]). We show that the set of oscillation-free ε-random
sequences has Hausdorff dimension ε and infinite ε-dimensional Hausdorff mea-
sure.

The second problem we address is the one of obtaining oscillation-free
ε-random sequences in so-called ω-power languages. Here we generalise the re-
sults for ω-powers of regular languages obtained in [10] to more general classes
of ω-powers of computably enumerable languages.

2 Notation and Preliminary Results

In this section we briefly recall the concepts of Hausdorff measure and com-
plexity of finite and infinite words used in this paper. For more detailed infor-
mation the reader is referred to the textbooks [2] and [4]. In the following X is
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a finite alphabet with cardinality |X| = r. By X∗ we denote the set (monoid)
of words on X, including the empty word e, and Xω is the set of infinite words
(ω-words) over X. For w ∈ X∗ and η ∈ X∗ ∪Xω let w · η be their concatena-
tion. We extend this concatenation in the obvious way to subsets W ⊆ X∗ and
B ⊆ X∗ ∪Xω. For a language W let W ∗ :=

⋃
n∈INW

n be the submonoid of X∗

generated by W , and by Wω := {w1 · · ·wn · · · | wn ∈W \{e}} we denote the sub-
set of Xω formed by concatenating words of W . We call V/w := {v | w · v ∈ V }
the left derivative of V by w. Furthermore |w| is the length of the word w ∈ X∗
and l(V ) := min{|v| | v ∈ V } denotes the length of the shortest word contained
in V . For a set B ⊆ X∗ ∪ Xω the set of all finite prefixes of strings in B is
pref(B), we abbreviate w ∈ pref({η}) by w v η. By ξ[0..n] we denote the
prefix of ξ ∈ X∗ ∪Xω of length n.

A real number α is right-computable (left-computable) if and only if there
is a computable sequence αi, i ∈ IN, of rational numbers with αi ≥ αi+1 (αi ≤
αi+1) for all i ∈ IN and limi→∞ αi = α. A number α is called computable if
and only if α is left- and right-computable. A function f : X∗ → IR is called
right-computable (left-computable) if and only if there is a computable function
h : X∗ × IN → IR such that limt→∞ h(w, t) = f(w), for every w ∈ X∗, and h is
decreasing (increasing) with respect to t.

A language V ⊆ X∗ is called a code provided every w ∈ V ∗ has a unique
factorisation w = v1 . . . vn with vi ∈ V (1 ≤ i ≤ n). If e /∈ V and for all v, w ∈ V
the relation v v w implies v = w then V is called prefix code.

It is useful to consider the set Xω as a metric space (Cantor space) (Xω, ρ)
of all ω-words over the alphabet X where the metric is ρ is defined as follows

ρ(ξ, η) := inf{r−|w| | w v ξ ∧ w v η}

The open (and simultaneously closed) balls in (Xω, ρ) are the sets of the form
w · Xω, where w ∈ X∗. The diameter of these balls is d(w · Xω) = r−|w|. The
closure of a set F ⊆ Xω in (Xω, ρ) is the set C(F ) := {ξ | pref(ξ) ⊆ pref(F )}.

We define Hausdorff measure and Hausdorff dimension for subsets of
(Xω, ρ). For every language F ⊆ Xω and every 0 ≤ ε ≤ 1 the equation

Lε(F ) := lim
n→∞

inf

{∑
v∈V

r−ε·|v| | F ⊆ V ·Xω ∧ l(V ) ≥ n

}
defines the ε-dimensional Hausdorff measure of F . The measure L1 is the
usual Lebesgue measure. The following property of the Hausdorff measure
is well-known.

Corollary 1. Let F ⊆ Xω. If Lε(F ) < ∞ then for every δ > 0 it holds
Lε+δ(F ) = 0 and if 0 < Lε(F ) then for every δ > 0 it holds Lε−δ(F ) =∞.

The Hausdorff dimension of F is defined as follows

dimF = sup{ε | Lε(F ) =∞∨ ε = 0} = inf{ε | Lε(F ) = 0}

Next we introduce the complexities used in this paper. Consider a semi-
measure m on X∗, that is, a function m : X∗ → IR which satisfies m(ε) ≤ 1 and
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m(w) ≥
∑
x∈X m(wx), for w ∈ X∗. If m(w) =

∑
x∈X m(wx) the function m is

called a measure. In [13] Levin proved the existence of a universal left-computable
semi-measure M, that is, a left-computable semi-measure which satisfies

∃cm ∀w ∈ X∗ m(w) ≤ cm ·M(w), (1)

for all left-computable semi-measures m. Then the a priori complexity is defined
as KA(w) = b− logr M(w)c (cf. [4, 11]).

