
Random Iteration Algorithm for Graph-Directed
Sets

Yoshiki Tsujii1, Takakazu Mori1, Mariko Yasugi2, and Hideki Tsuiki3

1 Faculty of Science, Kyoto Sangyo University
tsujiiy,morita@cc.kyoto-su.ac.jp

2 Kyoto Sangyo University
yasugi@cc.kyoto-su.ac.jp

3 Graduate School of Human and Environmental Studies, Kyoto University
tsuiki@i.h.kyoto-u.ac.jp

Abstract. A random iteration algorithm for graph-directed sets is de-
fined and discussed. Similarly to the Barnsley-Elton’s theorem, it is
shown that almost all sequences obtained by this algorithm reflect a
probability measure which is invariant with respect to the system of
contractions with probabilities.

1 Introduction

The motif of this article is the random iteration algorithm for a family of graph-
directed sets. According to Barnsley [1], the random iteration algorithm can be
used to picture a fractal defined by a finite number of contractions. Our interest
is to extend this idea to graph-directed sets (cf. [7], [8], [9], [10]).

Our present interest was originally motivated by the work of Brattka [4], in
which Brattka presented an example of a “Fine-computable” function which is
not “locally uniformly Fine-computable.” The graph of Brattka’s function can
be characterized as a graph-directed set, and in [10] we have depicted graphs of
some graph-directed sets by using a deterministic algorithm.

The random iteration algorithm is an alternative for picturing some invariant
sets. Let us briefly explain this algorithm according to Barnsley and Elton (cf.
[1], [2], [6]).

Let {S1, S2, . . . , SK} be a family of contractions on Rd. Let (p1, p2, . . . , pK)
be a system of probabilities assigned to {S1, S2, . . . , SK}, where pi > 0 (i =

1, . . . ,K) and
∑K

i=1 pi = 1. Choose x(0) ∈ Rd and choose randomly, recur-
sively and independently x(t) ∈ {S1(x(t − 1)), S2(x(t − 1)), . . . , SK(x(t − 1))},
where the probability for the event x(t) = Si(x(t − 1)) is pi. The sequence
{x(0), x(1), . . . , x(n), . . . } “converges to” the invariant set with respect to {S1, S2,
. . . , SK}. Moreover, the density of points in this sequence reflects a measure
which is invariant with respect to {S1, S2, . . . , SK} and (p1, p2, . . . , pK) in the
sense of Theorem 2 (Barnsley and Elton). Let us give an example.

Example 1 (Koch Curve). The Koch curve is invariant for S1, S2, S3, S4, where
Si maps the whole triangle to a smaller triangle for i = 1, 2, 3, 4 (cf. Fig. 1).
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Let (3/7, 1/7, 2/7, 1/7) be a system of probabilities assigned to {S1, S2, S3, S4}.
Starting with x(0) = (0, 0), we obtained the figure after 4000 times loop.
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Fig. 1. Koch curve drawn with the random iteration algorithm.

In Section 2, we review the theory of graph-directed sets, and then explain
the random iteration algorithm for graph-directed sets. In Section 3, we prove
the Barnsley-Elton theorem for graph-directed sets (Theorems 3-5 and Corollary
1). At the end, another random iteration algorithm is proposed and some results
thereof are previewed; details will be developed later.

We might note that I. Werner has investigated a random iteration algorithm
for a family of graph-directed sets in a different approach in [11].

2 Random iteration algorithm for graph-directed sets

Graph-directed sets are defined as follows ([3], [5] and [9]). Let K ≥ 2. Let
V = {1, . . . ,K} be a set of vertices, and let Ek,l be a set of edges from vertex
l to vertex k. Put E = {Ek,l}k,l∈V . Assume that ∪Kl=1Ek,l 6= ∅ for each k,
although some of Ek,l’s may be empty. Let Ek

i,j be the set of sequences of k
edges (e1, e2, . . . , ek) which is a directed path from vertex j to vertex i. We say
that the graph is transitive if, for any i, j, there is a positive integer p such that
Ep

i,j is non-empty.

