
Towards the Complexity of Riemann Mappings

(Extended Abstract)

Robert Rettinger1

Department of Mathematics and Computer Science
University of Hagen, Germany

Abstract. We show that under reasonable assumptions there exist Rie-
mann mappings which are as hard as tally]-P even in the non-uniform
case. More precisely, we show that under a widely accepted conjecture
from numerical mathematics there exist single domains with simple, i.e.
polynomial time computable, smooth boundary whose Riemann map-
ping is polynomial time computable if and only if tally]-P equals P.
Additionally, we give similar results without any assumptions using tally
UP instead of]-P and show that Riemann mappings of domains with
polynomial time computable analytic boundaries are polynomial time
computable.

1 Introduction

In this paper we will prove lower bounds on the complexity of Riemann map-
pings, i.e. conformal mappings of a simply connected domain onto D. Though
the existence of such mappings is well known, computability results or even com-
plexity results were unknown for a long time. Despite the fact that constructive
proof methods were known for the problem (see [Hen86])) before, a characteriza-
tion of those domains which have computable Riemann mappings was proven not
before [Her99]. In a recent paper, Binder, Braverman and Yampolsky [BBY07]
gave sharp bounds on the complexity of the corresponing functor, i.e. the func-
tor which maps domains to their Riemann mappings: This functor is]-P com-
plete. (Actually the authors showed that this functor is]-P hard and belongs to
PSPACE. Using similar techniques, however, even a sharp upper bound of]-P
can be proven (see [Ret08a]).)

Using the proof techniques of [BBY07] it is not hard to show that this functor
remains]-P complete even if we restrict the class of domains to those domains
which have analytic boundaries. On the other hand, the Riemann mapping of any
domain with polynomial time computable analytic boundary can be computed
in polynomial time as we will show in Section 4. This underlines that hardness
of the functor does not necessarily imply hardness of the mappings themselves
and raises the question on the complexity of Riemann mappings in general. In
Section 5 we will prove, however, that even the complexity of a single Riemann
mapping can be as hard as tally]-P under reasonable assumptions. Furthermore
we will give a new proof on the (uniform) lower bound of Riemann mappings.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.)
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 209-220
http://drops.dagstuhl.de/opus/volltexte/2009/2272

210 Robert Rettinger

Our proofs in the non-uniform case will heavily depend on this proof. Besides,
this new proof might be of some interest itself as we will use only potential
theoretic techniques. Some basic notations of complex analysis, complexity and
Type-2 theory are given in the following section.

2 Preliminaries

We denote the set of natural, integer, rational, dyadic, real and complex numbers
by N, Z, Q, Y, R and C, respectively. Here, a dyadic number is a number of
the form i/2j with i and j integers. As we quite often use the symbol i as
an index, we denote the imaginary unit

√
−1 by ι̂ instead. The imaginary and

real part of a complex number z are denoted by =(z) and <(z), respectively.
We identify C and R × R in the usual sense and denote the distance between
two numbers z, z′ by d(z, z′) = |z − z′| and the (Hausdorff)-distance between
two sets M,N by d(M,N) = sup{d(z′, N), d(z′′,M)|z′ ∈ M, z′′ ∈ N}, where
d(z,M) = d(M, z) = inf{d(z, z′)|z′ ∈ M}. Furthermore let Dε(z0) denote the
open disc of radius ε with center z0. To simplify notation we use Dε := Dε(0)
and D = D1.

For an open subset G of C, a function f : G→ C is called holomorphic iff its
complex derivative f ′ exists throughout G. A holomorphic function f is called
conformal on A iff |f ′(z)| > 0 for all z ∈ A. If f is conformal throughout its
domain we simply say that f is conformal.

Beside functions we allow also multi-functions, denoted by f :⊆ M ⇒ N
and f : M ⇒ N for partial and total multi-function, respectively. We will use
both notations f(x) = y and f(x) 3 y to denote that y belongs to the image
of x under a multi-function f . Furthermore, for a function (or multi-function)
f :⊆ G→ G′ and H ⊆ G we denote the restriction of f to H by f |H .

Before turning to Type-2 objects, we will recall some notions of discrete
complexity theory. For more details see e.g. [DK00] or [Sip97]. We denote by
FP and P the class of polynomial time computable functions f : Σ∗ → Σ∗ and
polynomial time decidable languages L ⊆ Σ∗, respectively. (Σ denotes here and
later on a finite alphabet.) Restricting the alphabet Σ to a single symbol, say 0,
leads to tally functions and sets. The corresponding classes will be denoted by
the subscript 1, i.e. FP1, P1, etc.

