Random Iteration Algorithm for Graph-Directed Sets

Yoshiki Tsujii ${ }^{1}$, Takakazu Mori ${ }^{1}$, Mariko Yasugi ${ }^{2}$, and Hideki Tsuiki ${ }^{3}$
${ }^{1}$ Faculty of Science, Kyoto Sangyo University
tsujiiy,morita@cc.kyoto-su.ac.jp
${ }^{2}$ Kyoto Sangyo University
yasugi@cc.kyoto-su.ac.jp
${ }^{3}$ Graduate School of Human and Environmental Studies, Kyoto University
tsuiki@i.h.kyoto-u.ac.jp

Abstract

A random iteration algorithm for graph-directed sets is defined and discussed. Similarly to the Barnsley-Elton's theorem, it is shown that almost all sequences obtained by this algorithm reflect a probability measure which is invariant with respect to the system of contractions with probabilities.

1 Introduction

The motif of this article is the random iteration algorithm for a family of graphdirected sets. According to Barnsley [1], the random iteration algorithm can be used to picture a fractal defined by a finite number of contractions. Our interest is to extend this idea to graph-directed sets (cf. [7], [8], [9], [10]).

Our present interest was originally motivated by the work of Brattka [4], in which Brattka presented an example of a "Fine-computable" function which is not "locally uniformly Fine-computable." The graph of Brattka's function can be characterized as a graph-directed set, and in [10] we have depicted graphs of some graph-directed sets by using a deterministic algorithm.

The random iteration algorithm is an alternative for picturing some invariant sets. Let us briefly explain this algorithm according to Barnsley and Elton (cf. [1], [2], [6]).

Let $\left\{S_{1}, S_{2}, \ldots, S_{K}\right\}$ be a family of contractions on \mathbf{R}^{d}. Let $\left(p_{1}, p_{2}, \ldots, p_{K}\right)$ be a system of probabilities assigned to $\left\{S_{1}, S_{2}, \ldots, S_{K}\right\}$, where $p_{i}>0(i=$ $1, \ldots, K)$ and $\sum_{i=1}^{K} p_{i}=1$. Choose $x(0) \in \mathbf{R}^{d}$ and choose randomly, recursively and independently $x(t) \in\left\{S_{1}(x(t-1)), S_{2}(x(t-1)), \ldots, S_{K}(x(t-1))\right\}$, where the probability for the event $x(t)=S_{i}(x(t-1))$ is p_{i}. The sequence $\{x(0), x(1), \ldots, x(n), \ldots\}$ "converges to" the invariant set with respect to $\left\{S_{1}, S_{2}\right.$, $\left.\ldots, S_{K}\right\}$. Moreover, the density of points in this sequence reflects a measure which is invariant with respect to $\left\{S_{1}, S_{2}, \ldots, S_{K}\right\}$ and $\left(p_{1}, p_{2}, \ldots, p_{K}\right)$ in the sense of Theorem 2 (Barnsley and Elton). Let us give an example.

Example 1 (Koch Curve). The Koch curve is invariant for $S_{1}, S_{2}, S_{3}, S_{4}$, where S_{i} maps the whole triangle to a smaller triangle for $i=1,2,3,4$ (cf. Fig. 1).

Let $(3 / 7,1 / 7,2 / 7,1 / 7)$ be a system of probabilities assigned to $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$. Starting with $x(0)=(0,0)$, we obtained the figure after 4000 times loop.

Fig. 1. Koch curve drawn with the random iteration algorithm.

In Section 2, we review the theory of graph-directed sets, and then explain the random iteration algorithm for graph-directed sets. In Section 3, we prove the Barnsley-Elton theorem for graph-directed sets (Theorems 3-5 and Corollary 1). At the end, another random iteration algorithm is proposed and some results thereof are previewed; details will be developed later.

We might note that I. Werner has investigated a random iteration algorithm for a family of graph-directed sets in a different approach in [11].