Definition 1 (Graph-directed sets). Let (V,E) be a transitive directed graph.
For each e ∈ Ek,l, let Se be a contraction on a compact space. A K-tuple of non-
empty compact sets (F1, F2, . . . , FK) is called a family of graph-directed sets if it
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satisfies

Fk =

K⋃
l=1

⋃
e∈Ek,l

Se(Fl) (k = 1, . . . ,K).

If we put

{Se : e ∈ Ek,l} = {Skl
i : i = 1, . . . , nkl} (k, l = 1, . . . ,K),

the definition above can be stated in the following form.

Definition 2. Put

S =

 {S11
i }

n11
i=1 {S12

i }
n12
i=1 . . . {S1K

i }
n1K
i=1

. . . . . . . . . . . .
{SK1

i }
nK1
i=1 {SK2

i }
nK2
i=1 . . . {SKK

i }nKK
i=1

 ,

where each Skl
i is a contraction on a compact space, nkl ≥ 0 and

∑K
l=1 nkl >

0 (k = 1, . . . ,K). Assume that the matrix {nkl}k,l=1,...,K is irreducible. A K-
tuple of sets (F1, . . . , FK) is called a family of graph-directed sets for S if

Fk =
⋃nk1

i=1 S
k1
i (F1) ∪ · · · ∪

⋃nkK

i=1 S
kK
i (FK) (k = 1, . . . ,K).

We have the following theorem.

Theorem 1. ([3], [5], [7], [8], [9]) Let K ≥ 2 and let S be as above. Then there
is a unique K-tuple of non-empty compact graph-directed sets (F1, . . . , FK).

We explain the random iteration algorithm with an example.

Example 2. Let Ti (i = 1, 2, 3, 4) be a contraction, which is the similarity (dila-
tion) that maps the whole square X = [0, 1]× [0, 1] to the corresponding square
in Fig. 2. Consider a pair of graph-directed sets (A,B) defined by

A = S11
1 (A) ∪ S12

1 (B) ∪ S12
2 (B),

B = S21
1 (A) ∪ S21

2 (A) ∪ S22
1 (B).

Here, each Skl
i is defined as S11

1 = T2, S
12
1 = T1, S

12
2 = T4, S

21
1 = T1, S

21
2 = T4

and S22
1 = T3.

Let x1(0) and x2(0) be arbitrary points in X and choose randomly, recursively
and independently

x1(t+ 1) ∈ {S11
1 (x1(t)), S12

1 (x2(t)), S12
2 (x2(t))},

x2(t+ 1) ∈ {S21
1 (x1(t)), S21

2 (x1(t)), S22
1 (x2(t))}.

The probabilities for selecting {S11
1 (x1(t)), S12

1 (x2(t)), S12
2 (x2(t))} as x1(t+1)

and {S21
1 (x1(t)), S21

2 (x1(t)), S22
1 (x2(t))} as x2(t+1) are (p111 , p

12
1 , p

12
2 ) = (1/2, 1/4,

1/4) and (p211 , p
21
2 , p

22
1 ) = (1/4, 1/2, 1/4), respectively. Starting with x1(0) =

(0, 0) and x2(0) = (0, 0), we obtained the pair of figures (A′, B′) in Fig. 2 after
10000 times loop.
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Fig. 2. An example of random iteration algorithm for graph-directed sets.

We will subsequently show that there is a unique pair of probability measures
(µ1, µ2) on the pair of graph-directed sets (A,B) in Example 2 which satisfies

µ1 = p111 µ1 ◦ (S11
1 )−1 +

2∑
i=1

p12i µ2 ◦ (S12
i )−1,

µ2 =

2∑
i=1

p21i µ1 ◦ (S21
i )−1 + p221 µ2 ◦ (S22

1 )−1.