Beside we will also need the classes]P and UP.]P denotes the class of
functions h : Σ∗ → Σ∗ so that there exists some L ∈ P and polynomial p
with h(u) = |{v ∈ Σ∗ | |v| = p(|u|) ∧ (u, v) ∈ L}| for all u ∈ Σ∗. UP denotes
the class of languages L so that there exist L̂ ∈ P and polynomials p with
L = {v ∈ Σ∗|∃!u.|u| ≤ p(|v|)∧ (u, v) ∈ L̂} and Σ∗ \L = {v ∈ Σ∗|∀u.(u, v) 6∈ L̂},
where ∃!u denotes as usual the fact that there exists exactly one u.

The usual notation of separating complexity classes (or classes in general) is
to simply ask for a language, which belongs to the first but not to the second
class. Another notion used in literature is separation almost everywhere which
can be expressed by the related notion of immune languages (see [DK00]). We will
need in this paper a stronger separation notion than the usual one provides. On

Towards the Complexity of Riemann Mappings 211

the other hand we do not need the full power of almost everywhere separation.
We will therefore introduce next a kind of separation, which lies between the
usual separation and almost everywhere separation. We define this for function
classes over the alphabet {0} only.

Definition 1. Let Σ = {0}. Then a function f : Σ∗ → Σ∗ is called selectively
separable by a function s : N→ N from a class K iff for every g ∈ K, g : Σ∗ →
Σ∗ there exists some i ∈ N so that g(0s(i)) 6= f(0s(i)).

Furthermore we say that we can separate two classes K1 and K2 selectively
(K1 6=sel K2) iff for every strictly monotone time constructible function s : N→
N there exists a function f : Σ∗ → Σ∗ in K1 which is selectively separable by s
from K2 or vice versa.

Next, let Σ∗∗ denote the set (Σ∗)Σ
∗
, i.e. the set of total functions f : Σ∗ →

Σ∗. We fix some standard tuple function 〈·〉 on (Σ∗∗)
n

mapping products to
Σ∗∗.

To give a natural notion of complexity we extend the Type-2-Turing machine
model by allowing some kind of indirect access to the input tapes. Formally
we realize this by a new definition of representations and the usage of oracle
machines, where oracles are elements of Σ∗∗, i.e. functions rather than languages.
Queries to the oracle are here answered by the function value of the string on the
oracle tape. An oracle Turing machine M computes a function fM :⊆ Σ∗∗ → Σ∗∗

in the following sense: fM (α) is defined to be β iff for each w ∈ Σ∗ the machine
M together with the oracle α outputs β(w). For fixed α we can define the
time complexity as usually. We denote the class of such functions of polynomial
time complexity (independently of α) by FP∗. In a similar way even relative
computations with respect to some oracles can be defined. Details can be found
in [Ret08a].

To introduce complexity on more general Type-2 objects we fix a set of stan-
dard representations, i.e. surjective functions ν :⊆ Σ∗ → M or ν :⊆ Σ∗∗ → M
onto the represented set M , next. A (multi)function g :⊆M → N is then called
polynomially time computable if there exists a polynomially time computable re-
alization, i.e. a function f :⊆ A→ B for some A,B ∈ Σ∗∗ so that f ◦νM = νN ◦g
on dom(νM) where νM and νN denote the standard representation of M , N , re-
spectively. We will denote the corresponding complexity class again by FP∗.

Dyadics will be given by their dual representation, denoting the decimal
point by ., i.e. νY(w.v) = νdual(w) + νdual(v) · 2−|v| and νY(−w.v) = −(νdual(w) +
νdual(v) · 2−|v|) for w, v ∈ {0, 1}∗, w[0] 6= 0, where νdual denotes the dual nota-
tion of natural numbers. Complex dyadics are represented by pairs of dyadics:
νY[ι̂](〈d0, d1〉) = νY(d0) + ι̂νY(d1) for all d0, d1 ∈ dom(νY).

A real number x is represented as a sequence of dyadics, which converges
fast to x, i.e. νR(f) = x ⇔ ∀w ∈ Σ∗.|νY(f(w)) − x| < 2−|w| for all f ∈ Σ∗∗.
Finally, by identifying C and R×R, we get our standard representation of C by
νC = νR×R.