2 Random iteration algorithm for graph-directed sets

Graph-directed sets are defined as follows ([3], [5] and [9]). Let $K \geq 2$. Let $V=\{1, \ldots, K\}$ be a set of vertices, and let $E_{k, l}$ be a set of edges from vertex l to vertex k. Put $E=\left\{E_{k, l}\right\}_{k, l \in V}$. Assume that $\cup_{l=1}^{K} E_{k, l} \neq \emptyset$ for each k, although some of $E_{k, l}$'s may be empty. Let $E_{i, j}^{k}$ be the set of sequences of k edges $\left(e_{1}, e_{2}, \ldots, e_{k}\right)$ which is a directed path from vertex j to vertex i. We say that the graph is transitive if, for any i, j, there is a positive integer p such that $E_{i, j}^{p}$ is non-empty.

Definition 1 (Graph-directed sets). Let (V, E) be a transitive directed graph. For each $e \in E_{k, l}$, let S_{e} be a contraction on a compact space. A K-tuple of nonempty compact sets $\left(F_{1}, F_{2}, \ldots, F_{K}\right)$ is called a family of graph-directed sets if it
satisfies

$$
F_{k}=\bigcup_{l=1}^{K} \bigcup_{e \in E_{k, l}} S_{e}\left(F_{l}\right) \quad(k=1, \ldots, K)
$$

If we put

$$
\left\{S_{e}: e \in E_{k, l}\right\}=\left\{S_{i}^{k l}: i=1, \ldots, n_{k l}\right\} \quad(k, l=1, \ldots, K),
$$

the definition above can be stated in the following form.
Definition 2. Put

$$
\mathcal{S}=\left(\begin{array}{cccc}
\left\{S_{i}^{11}\right\}_{i=1}^{n_{11}} & \left\{S_{i}^{12}\right\}_{i=1}^{n_{12}} & \ldots & \left\{S_{i}^{1 K}\right\}_{i=1}^{n_{1 K}} \\
\underset{\cdots}{n_{1}} & \cdots & \ldots & \therefore \\
\left\{S_{i}^{K 1}\right\}_{i=1}^{n_{K 1}} & \left\{S_{i}^{K 2}\right\}_{i=1}^{n_{K 2}} & \ldots & \left\{S_{i}^{K K}\right\}_{i=1}^{n_{K K}}
\end{array}\right)
$$

where each $S_{i}^{k l}$ is a contraction on a compact space, $n_{k l} \geq 0$ and $\sum_{l=1}^{K} n_{k l}>$ $0(k=1, \ldots, K)$. Assume that the matrix $\left\{n_{k l}\right\}_{k, l=1, \ldots, K}$ is irreducible. A Ktuple of sets $\left(F_{1}, \ldots, F_{K}\right)$ is called a family of graph-directed sets for \mathcal{S} if

$$
F_{k}=\bigcup_{i=1}^{n_{k 1}} S_{i}^{k 1}\left(F_{1}\right) \cup \cdots \cup \bigcup_{i=1}^{n_{k K}} S_{i}^{k K}\left(F_{K}\right) \quad(k=1, \ldots, K) .
$$

We have the following theorem.
Theorem 1. ([3], [5], [7], [8], [9]) Let $K \geq 2$ and let \mathcal{S} be as above. Then there is a unique K-tuple of non-empty compact graph-directed sets $\left(F_{1}, \ldots, F_{K}\right)$.

We explain the random iteration algorithm with an example.
Example 2. Let $T_{i}(i=1,2,3,4)$ be a contraction, which is the similarity (dilation) that maps the whole square $\mathbf{X}=[0,1] \times[0,1]$ to the corresponding square in Fig. 2. Consider a pair of graph-directed sets (A, B) defined by

$$
\begin{aligned}
& A=S_{1}^{11}(A) \cup S_{1}^{12}(B) \cup S_{2}^{12}(B) \\
& B=S_{1}^{21}(A) \cup S_{2}^{21}(A) \cup S_{1}^{22}(B)
\end{aligned}
$$

Here, each $S_{i}^{k l}$ is defined as $S_{1}^{11}=T_{2}, S_{1}^{12}=T_{1}, S_{2}^{12}=T_{4}, S_{1}^{21}=T_{1}, S_{2}^{21}=T_{4}$ and $S_{1}^{22}=T_{3}$.