For µ1 and µ2, it holds that for all (x1(0), x2(0)) ∈ X×X,

lim
n→∞

1

n

n−1∑
t=0

f(x1(t)) =

∫
X

f(x)dµ1(x),

lim
n→∞

1

n

n−1∑
t=0

f(x2(t)) =

∫
X

f(x)dµ2(x),

for almost all sequences {(x1(t), x2(t)) : t = 0, 1, . . . }, and for any continuous
real function f on X. In fact, for a unique probability measure µ̃ on X ×X, it
holds that for any (x1(0), x2(0)) ∈ X×X,

lim
n→∞

1

n

n−1∑
t=0

f(x1(t), x2(t)) =

∫
X×X

f(x1, x2)dµ̃(x1, x2) a.e.

for any continuous real function f on X ×X. The measures µ1 and µ2 are the
marginal distributions of the measure µ̃ on X×X.

Now, we state our random iteration algorithm for a family of graph-directed
sets. Let X be a non-empty compact set in Rd such that Skl

i (X) ⊂ X, for
k, l = 1, . . . ,K, i = 1, . . . , nkl. A closed sphere B(0, r) in Rd with a sufficiently
large r > 0 such that Skl

i (B(0, r)) ⊂ B(0, r) for any k, l, i is an example of X. For
k = 1, . . . ,K, let (pk11 , . . . , p

k1
nk1

, . . . , pkK1 , . . . , pkKnkK
) be a system of probabilities
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assigned to {Sk1
1 , . . . , Sk1

nk1
. . . , SkK

1 , . . . , SkK
nkK
}, where pkli ≥ 0 (i = 1, . . . , nk1)

for l = 1, . . . ,K and
∑K

l=1

∑nkl

i=1 p
kl
i = 1.

Choose (x1(0), . . . , xK(0)) ∈ XK , and choose randomly, recursively and in-
dependently

xk(t+ 1) ∈ {Skl
i (xl(t)) : l = 1, . . . ,K for which nkl > 0 and i = 1, . . . , nkl},

for k = 1, . . . ,K. The probability for the event xk(t+1) = Skl
i (xl(t)) is pkli . This

produces a sequence of K-tuples of points {(x1(t), . . . , xK(t)) : t = 0, 1, . . . }.

3 Invariant probability measure

Barnsley and Elton have shown the following.

Theorem 2. (Barnsley and Elton: [1], [2], [6]) Let Y be a complete metric
space. Let {T1, . . . , TN} be a family of Lipschitz maps on Y . Let (p1, . . . , pN ) be
a system of probabilities assigned to {T1, . . . , TN}, where pi > 0 (i = 1, . . . , N)

and
∑N

i=1 pi = 1. Suppose there exists 0 < r < 1 such that

N∏
i=1

d(Ti(y), Ti(z))
pi ≤ r d(y, z)

for y, z ∈ Y .
Choose y(0) ∈ Y and choose randomly, recursively and independently, y(t) ∈

{T1(y(t − 1)), . . . , TN (y(t − 1))}, where the probability for the event {y(t) =
Ti(y(t− 1))} is pi. Then the following hold.

(1) There is a unique invariant probability measure µ associated with transition

probability p(y,B) =
∑N

i=1 pi1B(Ti(y)), that is, µ(B) =
∫
p(y,B)dµ(y) for

all Borel set B.
(2) Let P be a probability

∏∞
i=1 Pi on

∏∞
i=1 Ji, where Pi = (p1, . . . , pN ) and

Ji = {1, . . . , N}. It holds that for any y(0) ∈ Y ,

lim
n→∞

1

n

n−1∑
t=0

f(y(t)) =

∫
Y

f(y)dµ(y) P−a.e.

for all continuous function f : Y → R.

Let us note that µ is an invariant probability measure if and only if µ = M(µ)
for the Markov operator

M(ν) =

N∑
i=1

pi ν ◦ T−1i .