Now let G, G′ be subsets of C. Then the standard representation νA :⊆
Σ∗∗ → A of a subclass A of Cont(G,G′) = {g : G → G′ | g continuous} is

212 Robert Rettinger

defined by

g ∈ νA(f)⇔ ∀z ∈ ν−1Y[ι̂](G).∀n ∈ dom(νN).|f(〈n, z〉)− g(νY(z))| < 2−n

for all g ∈ A, f ∈ Σ∗∗. The main point of this representation is that we can
evaluate functions. For domains there are several different representations. We
will use the following representation based on the distance to the boundary.

The representation ν<⊆C :⊆ Σ∗∗ ⇒ (2C\{C}) is defined via a modified distance

function. For f : dom(νN) × dom(νY[ι̂]) → dom(νR) let ν<⊆C(f) = A ⊆ C iff

3/4 · d(νY[ι̂](z)) − 2−νN(n) < |νR(f(n, z))| < d(νY[ι̂](z)) for all n ∈ dom(νN) and

all z ∈ ν−1Y[ι̂](A), where d(z) := infz′∈∂G |z − z′|.
Let A be a represented set. Then we say that a function f :⊆ A→ R+ belongs

to]P∗, iff there exists a polynomial p and a polynomial time computable function
g :⊆ A × Σ∗ → R+, so that f(a) =

∑
w∈Σp(n) g(a,w) for all a ∈ dom(f) (as

usually n denotes the length of the input of finite length).

3 Riemann mappings

In this section we will summarize some central results on Riemann mappings.

Theorem 1. Let G be a bounded simply connected domain. Then for every z ∈
G and φ ∈ [0; 2π] there exists a unique conformal mapping fz,φG : G→ D so that

fz,φG (z) = 0 and the argument of (fz,φG)′(z) is φ.

We will denote these Riemann mappings usually in the way of the above
theorem where we omit φ and/or z if φ = 0 and/or z = 0, or if these parameters
are uniquely determined by the context. If G is a Jordan domain, the Riemann
mapping continues topologically onto the boundary (see [Pom92] for details).
If the boundary γ of G is even analytic, the Riemann mapping continues even
holomorphically, which can be easily seen by the reflection principle.

To simplify things, we will restrict ourselves in the sequel to the class of
simply connected domains which are contained in the disk D4/5 and contain the
disk D3/5. This class of simply connected domains will be denoted by G in the
sequel. For more general classes of simply connected domains the ideas given
below can be easily adapted as long as the domains are bounded. This can for
example be achieved by the usual square root transformation (see e.g. [Hen86]).
Alternatively, the osculation method can be used to reduce the domain. This
method converges fast as long as the domain is far away from the unit disc (with
respect to the Hausdorff distance). Furthermore we will compute the Riemann
mapping on a fixed compact subset of its domain. We can then get the full
Riemann mapping by continuation (see e.g. [Ret08b]).

Theorem 2 ([BBY07],see also [Ret08a]). There exists a function Fconf :⊆
G× D1/2 → D, F ∈ FP]P∗∗ , mapping each simply connected domain G ∈ G and
point z ∈ D1/2 to fG(z).

Towards the Complexity of Riemann Mappings 213

If we restrict the above function to boundaries, which can be computed in
time bounded by a fixed polynomial, then the Riemann mapping can be com-
puted by polynomially time bounded machines with access to a]P -oracle.

The proof of the above theorem shows that slight changes in the shape of the
domain G will only slightly change the Riemann mapping. We will use this fact
e.g. to give a polynomial upper bound for the Riemann mapping for analytic
boundaries in Section 4 below.

Corollary 1. There exists a polynomial p so that for all G,G′ ∈ G we have:
The Riemann mappings f and g of G and G′, respectively, determined by f(0) =
g(0) = 0 and f ′(0) > 0, g′(0) > 0 differ by at most 2−n on z ∈ D1/2, i.e.

|f(z)− g(z)| ≤ 2−n, if the Hausdorff distance of G and G′ is at most 2−p(n).

4 Analytic Boundaries

In this section we will show that for any simply connected Jordan domain G with
analytic, polynomial time computable boundary, the Riemann mapping from G
is always computable in polynomial time. To prove this we will use a technique
based on the Bergman kernel function and orthonormal polynomials.

For given G ∈ G and i ∈ N let in the sequel pi denote the i-th orthonormal
polynomial, determined by the sequence 1, z, z2, ... and the Gram-Schmidt
algorithm, using the inner product 〈·, ·〉 defined by

〈f, g〉 =

∫ ∫
G

f(z)g(z)dxdy

for all f, g ∈ L2(G,C), where L2(G,C) denotes the space of square integrable
complex functions on G (see e.g. [Gai87]).

