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Abstract. A random iteration algorithm for graph-directed sets is de-
fined and discussed. Similarly to the Barnsley-Elton’s theorem, it is
shown that almost all sequences obtained by this algorithm reflect a
probability measure which is invariant with respect to the system of
contractions with probabilities.

1 Introduction

The motif of this article is the random iteration algorithm for a family of graph-
directed sets. According to Barnsley [1], the random iteration algorithm can be
used to picture a fractal defined by a finite number of contractions. Our interest
is to extend this idea to graph-directed sets (cf. [7], [8], [9], [10]).

Our present interest was originally motivated by the work of Brattka [4], in
which Brattka presented an example of a “Fine-computable” function which is
not “locally uniformly Fine-computable.” The graph of Brattka’s function can
be characterized as a graph-directed set, and in [10] we have depicted graphs of
some graph-directed sets by using a deterministic algorithm.

The random iteration algorithm is an alternative for picturing some invariant
sets. Let us briefly explain this algorithm according to Barnsley and Elton (cf.
11, 2], [6]).

Let {S1,52,...,Sk} be a family of contractions on RZ. Let (p1,p2, -, DK
be a system of probabilities assigned to {Si,Sa,...,Sk}, where p; > 0 (i =
1,...,K) and Zfil p; = 1. Choose x(0) € R? and choose randomly, recur-
sively and independently z(t) € {Si(x(t — 1)), Se(z(t — 1)),..., Sk (z(t — 1))},
where the probability for the event x(t) = S;(z(t — 1)) is p;. The sequence
{z(0),2(1),...,2(n),...} “converges to” the invariant set with respect to {51, Sa,
..., SK}. Moreover, the density of points in this sequence reflects a measure
which is invariant with respect to {S1,S52,...,Sk} and (p1,p2,...,pK) in the
sense of Theorem 2 (Barnsley and Elton). Let us give an example.

Ezample 1 (Koch Curve). The Koch curve is invariant for Sy, Sa, S3, Sy, where
S; maps the whole triangle to a smaller triangle for ¢ = 1,2,3,4 (cf. Fig. 1).
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Let (3/7,1/7,2/7,1/7) be a system of probabilities assigned to {57, S2, 53,54}
Starting with x(0) = (0,0), we obtained the figure after 4000 times loop.
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Fig. 1. Koch curve drawn with the random iteration algorithm.

In Section 2, we review the theory of graph-directed sets, and then explain
the random iteration algorithm for graph-directed sets. In Section 3, we prove
the Barnsley-Elton theorem for graph-directed sets (Theorems 3-5 and Corollary
1). At the end, another random iteration algorithm is proposed and some results
thereof are previewed; details will be developed later.

We might note that I. Werner has investigated a random iteration algorithm
for a family of graph-directed sets in a different approach in [11].

2 Random iteration algorithm for graph-directed sets

Graph-directed sets are defined as follows ([3], [5] and [9]). Let K > 2. Let
V ={1,...,K} be a set of vertices, and let Ej; be a set of edges from vertex
[ to vertex k. Put E = {Ej }kicv. Assume that UX By, # 0 for each k,
although some of Ej;’s may be empty. Let Elkj be the set of sequences of k
edges (e1,ea,...,e) which is a directed path from vertex j to vertex i. We say
that the graph is transitive if, for any 4, j, there is a positive integer p such that
Egj is non-empty.

Definition 1 (Graph-directed sets). Let (V, E) be a transitive directed graph.
For each e € Ey, let S, be a contraction on a compact space. A K-tuple of non-
empty compact sets (F1, Fy, ..., Fr) is called a family of graph-directed sets if it
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satisfies

||
T Cw

U =1,...,K).
cby,

If we put
{Se ee Ek,l} = {Slkl 1= 1,...,nkl} (k‘,l = 1,...,K),
the definition above can be stated in the following form.

Definition 2. Put

{SHymy {sPy o {SH ey
S= ... . e .
{SF {S]2Y sy {SFR
where each Sfl is a contraction on a compact space, ng; > 0 and leil nE >

0 (k=1,...,K). Assume that the matriz {ni}tri=1,.  x is irreducible. A K-
tuple of sets (Fi,...,Fk) is called a family of graph-directed sets for S if

Fy=UM2 SFY(F) U U2 SER(Fr) (k=1,...,K).
We have the following theorem.