By applying Barnsley and Elton’s theorem, we show the uniqueness of an
invariant probability measure of a random iteration algorithm for a family of
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graph-directed sets. Recall that X is a non-empty compact set in Rd such that
Skl
i (X) ⊂ X for k, l = 1, . . . ,K, i = 1, . . . , nkl. Put Xk = X for k = 1, . . . ,K,

and define XK = X1 × · · ·XK . Define a metric d on XK by

d((x1, . . . , xK), (y1, . . . , yK)) = Max{|xk − yk| : k = 1, . . . ,K},

where |xk − yk| denotes the d-dimensional Euclidean metric.
Put Ik = {(lk, ik) : nklk > 0, 1 ≤ ik ≤ nklk} ⊂ {1, . . . ,K} × N for k =

1, . . . ,K. Put further I = I1 × · · · × IK . For Skl
i : X → X, where k = 1, . . . ,K

and (l, i) ∈ Ik, let S̃kl
i : XK → Xk be defined by S̃kl

i (x1, . . . , xK) = Skl
i (xl).

For ((l1, i1), . . . , (lK , iK)) ∈ I, a transformation T((l1,i1),...,(lK ,iK)) : XK →
XK is defined by

T((l1,i1),...,(lK ,iK))(x1, . . . , xK) := (S̃1l1
i1

(x1, . . . , xK), . . . , S̃KlK
iK

(x1, . . . , xK))

= (S1l1
i1

(xl1), . . . , SKlK
iK

(xlK ))

with the associated probability

p((l1,i1),...,(lK ,iK)) = p1l1i1
· · · pKlK

iK
.

We apply Barnsley and Elton’s theorem to Y = XK and

T = {T((l1,i1),...,(lK ,iK)) : ((l1, i1), . . . , (lK , iK)) ∈ I}

with probabilities p1l1i1
· · · pKlK

iK
. Let L be the set of functions as defined below.

L = {f : XK → R :

|f(x1, . . . , xK)− f(y1, . . . , yK)| ≤ Max{|xk − yk| : k = 1, . . . ,K}},

where |xk − yk| denotes the d-dimensional Euclidean metric.
Let P(XK) be the space of normalized Borel measures on XK . The Hutchin-

son metric dH of P(XK) is defined by

dH(µ, ν) = Sup
{∫

fdµ−
∫
fdν : f ∈ L

}
.

It is well known that (P(XK), dH) is a compact space. (See Barnsley [1].)
Let us define a Markov operator M : P(XK)→ P(XK), and prove a theorem

which claims the existence of a certain measure.

Definition 3. The Markov operator associated with

T = {T((l1,i1),...,(l1,i1)) : ((l1, i1), . . . , (lK , iK)) ∈ I}

is a transformation M : P(XK)→ P(XK) defined by

M(ν) =
∑

((l1,i1),...,(lK ,iK))∈I

K∏
k=1

pklkik
ν ◦ (T((l1,i1),...,(lK ,iK)))

−1.
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Theorem 3. There exists a unique probability measure µ̃ on XK such that µ̃ =
M(µ̃).

Proof (Proof1: Application of Barnsley and Elton’s criterion). Recall that, for
((l1, i1), . . . , (lK , iK)) ∈ I,

T((l1,i1),...,(lK ,iK))(x1, . . . , xK) = (S1l1
i1

(xl1), . . . , SKlK
iK

(xlK )).

Let s be the maximum of the contraction ratios of {Skl
i }. Note that s < 1.

Recall that d((x1, . . . , xK), (y1, . . . , yK)) = Max{|xk − yk| : k = 1, . . . ,K},
where |xk − yk| denotes the d-dimensional Euclidean metric. Then it holds that

d(T((l1,i1),...,(lK ,iK))(x1, . . . , xK)), T((l1,i1),...,(lK ,iK))(y1, . . . , yK)))

= d((S1l1
i1

(xl1), . . . , SKlK
iK

(xlK )), (S1l1
i1

(yl1), . . . , SKlK
iK

(ylK )))

= Max{|S1l1
i1

(xl1)− S1l1
i1

(yl1)|, . . . , |SKlK
iK

(xlK )− SKlK
iK

(ylK )|}
≤ sMax{|xl1 − yl1 |, . . . , |xlK − ylK |}
≤ sMax{|x1 − y1|, . . . , |xK − yK |}. (1)

The Barnsley and Elton’s condition holds if d(Ti(x), Ti(y)) ≤ sd(x, y) for an
s < 1. From (1) above this criterion is satisfied, and so we can apply the Barnsley
and Elton’s theorem and obtain the desired measure. ut