Lemma 1. Let G ∈ G be a Jordan domain with its boundary given by a polyno-
mial time computable conformal mapping δ : U → D of an open neighborhood U
of ∂D. Then the sequence p0, p1 ,... of orthonormal polynomials is computable
in polynomial time.

Notice that orthonormal polynomials can be computed efficiently even in
other cases, e.g. in the case of Schwarz-Christoffel mappings. However, it is not
known, if the polynomials in this case can be used to compute the Riemann
mapping efficiently.

Once we have these orthonormal polynomials for a domain G ∈ G, we can
build a fast algorithm to compute the Riemann mapping upon a well known
relation of the Riemann mapping and the Bergmann kernel K : G×G→ R (see
e.g. [Neh52]).

Theorem 3. Let G ∈ G be a Jordan domain with its boundary given by a poly-
nomial time computable conformal mapping δ : U → D of an open neighborhood
U of ∂D. Then fG is computable in polynomial time, where fG denotes the
uniquely determined Riemann mapping with fG(0) = 0 and f ′G(0) > 0.

214 Robert Rettinger

Proof: We have the well know relation between the Bergmann kernel
function and fG

f ′G(z) =

√
π

K(0, 0)
·K(z, 0).

Furthermore the Bergmann kernel function can be expressed by means of the
orthonormal polynomials p0, p1, ... of G via K(z, 0) =

∑∞
j=0 pj(0) · pj(z), where

the convergence is uniformly on any compact subset of G. Approximating the
Bergmann kernel function by Kn (n ∈ N), where Kn(z, 0) =

∑n−1
j=0 pj(0) · pj(z)

gives us the the Bieberach polynomials qi (i ∈ N), determined by qi(z) =∑n
j=0

∫ z
0
Ki−1(z,ζ)dζ√
Ki−1(0,0)

for i ∈ N.

By Lemma 1, the Bieberach polynomials can be computed in polynomial
time. Notice, as the sequence Ki(0, 0) converge to K(0, 0) 6= 0, the Ki(0, 0) are
bounded away from 0 by a constant for all but finitely many i’s. Furthermore
we know that for analytic boundaries there exists M > 0 and q ∈ (0; 1) so that
|fG(z) − qi(z)| < M · qi for all z in say D1/2 and all i ∈ N (see [Gai87]). Thus
we can compute fG in polynomial time on D1/2. As continuation of holomorphic
mappings can be done in polynomial time (see e.g. [Mül93]) and the fact that
fG can be continued to a whole neighborhood of G by the reflection principle,
proves that fG can be computed in polynomial time throughout G.

�

5 Towards lower bounds

In this section we will first give a new proof for the lower bound on Riemann
mappings in the uniform case first shown in [BBY07]. Afterwards we will turn
to the non-uniform case. Our proof of the following theorem will use only basic
ideas of potential theory.

Theorem 4 ([BBY07]). If F : G → D with F (G) = f ′G(0) is computable in
polynomial time, then every function in]P∗ is computable in polynomial time.
Especially we have that if F is computable in polynomial time then]P = FP .

Even for restrictions of F to those domains G ∈ G whose boundaries are
analytic or polygons, this result holds, i.e. if this restrictions are computable in
polynomial time then]P∗ = FP∗.

Proof: The second statement follows from the first one by suitable ap-
proximations of general domains by the restricted ones using Corollary 1 above.

To prove the first statement, notice that f ′G(0) = e−u, where u is the solution
of the Dirichlet problem with boundary values z 7→ loge(|z|) for z ∈ ∂G. We will
thus code the behavior of a Turing machine M into such a boundary value
problem. In contrast to the construction in [BBY07] we will use the slit map
rather than the crescent map, which simplifies things further. Nevertheless, using
the ideas below, even the construction of the domains in [BBY07] could be used
to prove the above result with potential theoretic ideas only.

Towards the Complexity of Riemann Mappings 215

Our construction will be based on the slit map (see [Hen86], Chapter 16). Let
therefore, for given ρ ∈ (0; 1), S(ρ) denote the straight line from −1 to −ρ and
furthermore, by Dρ the set Dρ. Then a conformal mapping hρ : Dρ → D with
hρ(0) = 0 is given by hρ(z) = (sρ(z)− 1 + z)/(sρ(z) + 1− z) for all z ∈ D \ Sρ,
where we use the abbreviation sρ(z) =

√
(1 + ρ(z))(1 + 1

ρz). Furthermore for

h′ρ(0) we have h′ρ(0) = (1+ρ)2

4ρ (see [Hen74]).
The main point of giving this map explicitly is that we can easily compute

|h′ρ(0)| and thus log |h′ρ(0)|.