For the definition of the monotone complexity Km we refer the reader to [4,
12]. Here we need only the following property.

Corollary 2 ([4]). Let µ be a computable measure on X∗. Then there is a
constant cµ such that

Km(w) ≤ − logµ(w) + cµ

holds for all w ∈ X∗.

Plain (cf. [4]) or simple (cf. [11]) program size complexity defines the complexity
of a finite string to be the length of a shortest program which prints the string.
Let ϕ : X∗ → X∗ be a partial computable function. The complexity of a word
w ∈ X∗ with respect to ϕ is defined as

Kϕ(w) := inf{|π| | π ∈ X∗ ∧ ϕ(π) = w} . (2)

It is well-known that there is an optimal partial computable function U, that is,
a function satisfying

∃cϕ∀w(w ∈ X∗ → KU(w) ≤ Kϕ(w) + cϕ) (3)

for every partial computable function ϕ. In the sequel we fix an optimal function
U and denote the complexity with respect to this function by KS.

The complexity of an infinite word ξ is a function mapping natural numbers
n to the complexity of the n-length prefix of ξ.

Definition 1. Let ξ ∈ Xω.

1. The function KS(ξ[·]) : IN→ IN is called plain or simple complexity of ξ.
2. The function Km(ξ[·]) : IN→ IN is called monotone complexity of ξ.
3. The function KA(ξ[·]) : IN→ IN is called a priori complexity of ξ.

We follow here, except for the monotone complexity, the notation of Uspensky
and Shen in [11]. In [1] strongly Martin-Löf-ε-random ω-words were introduced
as follows.

Definition 2. A computably enumerable set V ⊆ X∗ × IN is referred to as a
strong Martin-Löf-ε-test provided

1. ∀i(Vi+1 ·Xω ⊆ Vi ·Xω), where Vi := {v | (v, i) ∈ V} and
2. ∀i∀C(C ⊆ Vi ∧ C is prefix code →

∑
v∈C r

−ε·|v| < r−i) .

An ω-word ξ ∈ Xω is called strongly Martin-Löf-ε-random if and only if
ξ /∈

⋂
i∈IN Vi ·Xω for all strong Martin-Löf-ε-tests.



176 Jöran Mielke and Ludwig Staiger

We mention the following equivalence between strong Martin-Löf-ε-tests and
a priori complexity.

Lemma 1 ([1]). Let 0 < ε ≤ 1 be a computable number. Then an
ω-word ξ ∈ Xω is strongly Martin-Löf-ε-random if and only if
KA(ξ[0..n]) ≥a.e. ε · n−O(1).

Ryabko showed in [6] the following result on the set of ω-words having a bounded
asymptotic lower complexity (see also [7]).

Theorem 1 ([6]).

dim

{
ξ | ξ ∈ Xω ∧ lim inf

n→∞

KA(ξ[0..n])

n
≤ ε
}

= ε

Depending on the ε-dimensional measure of an ω-language we obtain a lower
bound on the complexity of the most complex ω-words in that ω-language.

Theorem 2 ([5]). Let F ⊆ Xω and Lε(F ) > 0. Then for all c > − logLε(F )
there is a ξc ∈ F such that KA(ξc[0..n]) ≥a.e. ε · n− c.

ω-words which, analogously to random ω-words, satisfy also a linear upper bound
for a priori complexity are referred to as oscillation-free.

Definition 3 ([10]). An ω-word ξ is called oscillation-free strongly Martin-
Löf-ε-random if and only if ξ is strongly Martin-Löf-ε-random and there is
a constant c such that KA(ξ[0..n]) ≤ ε · n+ c holds.

3 The Measure of the Set of ε-random Sequences

We start with mappings that preserve some properties of the measure of a lan-
guage and the behaviour of the complexity-function of an ω-word.

Definition 4. A computable function ϕ : X∗ → X∗ is called dilution function
provided ϕ is prefix-monotone, one-to-one and |ϕ(w)| = |ϕ(w′)| for all w,w′ ∈
Xn. A function g : IN→ IN is called modulus-function for ϕ provided |ϕ(w)| =
g(|w|) for every w ∈ X∗.