Theorem 1. ([3], [5], [7], [8], [9]) Let K > 2 and let S be as above. Then there
is a unique K-tuple of non-empty compact graph-directed sets (F,..., Fr).

We explain the random iteration algorithm with an example.

Ezample 2. Let T; (i = 1,2,3,4) be a contraction, which is the similarity (dila-
tion) that maps the whole square X = [0, 1] x [0, 1] to the corresponding square
in Fig. 2. Consider a pair of graph-directed sets (A, B) defined by

A= S{H(A) U S (B) U S(B),
B =S (A)u S (A)u ST (B).

Here, each S¥ is defined as Si! = Ty, 512 = 11,532 = Ty, S?' = Ty, 8% =
and S7% =

Let x1(0) and z3(0) be arbitrary points in X and choose randomly, recursively
and independently

1(t+1) € {8 (21(1)), S (22(t)), 557 (22 (1))},
wa(t +1) € {87 (w1(1)), 55" (21.(1)), 572 (w2(1)) }-
(2(t))

The probabilities for selecting {S11 (21 (t)), S12(wa(t)), S3%(w2(t))} as 1 (t+1)
and {S7" (1()), S5 (x1(t)), S7*(w2(t))} as w2 (t+1) are (pi*, p1°,p3%) = (1/2,1/4,
1/4) and (p3',p3t,p3?) = (1/4,1/2,1/4), respectively. Starting with z1(0) =
(0,0) and z2(0) = (0,0), we obtained the pair of figures (A’, B’) in Fig. 2 after
10000 times loop.
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Fig. 2. An example of random iteration algorithm for graph-directed sets.

We will subsequently show that there is a unique pair of probability measures
(141, p2) on the pair of graph-directed sets (A, B) in Example 2 which satisfies

p=pitpro (S~ +Zp pz o (S}%)7!

uz—Zp pa o (8P 4+ p? pg o (ST

. 1 n—1 B

Jim 3 ) = | f@dm @)
. 1 n—1 B

dm 3210 = [ 5@t

for almost all sequences {(x1(t),z2(t)) : t = 0,1,...}, and for any continuous
real function f on X. In fact, for a unique probability measure i on X x X, it
holds that for any (z1(0),z2(0)) € X x X,

lim — Zf x1(t), z2(t)) = / flxy,xo)din(z1,22) ace.
XxX

for any continuous real function f on X x X. The measures u; and s are the
marginal distributions of the measure i on X x X.

Now, we state our random iteration algorithm for a family of graph-directed
sets. Let X be a non-empty compact set in R? such that Sfl(X) C X, for
k,l=1,...,K,i=1,...,ny. A closed sphere B(0,7) in R? with a sufficiently
large 7 > 0 such that S¥(B(0,r)) C B(0,r) for any k, 1,7 is an example of X. For
k=1,...,K, let (p§',....pE ....pt", ... piE ) be a system of probabilities
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assigned to {S¥1, ... ,Sﬁil co, SREC ,S,’ijK}, where pfl >0 (i = 1,...,np1)
forl=1,...,K and 33/ S pht = 1.

Choose (z1(0),...,2x(0)) € XX, and choose randomly, recursively and in-
dependently

zp(t+1) € {SF(xy(t) : 1=1,...,K for which ng; >0andi=1,...,nu},

for k = 1,..., K. The probability for the event zj(t+1) = SF(x;(t)) is p}'. This
produces a sequence of K-tuples of points {(z1(t),...,xx(t)):t=0,1,...}.

3 Invariant probability measure

Barnsley and Elton have shown the following.

Theorem 2. (Barnsley and Elton: [1], [2], [6]) Let Y be a complete metric
space. Let {T1,...,Tn} be a family of Lipschitz maps on'Y . Let (p1,...,pn) be
a system of probabilities assigned to {T1,..., Ty}, where p; >0 (i =1,...,N)
and Zivzl p; = 1. Suppose there exists 0 < r < 1 such that

N
[TdTiw), Ti(z)7 < d(y,2)

i=1

fory,zeY.

Choose y(0) € Y and choose randomly, recursively and independently, y(t) €
{Th(y(t — 1)),...,Tn(y(t — 1))}, where the probability for the event {y(t) =
Ti(y(t — 1))} 4s p;. Then the following hold.

(1) There is a unique invariant probability measure i associated with transition

probability p(y, B) = 3.y pile(Ti(y)), that is, u(B) = [ ply, B)du(y) for
all Borel set B.