Claim. There exists a mapping h : (1/2; 1) → R with h(ρ) = h′ρ(0) for all ρ ∈
(1/2; 1), which is computable in time O(n2). Furthermore there exist constants
c0, c1, c2 > 0, so that c0 · (1− ρ)2 < h′ρ(0)− 1 < c1 · (1− ρ)2 and | loge(h

′
ρ(0)| >

c2 · (1− ρ)2 for all ρ > 3/4.

We assume now that F is polynomial time computable and L ∈]P∗ \ FP∗,
L : A → R+ for some represented space A. In a first step we will reduce L to
a problem in]P . Let M be a polynomial time computable Turing machine and
q be a polynomial, so that on every input a ∈ A, n ∈ N and w ∈ Σ∗ with
|w| = q(n), M stops in exactly q(n) steps, outputs oM (a, n, w) ∈ Y+ and fulfills

|L(a)−
∑

w∈Σq(n)

oM (a, n, w)| ≤ 2−n.

For given input a ∈ A and a precision 2−n, we are thus asked to compute L(a) up
to this precision. As we have to add up at most 2q(n) values, we have to compute
each of the elements of the above sum up to precision 2−(n+q(n)) only. This can
be done by an addition of 2q(n) integers of at most n + q(n) bits each with an
appropriate shift afterwards. As this shift is polynomial time computable, we can,
by a standard manipulation of M , give a Turing machine N and a polynomial p
with the following properties:

1. N stops on input a ∈ A, n ∈ N and every w ∈ Σp(n) in at most p(n) steps
with output oN (a, n, w) ∈ {0, 1} and

2. L(a) can be computed from L̂(a, n) =
∑
w∈Σp(n) oN (a, n, w) in polynomial

time for every a ∈ A and n ∈ N.

Let some a ∈ A, n ∈ N with n > 2 be given. We construct, using the slit map
above, some Ga,n ∈ G so that for fGa,n with fGa,n(z) = F (Ga,n, z) we have

L̂(a, n) = bloge(f
′
Ga,n(0))/ loge(h

′
1−2−m(0))c,

where m is polynomially bounded in n and will be chosen later on. Thus, if F is
polynomial time computable, clearly L is polynomial time computable too. We
will give here a slightly more general result than necessary by introducing an
additional parameter ε. We will need this general result in the proof of Theorems
5 and 6 later on. For given v ∈ Σp(n) and ε ∈ (0; 2π) let φεv := ε2−(p(n)) ·

216 Robert Rettinger

(νdual(1v) − 2p(n)). The values φεv of all such v are in the interval [0; ε] and for
different u, v ∈ Σp(n) we have |φv − φu| ≥ ε · 2−p(n). Now let

Gεa,n =
⋃

v∈Σp(n)

oN (a,n,v)=1

e−iφ
ε
v ·D1−2−mε .

Notice that for fixed ε ∈ Y∩ (0; 1), the function H : A×N→ G with H(a, n) =
Gεa,n for all a ∈ A, n ∈ N, is polynomial time computable. By the above discus-

sion it remains to show that we can compute L̂(a, n) efficiently from f ′Gεa,n(0),

because then L can be computed in polynomial time in contradiction to our
assumption.

Claim. Let ε ∈ (0; 2π), n ∈ N be given and mε(n) = d4 · p(n) + log(1/ε) +
log(c2)e+15. Then L̂(a, n) = bloge(f

′
Gεa,n

(0))/ loge(h
′
1−2−mε(n)(0))c for all n ∈ N.

As we consider a fixed n ∈ N in the sequel we will write mε instead of
mε(n), for short. The main work in showing the above equation is, to bound
the cross terms introduced to the Riemann mapping when combining the dif-
ferent slit maps. To this end we will use the relation between the Brownian
motion and potentials as already considered in the last section. Let therefore,
for given G ∈ G, z ∈ G and Z ⊆ ∂G, pG(Z|z) denote the probability to end
up in Z when we start in z. To be more precise, let for z ∈ G, BtG(z) denote
the Brownian motion process, which starts in z. Furthermore let T be the first
time BtG(z) hits the boundary ∂G. Then for given continuous or piecewise con-
stant and bounded values v(x) ∈ R (for boundary points x ∈ ∂G) we know that
f : G → R, f(z) = E(v(BTG(z))), is the unique solution to the corresponding
Dirichlet problem (where E(X) denotes the expectation of the random variable
X). Furthermore pG(Z|z) is the expectation pG(Z|z) = E(χZ(BTG(z))). To sim-
plify things we will in addition use the notation pG(Z|z Z ′) meaning the
probability to end up in Z ⊆ ∂G, starting in z ∈ G and visiting at least once a
point in Z ′ ⊆ G.