Every dilution function ϕ defines a mapping ϕ : Xω → Xω in the following
way: pref(ϕ(ξ)) = pref(ϕ(pref(ξ))). The following is an example of a dilution
function.

Example 1. Dilution functions can be defined inductively by inserting a fixed
string in front of every letter. Let X = {0, 1}. Then ϕ(e) := e and ϕ(wx) :=
ϕ(w)0x for every w ∈ X∗ and x ∈ X defines a dilution function with 1

2 -modulus.

In this paper we are interested in the following dilution functions.

Definition 5. Let ε with 0 < ε < 1 be a computable real. A computable function
g is called ε-modulus if and only if there is a constant c such that |ε·g(n)−n| ≤ c,
for all n ∈ IN.
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The mapping g(n) := dnε e is an example for an ε-modulus. If ϕ is a dilution
function with ε-modulus then for every w ∈ X∗ holds

−c ≤ ε · |ϕ(w)| − |w| ≤ c .

We obtain our first result on the relation of the measure of a language and its
image.

Lemma 2. Let F ⊆ Xω, 0 < ε < 1 computable and ϕ : X∗ → X∗ a dilution
function with ε-modulus g : IN→ IN. There are constants c1, c2 > 0, such that

c1 · L(F ) ≤ Lε(ϕ(F )) ≤ c2 · L(F ) .

Proof. The first inequality is shown as follows. Let W ⊆ X∗ cover ϕ(F ), that is,
ϕ(F ) ⊆W ·Xω and let l(W ) ≥ n. For every w ∈W we define vw as the unique
word with ϕ(vw) v w @ ϕ(vwx), for some x ∈ X. Since ϕ has an ε-modulus, we
have the following:

|vw| − c ≤ ε · |w| ≤ |vwx|+ c = |vw|+ 1 + c

Then the set V = {vw | w ∈ W} covers F . Now we obtain a bound of the
ε-dimensional measure of ϕ(F ) by the 1-dimensional measure of F :∑

w∈W
r−ε·|w| ≥

∑
w∈W

r−|vw|−1−c ≥ r−1−c
∑
v∈V

r−|v|

≥ r−1−c · inf

{∑
v∈V

r−|v| | F ⊆ V ·Xω ∧ l(V ) ≥ ε · n− c− 1

}

Taking the limit n→∞ we get our intended inequality Lε(ϕ(F )) ≥ c1 · L(F ).
To prove the second inequality we consider a set V with minimum length

l(V ) ≥ n that covers F . Now the set W = {ϕ(v) | v ∈ V } covers ϕ(F ) and we
can estimate∑

v∈V
r−|v| ≥ r−c ·

∑
w∈W

r−ε·|w|

≥ r−c · inf

{∑
w∈W

r−ε·|w| | ϕ(F ) ⊆W ·Xω ∧ l(W ) ≥ g(n)− c

}

Again, the limit n→∞ yields the announced inequality.

Since the constants c1 and c2 in Lemma 2 are positive, the following equivalence
of the 1-dimensional measure of F and the ε-dimensional measure of ϕ(F ) holds
true.

Corollary 3. Let F ⊆ Xω, 0 < ε < 1 computable and ϕ : X∗ → X∗ a dilution
function with ε-modulus g : IN → IN. The measures L(F ) and Lε(ϕ(F )) are
simultaneously zero, positive or infinite, respectively.
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To derive our main theorem we still need the following result from [10]. It
states that the a priori complexity of the ε · n-length prefix of an ω-word and
the n-length prefix of its image differ not too much.

Corollary 4 ([10]). Let ε, 0 < ε < 1, be a computable number. Then there is
a dilution function ϕ : X∗ → X∗ with strictly increasing ε-modulus g such that

|KA(ϕ(ξ)[0..n])−KA(ξ[0..ε · n])| ≤ O(1) for all ξ ∈ Xω and all n ∈ IN.

If the ω-word ξ is chosen to be random then ϕ(ξ) is an oscillation-free Martin-
Löf-ε-random ω-word.

As every (1-)random ω-word is also strongly ML-ε-random the Hausdorff
dimension of the set of all strongly ML-ε-random ω-words is 1. Theorem 1 shows
that the Hausdorff dimension of the set of all oscillation-free strongly Martin-
Löf-ε-random ω-words is bounded from above by ε. The next theorem calculates
its Hausdorff dimension and the corresponding measure.

Theorem 3. Let 0 < ε < 1 computable. The set Fε of all oscillation-free
strongly Martin-Löf-ε-random sequences has Hausdorff dimension ε and
infinite ε-dimensional measure.