(2) Let P be a probability [1.2, P; on [[;=, Ji, where P, = (p1,...,pn) and
Ji={1,...,N}. It holds that for any y(0) €Y,

. 1 n—1 B
Jm 2 w0) = [ f)iuto) Poae

for all continuous function f:Y — R.

Let us note that p is an invariant probability measure if and only if 4 = M ()
for the Markov operator

N
M(v) = ZpiyoTi_l.
i=1

By applying Barnsley and Elton’s theorem, we show the uniqueness of an
invariant probability measure of a random iteration algorithm for a family of
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graph-directed sets. Recall that X is a non-empty compact set in R¢ such that
SH(X) c X for k,l =1,...,K,i=1,...,ng. Put X, = X for k = 1,..., K,
and define XX = X; x --- Xg. Define a metric d on X¥ by

d((z1,.. ., 2x), (Y1, -, yk)) = Max{|zx —yk| : k =1,..., K},

where |z — yi| denotes the d-dimensional Euclidean metric.

Put I, = {(lk,lk) DNk, > 0, 1 <5 < nklk} C {17,K} x N for k =
1,...,K. Put further I = I; x --- x Ix. For S¥ : X — X, where k = 1,..., K
and (1,) € I, let SF : XX — X, be defined by Sk (z1,...,xx) = SF(x;).

For ((ll,il),...,(lK,iK)) S I, a transformation T((l1,i1),-<-,(lk,i1<)) : XK —
XX ig defined by
. (Qll Kl
T((l1,i1),--~7(lk,i1<))(xl? e ,:L’K) = (Si1 (.’tl, e ,SL’K), .. '7SiK ((El, e ,xK))

= (53" (@n,), -+ S (@1,c))

with the associated probability

11 Kl
P((1y,i1),. Ik ik)) = pill e 'piKK

We apply Barnsley and Elton’s theorem to Y = XX and
T =A{T (i), cire)y - ((ls01), - (Ukyi)) € T}

with probabilities piht - - - png . Let L be the set of functions as defined below.

L={f:X¥ 5 R:
[f(z1,.. ., 2x) — f(y1,. - uk)| S Max{|zx —yx| : k =1,...,K}},

where |z — yi| denotes the d-dimensional Euclidean metric.
Let P(XX) be the space of normalized Borel measures on X*. The Hutchin-
son metric dy of P(XX) is defined by

dH(u,z/):Sup{/fdu—/fdzx:feL}.

It is well known that (P(XX), dg) is a compact space. (See Barnsley [1].)
Let us define a Markov operator M : P(X¥) — P(X¥), and prove a theorem
which claims the existence of a certain measure.

Definition 3. The Markov operator associated with
T= {T((lhil),---,(ll,il)) : ((llv il)v cey (lKa ZK)) € I}
is a transformation M : P(XX) — P(XX) defined by

K
M(v) = > LI Piv e (T i icinn) ™
((ll,il),...,(lx,iK))EI k=1
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Theorem 3. There exists a unique probability measure i on XX such that ji =
M(@).

Proof (Proof1: Application of Barnsley and Elton’s criterion). Recall that, for
((ll,i1)7 ey (ZK,iK)) S L

Iy Kl
T((l1,i1),---,(l1<,ik))(xlv . ,.’EK) = (Szll (:L’ll), ey SiK K({EZK)).
Let s be the maximum of the contraction ratios of {SF}. Note that s < 1.

Recall that d((z1,...,2K), (Y1,---,ykx)) = Max{|zr, —yx| : & = 1,...,K},
where |z — yx| denotes the d-dimensional Euclidean metric. Then it holds that

ATty ir)sin i) (@155 TK)), T i), (e vine)) Y15 -+ -5 YE)))
= d((Sillll (xll)’ IR Siif(lK (le))v (Szllll (yh)v R SiIIilK (ylx)))

= Max{|S}" (z1,) = SE (i), -, [SE S (i) — SE ()}
< SMaX{lel — Y, ‘7 IERE] |‘rlK - ylx|}
< sMax{|z1 —y1l,..., |ltx — ykl}- (1)

The Barnsley and Elton’s condition holds if d(T;(z),T;(y)) < sd(z,y) for an
s < 1. From (1) above this criterion is satisfied, and so we can apply the Barnsley
and Elton’s theorem and obtain the desired measure. ad

Proof (Proof2: Direct proof). Notice that, for f € L,

‘f(T((z1 i) (ac i) (@15 ) = LT i)y (e sine ) YL - - - 7?/K))’
= S22 @) SIS @) = FSE )5 SIS ()|
< Max{| S/ (z1,) = SH wi)s-- 1SE (@) = SE ()1}

< SMaX{|.’El1 — Y, |7 ceey |$lK — Yix ‘}

< sMax{|z1 —wl,..., |lvx — ykl}.