Let $x_{1}(0)$ and $x_{2}(0)$ be arbitrary points in \mathbf{X} and choose randomly, recursively and independently

$$
\begin{aligned}
& x_{1}(t+1) \in\left\{S_{1}^{11}\left(x_{1}(t)\right), S_{1}^{12}\left(x_{2}(t)\right), S_{2}^{12}\left(x_{2}(t)\right)\right\}, \\
& x_{2}(t+1) \in\left\{S_{1}^{21}\left(x_{1}(t)\right), S_{2}^{21}\left(x_{1}(t)\right), S_{1}^{22}\left(x_{2}(t)\right)\right\}
\end{aligned}
$$

The probabilities for selecting $\left\{S_{1}^{11}\left(x_{1}(t)\right), S_{1}^{12}\left(x_{2}(t)\right), S_{2}^{12}\left(x_{2}(t)\right)\right\}$ as $x_{1}(t+1)$ and $\left\{S_{1}^{21}\left(x_{1}(t)\right), S_{2}^{21}\left(x_{1}(t)\right), S_{1}^{22}\left(x_{2}(t)\right)\right\}$ as $x_{2}(t+1)$ are $\left(p_{1}^{11}, p_{1}^{12}, p_{2}^{12}\right)=(1 / 2,1 / 4$, $1 / 4)$ and $\left(p_{1}^{21}, p_{2}^{21}, p_{1}^{22}\right)=(1 / 4,1 / 2,1 / 4)$, respectively. Starting with $x_{1}(0)=$ $(0,0)$ and $x_{2}(0)=(0,0)$, we obtained the pair of figures $\left(A^{\prime}, B^{\prime}\right)$ in Fig. 2 after 10000 times loop.

Fig. 2. An example of random iteration algorithm for graph-directed sets.

We will subsequently show that there is a unique pair of probability measures $\left(\mu_{1}, \mu_{2}\right)$ on the pair of graph-directed sets (A, B) in Example 2 which satisfies

$$
\begin{aligned}
& \mu_{1}=p_{1}^{11} \mu_{1} \circ\left(S_{1}^{11}\right)^{-1}+\sum_{i=1}^{2} p_{i}^{12} \mu_{2} \circ\left(S_{i}^{12}\right)^{-1} \\
& \mu_{2}=\sum_{i=1}^{2} p_{i}^{21} \mu_{1} \circ\left(S_{i}^{21}\right)^{-1}+p_{1}^{22} \mu_{2} \circ\left(S_{1}^{22}\right)^{-1}
\end{aligned}
$$

For μ_{1} and μ_{2}, it holds that for all $\left(x_{1}(0), x_{2}(0)\right) \in \mathbf{X} \times \mathbf{X}$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} f\left(x_{1}(t)\right)=\int_{\mathbf{X}} f(x) d \mu_{1}(x) \\
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} f\left(x_{2}(t)\right)=\int_{\mathbf{X}} f(x) d \mu_{2}(x)
\end{aligned}
$$

for almost all sequences $\left\{\left(x_{1}(t), x_{2}(t)\right): t=0,1, \ldots\right\}$, and for any continuous real function f on \mathbf{X}. In fact, for a unique probability measure $\tilde{\mu}$ on $\mathbf{X} \times \mathbf{X}$, it holds that for any $\left(x_{1}(0), x_{2}(0)\right) \in \mathbf{X} \times \mathbf{X}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} f\left(x_{1}(t), x_{2}(t)\right)=\int_{\mathbf{X} \times \mathbf{X}} f\left(x_{1}, x_{2}\right) d \tilde{\mu}\left(x_{1}, x_{2}\right) \quad \text { a.e. }
$$

for any continuous real function f on $\mathbf{X} \times \mathbf{X}$. The measures μ_{1} and μ_{2} are the marginal distributions of the measure $\tilde{\mu}$ on $\mathbf{X} \times \mathbf{X}$.