Proof. Theorem 1 implies dimFε ≤ ε, since KA(ξ[0..n]) ≤ ε · n + c for every
ξ ∈ Fε. On the other hand, let ϕ be a dilution function with ε-modulus and F1

the set of all (1-)random sequences. Then, according to Corollary 4, ϕ(F1) ⊆ Fε.
Since F1 has positive, finite 1-dimensional measure, ϕ(F1) has positive, finite
ε-dimensional measure. Thus ε = dimϕ(F1) ≤ dimFε.

To show that the ε-dimensional measure of Fε is infinite, we find an infinite
family of pairwise disjoint subsets of Fε for which the ε-dimensional measure of
every set of the family is bounded from below by the same positive constant.
Let a, b ∈ X, a 6= b and k : IN→ IN. For every w ∈ X∗ and x ∈ X the function
ϕi is defined as follows: ϕi(e) = e and

ϕi(wx) =

{
ϕi(w)ak(|w|)x , if |w| 6= i
ϕi(w)bk(|w|)x , if |w| = i

Here the function k is to be defined in a way that all ϕi become computable
functions with ε-modulus. Since ε < 1, the set K := {i | k(i) > 0} is infinite.
Moreover for all i, j ∈ K, i 6= j, the sets ϕi(X

ω) and ϕj(X
ω) are disjoint.

Lemma 2 shows that there is a constant c > 0 such that Lε(ϕi(F1)) > c for
every i ∈ IN. Now we obtain

Lε(Fε) ≥ Lε(
⋃
i∈K

ϕi(F1)) =
∑
i∈K

Lε(ϕi(F1)) =∞ .

4 Complexity Bounds for ω-power Languages

In [8] for certain ω-power languages a necessary and sufficient condition to be
of non-null α-dimensional Hausdorff measure was derived. In this respect, for a
language V ⊆ X∗, the α-residue of V derived by w, the value

∑
v∈V/w r

−α|v|,
plays a special rôle.
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Theorem 4 ([8]). Let V ⊆ X∗ be a prefix code and
∑
v∈V r

−α|v| = 1. Then
α = dimV ω, and, moreover ILα(V ω) > 0 if and only if the α-residues of V are
bounded from above.

Thus in view of Theorem 2 such V ω contain sequences ξ having a linear lower
complexity bound α ·n− c. It is interesting now to observe that bounding the α-
residues of V from below yields a linear upper bound of slope α on the complexity
of ω-words in the closure C(V ω).

Lemma 3. Let V ⊆ X∗ be a computably enumerable prefix code. Let α be right-
computable such that

∑
v∈V r

−α·|v| = a ≤ 1 and the α-residues of V derived by
w ∈ pref(V ) are bounded from below. Then there is a constant c such that for
every ξ ∈ C(V ω)

KA(ξ[0..n]) ≤ α · n+ c .

Proof. In the same way as in the proof of Lemma 3.9 of [10] we construct a
left-computable semi-measure µ such that µ(w) ≥ c · r−α·|w| and use Eq. (1).
We have only to ensure that the construction works also in the case a < 1. The
construction is as follows.

µ(w) =


0 , if w /∈ pref(V ∗)∑
wv∈V r

−α|wv| , if w ∈ pref(V )
r−α·|w| , if w ∈ V ∗
µ(u) · µ(v) , if w = u · v with u ∈ V · V ∗ ∧ v ∈ pref(V ) \ V

(4)

Since V is a prefix code, the decomposition in the last line of the construction
is unique. The equation µ(w) =

∑
x∈X µ(wx) for every w ∈ pref(V ) \ V fol-

lows directly from the second case of the construction. For w ∈ V we have the
inequality∑
x∈X

µ(wx) = µ(w) ·
∑
x∈X

∑
xv∈V

r−α|xv| = µ(w) ·
∑
v∈V

r−α|v| = µ(w) · a ≤ µ(w)(5)

The inductive construction in the last line yields the inequality in the remaining
cases. To show that µ is left-computable we successively approximate the value
µ(w) from below. Let Vi be the set of the first i elements in the enumeration of
V and αi the ith approximation of α from the right. We start with µ(0)(w) := 0
and µ(j)(e) = 1 for j > 0. Suppose that the jth approximation µ(j) for all words
shorter than w is already computed. If there is a v ∈ Vj with w = v ·w′, w′ 6= e,
then µ(j)(w) = µ(j)(v) · µ(j)(w′). Otherwise µ(j)(w) =

∑
v∈Vj∧wvv r

−αj ·|v|.