A main tool in bounding the probabilities is the Poisson formula

u(z) =
1

2π
·
∫
∂D
v(y) · 1− |z|2

|z − y|2
dy

which gives an explicit solution to the Dirichlet problem if G = D. Unfortunately,
however, Gεw is likely to be not D (unless L̂(n, a) = 0). By the following result
we can nevertheless use Poissons formula, where we use the abbreviation ∂mε :=
∂D ∩ D2−mε (−1):

Claim. For all z ∈ S1−2−mε we have

pD(∂mε |z) =
1

2π
·
∫
∂D
χ∂mε (y) · 1− |z|2

|z − y|2
dy >

3

4
.

Towards the Complexity of Riemann Mappings 217

Let u : Gεa,n → R be the solution of the Dirichlet problem with boundary

values v(x) = log(|x|) for x ∈ ∂Gεa,n, especially we have f ′Gεa,n(0) = e−u(0). We

will bound the difference of u(0) and L̂(n, a) · | loge(h
′
1−2−mε (0))| accordingly.

Notice that L̂(n, a) is the number of slits in Gεa,n. Each slit, say at angle φ = φεv,
taken alone, adds a value loge(h

′
1−2−mε (0)) to u0. However, not every path in

the Brownian motion, which ends at the slit eι̂φ ·S2−mε on (eι̂φ ·D2−mε), will also
end there on Gεa,n, because it might hit another slit in between. (As loge(1) = 0
only the hits of slits are counted.) To simplify things we will use the abbreviation
Sφ := eι̂φ · S2−mε and Dφ = D \ Sφ in the sequel.

As pGεa,n(Z|z Z ′) ≤ pGεa,n(Z ′|z) · supz′∈Z′ pGεw(Z|z′) for all z, z′ ∈ Gεa,n
and Z,Z ′ ⊆ Gεa,n, we can bound the difference |u(0)− L̂(n, a) · loge(h

′
1−2−mε (0))|

by the sum of the probabilities to miss a slit Sφεv in Gεa,n, because of hitting a
slit Sφεu first. For given z ∈ Sφεu we have

pGεa,n(Sφεv |z) ≤
4

3

1

2π
·
∫
∂D
χ∂mε (y) · 1− |z|2

|z − y|2
dy.

As 1− |z|2 ≤ 2−mε+1 − 2−2mε ≤ 2−mε+1 and |z − x|2 ≥ ((1/π) · (ε · 2−p(n) − 2 ·
2−mε))2 ≥ 2−2p(n)+3 for all z ∈ Sφεu and x ∈ ∂mε , we get

pGεa,n(Sφεv |z) ≤
4

3
· (2 · π · 2−mε+1) · (2−mε+1/(ε · 2−(2p(n)+3))).

Furthermore we have pGεw(Sφu |0) ≤ 4
3 · 2π · 2

−mε+1 thus giving

|u(0)− L̂(n,w) · loge(h
′
1−2−mε (0))| ≤ 22p(n) · 2−2(mε−5) · 2−mε+1

(ε · 2−2(p(n)+3))
.

Notice that by the above cross-terms the probability to hit a slit is decreased,
i.e. u(0) ≥ L̂(n, a) · loge(h

′
1−2−mε (0)). As | loge(h

′
1−2−mε (0))| > c2 · 2−2·mε we get

L̂(n, a) + 1/2 ≥ u(0)/ loge(h
′
1−2−mε (0)) ≥ L̂(n, a)

which proves the theorem. �

The previous theorem states that we cannot compute the Riemann mappings
for all G in a uniform way. As shown in Section 4, this does not mean that the
Riemann mapping for each G ∈ G cannot be computed in polynomial time. This
raises the question, wether there exists a single domain G in G, which is poly-
nomial time computable, but the Riemann mapping fG of G is not polynomial
time computable under reasonable assumptions. We restrict ourselves to com-
puting this map on a small neighborhood of 0 and we will answer this question
affirmative under the following conditions:

1. if UP1 6=sel FP1 or
2. if]P1 6=sel FP1 and in addition Conjecture 1 on the existence of Schwarz-

Christoffel mappings holds.