Define

f(l‘lv""iEK):Sil Z szlkf T((l1,1 .7(lK,iK))('1:17"'7xK))'

((Zhil),...,(l}(,i}())el k=1

Then

f(a:l,...,xK) f(yl,...,yK)‘

<s7 Z HpklkSMaXﬂxl*y1|7~--,\$K*yK|}
((I1521)5-- (I sirc))ET k=1

S Max{|x1 - y1|a RS |mK - yK|}’
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since Z((ll)“)’ ir))el Hk 1pkl" = 1. Tt therefore follows that f € L. If we

put L = {f(x1,...,2x) : f € L}, then L C L holds.
By the definition,

iy (M), M(v)) = Sup] / FAM () - / JaM(v):feL)

SC T D SR 1

(1101 ) ii ) ET k=1
f(T((zl,il),.w(zK,iK))(51317---7 rg))dp(r, ..., TK)
SR
((ll,il),...,(lK,iK))GIk? 1

STyt @1, o)A@, o) f € L
—sup /le,..., Ydp(z,. .. wx)

/fxl, ., dy(xl,...,xK)):fef/}
§Sup{s(/f(acl,...7xK)du(x1,...,xK)

—/f(gcl,...ﬂsK)du(ml,...,UCK)) ifeL}
=sdy(p,v).

Therefore the Markov operator M is a contraction map on P(X*). This
implies that there is a unique invariant probability measure i in P(X%). a

Barnsley and Elton’s theorem for random iterated algorithms can be ex-
tended to a family of graph-directed sets.

Theorem 4. Let i be the unique invariant probability measure claimed in The-
orem 8. Then for any (z1(0),...,2x(0)) € XX,

n—1
lim lZf(:rl(t)v;xK(t)):/ f(xla'"7xK)dﬁ(xla"'axK) a.c.
t=0 XK

for all continuous function f : X¥ = R.

Proof. We apply (2) of Barnsley and Elton’s theorem to T((11,i1), (L vize)) OD

XX with probabilities Hk 1 pkl". O
Corollary 1. (1) For the marginal distributions fi1, ..., [k, it holds that
K ny
P = ZZP fir o (SFH~
=1 1i=1

fork=1,....K.
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(2) For any (21(0),...,7x(0)) € XX,
=
nh_)rr;<> - ;g(xk(t)) = /Xg(:v)duk(x) a.e.
for all continuous function g: X - R and fork=1,... K.

Proof. Proof of (1). Note that for a family of Borel sets Ay,..., Ax in X, it
holds that

(Tt 1) (i)~ (A1 X -+ X Ag)
:{({El, ) : Stkklk(‘rl,...,l'[()EAk,kzl,...7K}
K
(§kb)
k=1

So we have

(Tt i) soos (s ine))) (X X e X KXoy X Ap X Xy -+ x X)) = (Skl") LA,

because (Sfjl])*l(Xj) = X% Recall that X; = X for all [. Note that ji = M(f1).
Then it holds that

ﬂk(A):[L(XlX"'XX}C,1XAXX]€+1~--XXK)
:M(ﬁ)(XlxxXk 1XAXXk+1'~~XXK)

Hp’J

((I1,81),--, (UK ik )T j=1
/TL((T((zl,il),...,(zK i) (Xa X X Xy X A X Xjpq -+ x X))

_ Z H Sklk 1(A))

((I1,81),-.,(Ik,ik))ET j=1

SR SR C U | SR

(lk ’L;‘)le Jj#k (l ZJ)EI
— Z pk:l;c Sklk) (A))

(I sik)€lR
= > i ((SE) T (A)).

(I sik) €k

This proves the assertion (1).