Let cinf := inf
{∑

v∈V/w r
−α·|v| | w ∈ pref(V )

}
. Since µ is a left-computable

semi-measure, the following inequality holds true.

M(w) · cµ ≥ µ(w) = r−α|w| ·
∑

v∈V/w

r−α|v| ≥ r−α|w| · cinf

Taking the negative logarithm on both sides of the inequality we obtain KA(w) ≤
α · |w|+ log

cµ
cinf

for every w ∈ pref(V ∗).
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The following example shows, that in Lemma 3 we cannot omit the condition
that the α-residues are bounded from below. To this end we use a computable
prefix code constructed in Example (6.4) of [7].

Example 2. Let X={0,1} and consider W :=
⋃
i∈IN 0i+1 · 1 · Xi+1 · 04·i+3.

The language W is a prefix code. Its ω-power, Wω, satisfies α = dimWω =
dim C(Wω) = 1

3 and Lα(Wω) = Lα(C(Wω)). For every w ∈
⋃
i∈IN 0i+1 · 1 ·Xi+1

we have W/w = {04·i+3}. Thus
∑
v∈W/w r

−α·|v| = r−α·(4·i+3) and, consequently,

inf{
∑
v∈W/w r

−α·|v| | w ∈ pref(W )} = 0.

Now, in Eq. (6.13) and Proposition 6.15 of [7] it is shown that

supξ∈Wω lim supn→∞
KA(ξ[0..n])

n ≥ 1
2 >

1
3 = dimWω.

In connection with Theorem 4 our Lemma 3 yields a sufficient condition for
ω-powers to contain oscillation-free α-random ω-words.

Corollary 5. Let V ⊆ X∗ be a computably enumerable prefix code and α right-
computable such that

∑
v∈V r

−α·|v| = 1 and the α-residues of V derived by w ∈
pref(V ) are bounded from above and below. Then there is an oscillation-free
ML-α-random ω-word in V ω.

The results of Section 3.2 of [10] show that Corollary 5 is valid for prefix codes
which are regular languages. The subsequent example verifies that there are also
non-regular prefix codes which satisfy the hypotheses of Corollary 5.

Example 3. Let X = {0, 1} and consider the  Lukasiewicz language L defined by
the identity L = 0 ∪ 1 · L2. This language is a prefix code and Kuich [3] showed
that

∑
w∈L 2−|w| = 1. Thus the language V defined by V = 00 ∪ 11 · V 2 is also

a prefix code and satisfies
∑
v∈V 2−

1
2 ·|w| = 1. By induction one shows that for

v ∈ pref(V ) we have V/v = w′ · V k for suitable k ∈ IN and |w′| ≤ 1. Therefore
the α-residues of V derived by v ∈ pref(V ) are bounded from above and below.

For the monotone complexity Km a result similar to Lemma 3 can be obtained
for a smaller class of ω-languages. We start with an auxiliary result.

Proposition 1. 1. If V is computably enumerable and
∑
v∈V r

−α|v| = 1 then
α is left-computable.

2. If V is computably enumerable, α is right-computable and
∑
v∈V r

−α|v| = 1
then V is computable.

Proof. The proof of part 1 is obvious. To prove part 2 we present an algorithm
to decide whether a word w is in V or not.

Let Vj be the set of the first j elements in the enumeration of V and αj the
jth approximation of α from the right.

Input w
j := 0

repeat

j := j + 1
if w ∈ Vj then accept and exit

until r−αj |w| +
∑
v∈Vj r

−αj |v| > 1

reject
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If w /∈ V then the repeat until loop terminates as soon as
∑
v∈Vj r

−αj |v| >

1− r−αj |w| ≥ 1− r−α|w| because
∑
v∈Vj r

−αj |v| → 1 for j →∞.

Now we can prove our result on monotone complexity.

Lemma 4. Let V ⊆ X∗ be a computably enumerable prefix code. If α is right-
computable such that

∑
v∈V r

−α·|v| = 1 and the α-residues of V derived by w ∈
pref(V ) are bounded from below then there is a constant c such that for every
ξ ∈ C(V ω)

Km(ξ[0..n]) ≤ α · n+ c .