Proof (Proof2: Direct proof). Notice that, for f ∈ L,∣∣∣f(T((l1,i1),...,(lK ,iK))(x1, . . . , xK))− f(T((l1,i1),...,(lK ,iK))(y1, . . . , yK))
∣∣∣

=
∣∣∣f(S1l1

i1
(xl1), . . . , SKlK

iK
(xlK ))− f(S1l1

i1
(yl1), . . . , SKlK

iK
(ylK ))

∣∣∣
≤ Max{|S1l1

i1
(xl1)− S1l1

i1
(yl1)|, . . . , |SKlK

iK
(xlK )− SKlK

iK
(ylK )|}

≤ sMax{|xl1 − yl1 |, . . . , |xlK − ylK |}
≤ sMax{|x1 − y1|, . . . , |xK − yK |}.

Define

f̂(x1, . . . , xK) = s−1
∑

((l1,i1),...,(lK ,iK))∈I

K∏
k=1

pklkik
f(T((l1,i1),...,(lK ,iK))(x1, . . . , xK)).

Then∣∣∣f̂(x1, . . . , xK)− f̂(y1, . . . , yK)
∣∣∣

≤ s−1
∑

((l1,i1),...,(lK ,iK))∈I

K∏
k=1

pklkik
s Max{|x1 − y1|, . . . , |xK − yK |}

≤ Max{|x1 − y1|, . . . , |xK − yK |},
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since
∑

((l1,i1),...,(lK ,iK))∈I
∏K

k=1 p
klk
ik

= 1. It therefore follows that f̂ ∈ L. If we

put L̂ = {f̂(x1, . . . , xK) : f ∈ L}, then L̂ ⊂ L holds.
By the definition,

dH(M(µ),M(ν)) = Sup
{∫

fdM(µ)−
∫
fdM(ν) : f ∈ L

}
= Sup

{∫ ∑
((l1,i1),...,(lK ,iK))∈I

K∏
k=1

pklkik

f(T((l1,i1),...,(lK ,iK))(x1, . . . , xK))dµ(x1, . . . , xK)

−
∫ ∑

((l1,i1),...,(lK ,iK))∈I

K∏
k=1

pklkik

f(T((l1,i1),...,(lK ,iK))(x1, . . . , xK)dν(x1, . . . , xK) : f ∈ L
}

= Sup
{
s
(∫

f̂(x1, . . . , xK)dµ(x1, . . . , xK)

−
∫
f̂(x1, . . . , xK)dν(x1, . . . , xK)

)
: f̂ ∈ L̂

}
≤ Sup

{
s
(∫

f(x1, . . . , xK)dµ(x1, . . . , xK)

−
∫
f(x1, . . . , xK)dν(x1, . . . , xK)

)
: f ∈ L

}
= s dH(µ, ν).

Therefore the Markov operator M is a contraction map on P(XK). This
implies that there is a unique invariant probability measure µ̃ in P(XK). ut

Barnsley and Elton’s theorem for random iterated algorithms can be ex-
tended to a family of graph-directed sets.

Theorem 4. Let µ̃ be the unique invariant probability measure claimed in The-
orem 3. Then for any (x1(0), . . . , xK(0)) ∈ XK ,

lim
n→∞

1

n

n−1∑
t=0

f(x1(t), . . . , xK(t)) =

∫
XK

f(x1, . . . , xK)dµ̃(x1, . . . , xK) a.e.

for all continuous function f : XK → R.

Proof. We apply (2) of Barnsley and Elton’s theorem to T((l1,i1),...,(lK ,iK)) on

XK with probabilities
∏K

k=1 p
klk
ik

. ut

Corollary 1. (1) For the marginal distributions µ̃1, . . . , µ̃K , it holds that

µ̃k =

K∑
l=1

nkl∑
i=1

pkli µ̃l ◦ (Skl
i )−1

for k = 1, . . . ,K.
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(2) For any (x1(0), . . . , xK(0)) ∈ XK ,

lim
n→∞

1

n

n−1∑
t=0

g(xk(t)) =

∫
X

g(x)dµ̃k(x) a.e.

for all continuous function g : X→ R and for k = 1, . . . ,K.