Now, we state our random iteration algorithm for a family of graph-directed sets. Let \mathbf{X} be a non-empty compact set in \mathbf{R}^{d} such that $S_{i}^{k l}(\mathbf{X}) \subset \mathbf{X}$, for $k, l=1, \ldots, K, i=1, \ldots, n_{k l}$. A closed sphere $B(0, r)$ in \mathbf{R}^{d} with a sufficiently large $r>0$ such that $S_{i}^{k l}(B(0, r)) \subset B(0, r)$ for any k, l, i is an example of \mathbf{X}. For $k=1, \ldots, K$, let $\left(p_{1}^{k 1}, \ldots, p_{n_{k 1}}^{k 1}, \ldots, p_{1}^{k K}, \ldots, p_{n_{k K}}^{k K}\right)$ be a system of probabilities
assigned to $\left\{S_{1}^{k 1}, \ldots, S_{n_{k 1}}^{k 1} \ldots, S_{1}^{k K}, \ldots, S_{n_{k K}}^{k K}\right\}$, where $p_{i}^{k l} \geq 0\left(i=1, \ldots, n_{k 1}\right)$ for $l=1, \ldots, K$ and $\sum_{l=1}^{K} \sum_{i=1}^{n_{k l}} p_{i}^{k l}=1$.

Choose $\left(x_{1}(0), \ldots, x_{K}(0)\right) \in \mathbf{X}^{K}$, and choose randomly, recursively and independently

$$
x_{k}(t+1) \in\left\{S_{i}^{k l}\left(x_{l}(t)\right): l=1, \ldots, K \text { for which } n_{k l}>0 \text { and } i=1, \ldots, n_{k l}\right\},
$$

for $k=1, \ldots, K$. The probability for the event $x_{k}(t+1)=S_{i}^{k l}\left(x_{l}(t)\right)$ is $p_{i}^{k l}$. This produces a sequence of K-tuples of points $\left\{\left(x_{1}(t), \ldots, x_{K}(t)\right): t=0,1, \ldots\right\}$.

3 Invariant probability measure

Barnsley and Elton have shown the following.
Theorem 2. (Barnsley and Elton: [1], [2], [6]) Let Y be a complete metric space. Let $\left\{T_{1}, \ldots, T_{N}\right\}$ be a family of Lipschitz maps on Y. Let $\left(p_{1}, \ldots, p_{N}\right)$ be a system of probabilities assigned to $\left\{T_{1}, \ldots, T_{N}\right\}$, where $p_{i}>0(i=1, \ldots, N)$ and $\sum_{i=1}^{N} p_{i}=1$. Suppose there exists $0<r<1$ such that

$$
\prod_{i=1}^{N} d\left(T_{i}(y), T_{i}(z)\right)^{p_{i}} \leq r d(y, z)
$$

for $y, z \in Y$.
Choose $y(0) \in Y$ and choose randomly, recursively and independently, $y(t) \in$ $\left\{T_{1}(y(t-1)), \ldots, T_{N}(y(t-1))\right\}$, where the probability for the event $\{y(t)=$ $\left.T_{i}(y(t-1))\right\}$ is p_{i}. Then the following hold.
(1) There is a unique invariant probability measure μ associated with transition probability $p(y, B)=\sum_{i=1}^{N} p_{i} 1_{B}\left(T_{i}(y)\right)$, that is, $\mu(B)=\int p(y, B) d \mu(y)$ for all Borel set B.
(2) Let P be a probability $\prod_{i=1}^{\infty} P_{i}$ on $\prod_{i=1}^{\infty} J_{i}$, where $P_{i}=\left(p_{1}, \ldots, p_{N}\right)$ and $J_{i}=\{1, \ldots, N\}$. It holds that for any $y(0) \in Y$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} f(y(t))=\int_{Y} f(y) d \mu(y) P-\text { a.e. }
$$

for all continuous function $f: Y \rightarrow \mathbf{R}$.
Let us note that μ is an invariant probability measure if and only if $\mu=M(\mu)$ for the Markov operator