Proof of (2). Define f(z1,...,2x) = g(x). Then by virtue of Theorem 4, it
holds that
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n—1 n—1
Tim S o) = Tm S Fn (), wx(0)
t=0 t=0

= Kf(gcl,...7mK)d/](a:1,...,xK) a.e.
X

— [ s@ydgs(a),
X
We thus have

limy, o0 = Zt o 9(xk(t) = [x 9(@)dik(z) a.e.

for all continuous function g : X — R and k=1, ..., K.
This proves the assertion (2).
O

Theorem 5. Let i be the unique probability measure in Theorem 3, and let
[1, ..., fixg be the marginal distributions of fi. Then form =1,..., K, the support
of firm 18 Fr, where (Fy, ..., Fi) is the family of graph-directed sets in Theorem
1.

Proof. The proof is analogous to that of Theorem 2 in Section 9.6 of [1].
Let A denote the support of fi. Notice that

T ix),e (e ine)) (FL X o X Fie) € Fyo X X Fie

for any ((I1,41),...,(Ik,ix)) € I. It follows that {T(«, i,),....(1x,ix)) } Testricted
on F; X -+ X Fi defines a random iteration algorithm Wlth the probabilities
Hszl pf}f’“ . Let ¥ be an invariant probability measure for the restricted random
iteration algorithm, and this 7 is an invariant probability measure for the random
iteration algorithm on X Since fi is unique, fi = ©. It follows that A C F} x
- X Fk, and so the support of ji,, is included in F,,.

For m = 1,..., K, let X, be the set of sequences {(I1,%1;...,;ln,in;...) :
ny, 1, >0, 1<i,<mny, _,, for n=1,...}, where lp =m

For each point a € F,,, there is a (not necessarily unique) sequence in X,
such that

ae S;’fll o Sf;lg 0.0t (X1,)

in n

holds for all n. Let O be an open set in X which contains a. By the fact that
Sfl is a contraction, there is a positive integer n such that

S o Gl oo gin 1t (X, ) € O.

Note that, fi, (S 0 S22 00 81" (X,)) > [T/—y p ™" > 0. It holds that
fm(0) > 0, and so F), is included in the support of fi,. ad
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Remark 1. In the above proofs we have not used the 1ndependence of choosing
{S}fl ey Sff{l"} or the productivity of the probabilities Hk 1 pkl’“ So we can
formulate the random iteration algorithm so that the probablhty of choosing
{Slllll,.. SKIK} can be expressed as P, i;...1x,ix), Which is not restricted to
11,

the independent case of p; * ... pf{Kl % . Theorems 3, 4 and 5 hold for thus modified
random iteration algorlthm

Remark 2. We propose a variation of this algorithm which changes only one
coordinate X}, on each step. Let {q1,...,qx} be a probability, that is, g > 0
for k =1,...,K and Z,If:lqk =1.Fork =1,... K, let (p’fl,...,pﬁil,...,
phE L mﬁf}() be a system of probabilities defined in Section 2.

Choose (21(0),...,2x(0)) € X¥. Next choose randomly k(1) e {1,...,K},
with probability g1y, and then choose randomly Sk(l (24(0)) for i =1,...,K
with ngqy > 0 and 1 < ¢ < ngqy;, with probability pk( " Let xk(l)(l) =
Sf(l)l( 1(0)) and x;(1) = z;(0) for j # k(1). Continue this procedure recursively
and independently.

So we have

eyt +1) = SEV @y (1)),
xj(t +1) =a;(t) for j # k(t + 1),

with probability Qk(t+1)pf(t+1)l7 where k(t+1) =1,...,K, 1 =1,...,K with
N+ > 0 and 1 <4 < ngqqy-

This produces a sequence of K-tuples of points {(z1(t),...,zx(t)) : t =
0,1,...}. We then have the following results.

(1) There exists a unique probability measure i on X* such that i = M(j),
where M is the associated Markov operator.

(2) Let fi1,..., ix be the marginal distributions of . Then for m = 1,... K,
the support of fi,, is Fy,, where (F1,..., Fik) is the family of graph-directed
sets in Theorem 1.

(3) For any (z1(0),...,2x(0)) € XX,

n—1
lim lZf(avl(t),...,:nK(t)):/ flz, ..., xx)di(z,...,2K5) ae.
n—oo N = XK

for all continuous function f: X¥ — R.
(4) (i) For the marginal distributions fi1, ..., fix, it holds that

K np

=)D piio (S1)”

=1 =1

fork=1,... K.
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(ii) For any (x1(0),...,zx(0)) € XK,

1
tim 3 g(en(t) = [ gle)din(o) ac
for all continuous function g : X - R and for k =1,..., K.
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