Proof. Proof of (1). Note that for a family of Borel sets A1, . . . , AK in X, it
holds that

(T((l1,i1),...,(lK ,iK)))
−1(A1 × · · · ×AK)

= {(x1, . . . , xK) : S̃klk
ik

(x1, . . . , xK) ∈ Ak, k = 1, . . . ,K}

=

K⋂
k=1

(S̃klk
ik

)−1(Ak).

So we have

(T((l1,i1),...,(lK ,iK)))
−1(X1 × · · · ×Xk−1 ×Ak ×Xk+1 · · · ×XK) = (S̃klk

ik
)−1(Ak),

because (S̃
jlj
ij

)−1(Xj) = XK . Recall that Xl = X for all l. Note that µ̃ = M(µ̃).
Then it holds that

µ̃k(A) = µ̃(X1 × · · · ×Xk−1 ×A×Xk+1 · · · ×XK)

= M(µ̃)(X1 × · · · ×Xk−1 ×A×Xk+1 · · · ×XK)

=
∑

((l1,i1),...,(lK ,iK))∈I

K∏
j=1

p
jlj
ij

µ̃((T((l1,i1),...,(lK ,iK)))
−1(X1 × · · · ×Xk−1 ×A×Xk+1 · · · ×XK))

=
∑

((l1,i1),...,(lK ,iK))∈I

K∏
j=1

p
jlj
ij
µ̃((S̃klk

ik
)−1(A))

=
∑

(lk,ik)∈Ik

pklkik
µ̃((S̃klk

ik
)−1(A))

∏
j 6=k

∑
(lj ,ij)∈Ij

p
jlj
ij

=
∑

(lk,ik)∈Ik

pklkik
µ̃((S̃klk

ik
)−1(A))

=
∑

(lk,ik)∈Ik

pklkik
µ̃lk((S̃klk

ik
)−1(A)).

This proves the assertion (1).

Proof of (2). Define f(x1, . . . , xK) = g(xk). Then by virtue of Theorem 4, it
holds that
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lim
n→∞

1

n

n−1∑
t=0

g(xk(t)) = lim
n→∞

1

n

n−1∑
t=0

f(x1(t), . . . , xK(t))

=

∫
XK

f(x1, . . . , xK)dµ̃(x1, . . . , xK) a.e.

=

∫
X

g(x)dµ̃k(x).

We thus have

limn→∞
1
n

∑n−1
t=0 g(xk(t)) =

∫
X
g(x)dµ̃k(x) a.e.

for all continuous function g : X→ R and k=1, . . . , K.
This proves the assertion (2).

ut

Theorem 5. Let µ̃ be the unique probability measure in Theorem 3, and let
µ̃1, . . . , µ̃K be the marginal distributions of µ̃. Then for m = 1, . . . ,K, the support
of µ̃m is Fm, where (F1, . . . , FK) is the family of graph-directed sets in Theorem
1.

Proof. The proof is analogous to that of Theorem 2 in Section 9.6 of [1].
Let A denote the support of µ̃. Notice that

T((l1,i1),...,(lK ,iK))(F1 × · · · × FK) ⊂ F1 × · · · × FK

for any ((l1, i1), . . . , (lK , iK)) ∈ I. It follows that {T((l1,i1),...,(lK ,iK))} restricted
on F1 × · · · × FK defines a random iteration algorithm with the probabilities∏K

k=1 p
klk
ik

. Let ν̃ be an invariant probability measure for the restricted random
iteration algorithm, and this ν̃ is an invariant probability measure for the random
iteration algorithm on XK . Since µ̃ is unique, µ̃ = ν̃. It follows that A ⊂ F1 ×
· · · × FK , and so the support of µ̃m is included in Fm.

For m = 1, . . . ,K, let Σm be the set of sequences {(l1, i1; . . . , ; ln, in; . . . ) :
nln−1 ln > 0, 1 ≤ in ≤ nln−1 ln for n = 1, . . . }, where l0 = m.