218 Robert Rettinger

Notice that any such result is involved with tally classes, i.e. classes of languages
in {0}∗ rather than languages over alphabets with more symbols. This stems from
the fact that we can compute the Riemann mapping on any compact subset of
G, say to precision 2−n, by asking a single question to a]P oracle. (Actually we
need a polynomial number of such queries. However, these can be coded into a
single query of a modified oracle.)

We will start to prove the existence of the domain G under the first condition.

Theorem 5. If UP1 6=sel FP1 then there exists a polynomial time computable
domain G ∈ G, so that fG is not polynomial time computable.

Proof: Let L be a function in UP1, which is selectively separated from
FP1. L is obviously a function in]P with values in {0, 1}. Thus we can use all
the notations of the proof of Theorem 4 also here. Notice, however that we start
already with some function in]P and thus we do not have to reduce to such
a function first. So we use L instead of L̂ here and furthermore the parameter
a used in the proof of Theorem 4 does not appear here. Especially, let N be a
Turing machine and p be a polynomial with the following properties:

1. N stops on input w and every v ∈ Σp(|w|) in at most p(|w|) steps with output
oN (w, v) ∈ {0, 1} and

2. L(w) =
∑
v∈Σp(|w|) oN (w, v)

for every w ∈ Σ∗.
The main idea of the proof is as follows. Using the techniques of the proof of

Theorem 4 above, we construct a domain G ∈ G in steps i, where we determine
in each step a domain Gi, a conformal mapping fi : Gi → D and a natural
number ni so that (1) we can compute L(0ni) from f ′Gi(0) in polynomial time
and (2) Gi differs from Gi+1 (in the Hausdorff metric) by at most 2−ni+1.

Thus, by defining the ni large enough, we can ensure that there exists aG ∈ G
with dH(Gi, G) ≤ 2−ni+2 and the difference of f ′G(0) and f ′Gi(0) is small enough,
so that we can still compute L(0ni) from f ′G(0) in polynomial time. To this end
we have simply to ensure that ni+1 > q(ni), where the polynomial is given
by Corollary 1. Once we have constructed Gi, fi and ni with this property we
proceed in step i+1 as follows: First we find some n′i+1 so that we can compute fi
in polynomial time for all inputs of length at least n′i+1. Then we choose ni+1 to
be the maximum of q(ni) and n′i+1. Following the idea of the proof of Theorem
4 we can compute a domain G1

ni+1
so that L(0ni+1) can be computed from

f ′G1
ni+1

(0) in polynomial time. If we finally fix Gi+1 to be Gi+1 = f−1i (G1
ni+1

)

and fi+1 = fG1
ni+1
◦ fi, we can still compute the value L(0ni+1 from f ′i+1(0) in

polynomial time: Simply divide f ′i+1(0) by f ′i(0) to get f ′G1
ni+1

(0). As f ′i(0) can

be computed in polynomial time by choice of n′i+1, we are done. Notice that
we can define n′i+1 because fi is a composition of Riemann mappings fG′ for
slit-maps G′ as L(0ni) ∈ {0, 1} for all i.

�

Towards the Complexity of Riemann Mappings 219

Using the ideas of the previous proof, we can also show the existence of G in
the second case. Before giving this result we need to specify the conjecture on
the existence of efficient algorithms for Schwarz-Christoffel mappings.

We will consider polygons given by the list of their vertices, which we assume
to be complex dyadics. Furthermore we restrict ourselves to polygons which are
the boundary of some domain in G. Let Polygon be the set of the polygons
restricted in such a way. Furthermore we introduce a standard representation
νPolygon :⊆ Σ∗ → Polygon by simply taking 〈d1, ..., dn〉 to be a νPolygon-

name for a polygon γ, iff the di’s are names of the complex dyadic vertices of γ
in counter clockwise order. Finally we will not distinguish between polygons γ
and the corresponding domains with boundary γ, which we denote by I(γ).