Proof. Because of Proposition 1 we can assume that α is a computable real
number and V is computable. We use Eq. (4) to construct µ as in the proof of
Lemma 3. Since a = 1, equality holds in Eq. (5). Thus µ is a measure and for
every v ∈ V ∗ the number µ(v) is computable. Since V is a computable prefix
code, for every w ∈ X∗ we can compute the unique decomposition w = v · w′
with v ∈ V ∗ and w′ /∈ V ·X∗. Now

µ(w) = µ(v) ·

1−
∑

v′∈V ∧w 6vvv′
r−α|v

′|


shows that µ is right-computable. If w′ /∈ pref(V ) then the last factor is zero.

Again let cinf := inf
{∑

v∈V/w r
−α·|v| | w ∈ pref(V )

}
. In view of Corollary 2

we get the bound

Km(w) ≤ − logµ(w) + cµ ≤ α · |w|+ cµ − log cinf

for every w ∈ pref(V ∗).

5 Plain Complexity

In this section we prove results analogous to Lemma 3 for the complexity KS.
First we derive a preparatory result. A similar lemma, for length-conditional
plain description complexity, is known from [7, 13].

Lemma 5. Let W ⊆ X∗ be computably enumerable, ε, 0 < ε < 1, be a com-
putable real number and let |W ∩X l| ≤ c · rε·l for some constant c > 0 and all
l ∈ IN. Then

∃C
(
C ∈ IN ∧ ∀w(w ∈W → KS(w) ≤ ε · |w|+ C)

)
Proof. Let X = {0, 1, . . . , r − 1} consist of r letters. Since ε is computable,
g(n) := dnε e is a computable function. Define a partial computable function
ϕ : X∗ → X∗ as follows.

ϕ(0k1v) := the vth word of length g(|v|)− k in the enumeration of W . (6)
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Here we interpret a word v ∈ Xn as a number between 0 and rn − 1.
As W has at most rε·(lo+l) words of length l, this enumeration process yields

{ϕ(0k1v) : v ∈ Xn} ⊇W∩X l as soon as n ≥ ε·(l0+g(n)−k) = ε·g(n)−ε·(k−l0).
Hence, KS(w) ≤ ε · |w|+O(1) for all w ∈W .

In order to apply Lemma 5 to languages V satisfying the conditions of Lemma 3
we show that a positive lower bound to the α-residues of V implies the upper
bound |pref(V ∗) ∩X l| ≤ c · rα·l for some constant c > 0 and all l ∈ IN.

Lemma 6. Let V ⊆ X∗ be a code,
∑
v∈V r

−α|v| ≤ 1 and
∑
v∈V/w r

−α|v| ≥ c′ >
0 for all w ∈ pref(V ). Then |pref(V ∗) ∩X l| ≤ c · rα·l for some constant c > 0
and all l ∈ IN.

Proof. First observe that w ∈ V ∗ if and only if w ∈ V l for some l ≤ |w|. Thus
pref(V ∗) ∩X l = pref(V l) ∩X l.

Let a :=
∑
v∈V r

−α|v|. Since V is a code, we have al =
∑
v∈V l r

−α|v| =∑
|w|=l,w∈pref(V ∗)

(
r−α·l ·

∑
v∈V l/w r

−α|v|).
Now, V l/w ⊇ V l−iw+1/w′ ⊇ (V/w′ · V l−iw) where w = v1 · · · viw−1 · w′ with

vj ∈ V and w′ ∈ pref(V ).
Thus,

∑
v∈V l/w r

−α|v| ≥
∑
v∈V/w′ r

−α|v| · al−iw ≥ c′ · al−iw ≥ c′ · al and we

obtain al ≥ r−α·l · |pref(V ∗) ∩X l| · c′ · al what proves our assertion.

Now, the fact that pref(V ∗) is computably enumerable if only V is computably
enumerable yields our result.

Lemma 7. Let V ⊆ X∗ be a computably enumerable code, α be right-computable

and
∑
v∈V r

−α·|v| = a ≤ 1. If inf
{∑

v∈V/w r
−α·|v| | w ∈ pref(V )

}
> 0 then

there is a constant c such that

KS(ξ[0..n]) ≤ α · n+ c for every ξ ∈ C(V ω) .

References

1. Calude, C. S. , L. Staiger and S. A. Terwijn, On partial randomness, Annals of
Pure and Applied Logic 138 (2006), 20–30.

2. Falconer, K. J. , “Fractal Geometry: Mathematical Foundations and Applications”,
John Wiley & Sons, 1990.

3. Kuich W., On the Entropy of Context-Free Languages, Information and Control,
16 (1970), 2, 173 – 200.
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