For each point a ∈ Fm, there is a (not necessarily unique) sequence in Σm

such that
a ∈ Sml1

i1
◦ Sl1l2

i2
◦ · · · ◦ Sln−1ln

in
(Xln)

holds for all n. Let O be an open set in X which contains a. By the fact that
Skl
i is a contraction, there is a positive integer n such that

Sml1
i1
◦ Sl1l2

i2
◦ · · · ◦ Sln−1ln

in
(Xln)) ⊂ O.

Note that µ̃m(Sml1
i1
◦ Sl1l2

i2
◦ · · · ◦ Sln−1ln

in
(Xln)) ≥

∏n
j=1 p

lj−1lj
ij

> 0. It holds that

µ̃m(O) > 0, and so Fm is included in the support of µ̃m. ut
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Remark 1. In the above proofs we have not used the independence of choosing
{S1l1

i1
, . . . , SKlK

iK
}, or the productivity of the probabilities

∏K
k=1 p

klk
ik

. So we can
formulate the random iteration algorithm so that the probability of choosing
{S1l1

i1
, . . . , SKlK

iK
} can be expressed as p(l1,i1;...,lK ,iK), which is not restricted to

the independent case of p1l1i1
. . . pKlK

iK
. Theorems 3, 4 and 5 hold for thus modified

random iteration algorithm.

Remark 2. We propose a variation of this algorithm which changes only one
coordinate Xk on each step. Let {q1, . . . , qK} be a probability, that is, qk > 0

for k = 1, . . . ,K and
∑K

k=1 qk = 1. For k = 1, . . . ,K, let (pk11 , . . . , p
k1
nk1

, . . . ,

pkK1 , . . . , pkKnkK
) be a system of probabilities defined in Section 2.

Choose (x1(0), . . . , xK(0)) ∈ XK . Next choose randomly k(1) ∈ {1, . . . ,K},
with probability qk(1), and then choose randomly S

k(1)l
i (xl(0)) for l = 1, . . . ,K

with nk(1)l > 0 and 1 ≤ i ≤ nk(1)l, with probability p
k(1)l
i . Let xk(1)(1) =

S
k(1)l
i (xl(0)) and xj(1) = xj(0) for j 6= k(1). Continue this procedure recursively

and independently.

So we have

xk(t+1)(t+ 1) = S
k(t+1)l
i (xl(t)),

xj(t+ 1) = xj(t) for j 6= k(t+ 1),

with probability qk(t+1)p
k(t+1)l
i , where k(t + 1) = 1, . . . ,K, l = 1, . . . ,K with

nk(t+1)l > 0 and 1 ≤ i ≤ nk(t+1)l.

This produces a sequence of K-tuples of points {(x1(t), . . . , xK(t)) : t =
0, 1, . . . }. We then have the following results.

(1) There exists a unique probability measure µ̂ on XK such that µ̂ = M̂(µ̂),
where M̂ is the associated Markov operator.

(2) Let µ̂1, . . . , µ̂K be the marginal distributions of µ̂. Then for m = 1, . . . ,K,
the support of µ̂m is Fm, where (F1, . . . , FK) is the family of graph-directed
sets in Theorem 1.

(3) For any (x1(0), . . . , xK(0)) ∈ XK ,

lim
n→∞

1

n

n−1∑
t=0

f(x1(t), . . . , xK(t)) =

∫
XK

f(x1, . . . , xK)dµ̂(x1, . . . , xK) a.e.

for all continuous function f : XK → R.

(4) (i) For the marginal distributions µ̂1, . . . , µ̂K , it holds that

µ̂k =

K∑
l=1

nkl∑
i=1

pkli µ̂l ◦ (Skl
i )−1

for k = 1, . . . ,K.
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(ii) For any (x1(0), . . . , xK(0)) ∈ XK ,

lim
n→∞

1

n

n−1∑
t=0

g(xk(t)) =

∫
X

g(x)dµ̂k(x) a.e.

for all continuous function g : X→ R and for k = 1, . . . ,K.
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