By the well known Schwarz-Christoffel formula (see e.g. [DT02]), fγ is deter-
mined by

f−1γ (z) = C ·
∫ z

0

(1− x/zk)αk−1dx

where zk are the images fγ(wi) of the vertices wi of γ, αkπ are the interior angles
of γ and C is a positive real number. We can compute the integral above quite
efficiently once we know C and z1,...,zk. The determination of these parameters
is called the parameter problem of the Schwarz-Christoffel mapping. The usual
way to solve this problem in numerics is to consider the non-linear system com-
posed of the side-length conditions and a transformation to get an unconstrained
system, i.e. to get rid of the condition on the ordering of the vertices and images
of the vertices. Then this system of equations is solved by well known methods.
There exist however examples, where this leads to local solutions which are not
solutions for the Schwarz-Christoffel parameter problem. We do not know wether
these methods are applicable to our problem. Notice however that in contrast
to the general parameter problem, the polygons used in the proof below, can be
chosen up to some degree, thus probably simplifying the problem.

There are other methods to solve the parameter problem, for example by
deriving conditions on the so called cross ratios (see [DV98]). This seemingly
leads to equations, which might be solvable efficiently in general.

Unfortunately, however, there does not exist an analysis of these methods,
which can be translated to the rigorous definition of complexity we need. Thus
we will give here the result we need, and which is claimed in a much stronger
sense in numerical analysis, as a conjecture.

Conjecture 1. There exists a polynomial p and a computable function FSC :
Polygon × D → N × D so that for each γ ∈ Polygon there exist nγ so that
FSC(γ, z) = (nγ , f

−1
γ (z)) for all z ∈ D, and FSC is computable in time O(nγ ·p).

Here fγ denotes the Riemann mapping with fγ(0) = 0 and f ′γ(0) > 0.

Using a similar proof technique as in the first case we can show the existence
of the domain G also in the second case:

Theorem 6. There exists a polynomial time computable (Jordan) domain G ∈
G, so that fG is not polynomial time computable if]P1 6=sel FP1 and Conjecture
1 holds.

220 Robert Rettinger

6 Remarks

We have proved lower bounds on the complexity of Riemann mappings even
in the computational case. As shown, a proof that the parameter problem of
Schwarz Christoffel mappings is polynomial time computable, which is undoubt-
edly interesting on its own, would improve upon the bound we have given. An-
other interesting question is, wether it is possible to prove such a result for more
general separation assumptions than the selective separation we have used.

Finally, a more general connection between orhtonormal polynomials and fG
for domains with non-analytic boundaries would be interesting. (Such results
exist, but the corresponding speed of convergence for the Bieberach polynomials
is too slow to be reasonable applicable, see e.g. [Gai87].)

For domains with analytic boundaries, a polynomial time algorithm for the
Riemann mapping can be also deduced differently, by different relation of the
Riemann mapping and orthonormal polynomials via a theorem by Carlemann
(see [Gai87] for more details).

References

[BBY07] I. Binder, M. Braverman, and M. Yampolsky, On computational complexity
of Riemann mapping, Arkiv for Matematik (2007), to appear.

[DK00] D.-Z. Du and K.-I Ko, Theory of computational complexity, Wiley-Interscience
Series in Discrete Mathematics and Optimization, 2000.

[DT02] T. A. Driscoll and L. N. Trefethen, Schwarz–Christoffel mapping, Cambridge
Monographs on Applied and Computational Mathematics, vol. 8, Cambridge
University Press, Cambridge, UK, 2002.

[DV98] T. A. Driscoll and S. A. Vavasis, Numerical conformal mapping using cross-
ratios and Delaunay triangulation, SIAM Journal on Scientific and Statistical
Computing 19 (1998).

[Gai87] D. Gaier, Lectures on complex approximation, Birkhäuser, 1987.
[Hen74] P. Henrici, Applied and complex analysis. Vol. 1, Pure and Applied Mathe-

matics, John Wiley & Sons, New York, 1974.
[Hen86] , Applied and computational complex analysis. Vol. 3, Pure and Ap-

plied Mathematics, John Wiley & Sons, New York, 1986.
[Her99] P. Hertling, An effective Riemann Mapping Theorem, Theoretical Computer

Science 219 (1999), 225–265.
[Mül93] N. Th. Müller, Polynomial time computation of Taylor series, JAIIO - Panel,

Part 2, 1993, Buenos Aires, 1993, pp. 259–281.
[Neh52] Z. Nehari, Conformal mapping, Dover Publications, New York, 1952.
[Pom92] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag,

1992.
[Ret08a] R. Rettinger, Computability and complexity aspects of univariate complex

analysis – habilitation thesis, 2008.
[Ret08b] , On the continuation of holomorphic functions, CCA, 2008.
[Sip97] M. Sipser, Introduction to the theory of computation, PWS Publishing, 1997.