$$
M(\nu)=\sum_{i=1}^{N} p_{i} \nu \circ T_{i}^{-1}
$$

By applying Barnsley and Elton's theorem, we show the uniqueness of an invariant probability measure of a random iteration algorithm for a family of
graph-directed sets. Recall that \mathbf{X} is a non-empty compact set in \mathbf{R}^{d} such that $S_{i}^{k l}(\mathbf{X}) \subset \mathbf{X}$ for $k, l=1, \ldots, K, i=1, \ldots, n_{k l}$. Put $\mathbf{X}_{k}=\mathbf{X}$ for $k=1, \ldots, K$, and define $\mathbf{X}^{K}=\mathbf{X}_{1} \times \cdots \mathbf{X}_{K}$. Define a metric d on \mathbf{X}^{K} by

$$
d\left(\left(x_{1}, \ldots, x_{K}\right),\left(y_{1}, \ldots, y_{K}\right)\right)=\operatorname{Max}\left\{\left|x_{k}-y_{k}\right|: k=1, \ldots, K\right\}
$$

where $\left|x_{k}-y_{k}\right|$ denotes the d-dimensional Euclidean metric.
Put $I_{k}=\left\{\left(l_{k}, i_{k}\right): n_{k l_{k}}>0,1 \leq i_{k} \leq n_{k l_{k}}\right\} \subset\{1, \ldots, K\} \times \mathbf{N}$ for $k=$ $1, \ldots, K$. Put further $I=I_{1} \times \cdots \times I_{K}$. For $S_{i}^{k l}: \mathbf{X} \rightarrow \mathbf{X}$, where $k=1, \ldots, K$ and $(l, i) \in I_{k}$, let $\tilde{S}_{i}^{k l}: \mathbf{X}^{K} \rightarrow \mathbf{X}_{k}$ be defined by $\tilde{S}_{i}^{k l}\left(x_{1}, \ldots, x_{K}\right)=S_{i}^{k l}\left(x_{l}\right)$.

For $\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I$, a transformation $T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}: \mathbf{X}^{K} \rightarrow$ \mathbf{X}^{K} is defined by

$$
\begin{aligned}
T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\left(x_{1}, \ldots, x_{K}\right) & :=\left(\tilde{S}_{i_{1}}^{1 l_{1}}\left(x_{1}, \ldots, x_{K}\right), \ldots, \tilde{S}_{i_{K}}^{K l_{K}}\left(x_{1}, \ldots, x_{K}\right)\right) \\
& =\left(S_{i_{1}}^{1 l_{1}}\left(x_{l_{1}}\right), \ldots, S_{i_{K}}^{K l_{K}}\left(x_{l_{K}}\right)\right)
\end{aligned}
$$

with the associated probability

$$
p_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}=p_{i_{1}}^{1 l_{1}} \cdots p_{i_{K}}^{K l_{K}}
$$

We apply Barnsley and Elton's theorem to $Y=\mathbf{X}^{K}$ and

$$
\mathcal{T}=\left\{T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}:\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I\right\}
$$

with probabilities $p_{i_{1}}^{1 l_{1}} \cdots p_{i_{K}}^{K l_{K}}$. Let L be the set of functions as defined below.

$$
\begin{aligned}
& L=\left\{f: \mathbf{X}^{K} \rightarrow \mathbf{R}:\right. \\
& \\
& \left.\quad\left|f\left(x_{1}, \ldots, x_{K}\right)-f\left(y_{1}, \ldots, y_{K}\right)\right| \leq \operatorname{Max}\left\{\left|x_{k}-y_{k}\right|: k=1, \ldots, K\right\}\right\},
\end{aligned}
$$

where $\left|x_{k}-y_{k}\right|$ denotes the d-dimensional Euclidean metric.
Let $\mathbf{P}\left(\mathbf{X}^{K}\right)$ be the space of normalized Borel measures on \mathbf{X}^{K}. The Hutchinson metric d_{H} of $\mathbf{P}\left(\mathbf{X}^{K}\right)$ is defined by

$$
d_{H}(\mu, \nu)=\operatorname{Sup}\left\{\int f d \mu-\int f d \nu: f \in L\right\}
$$

It is well known that $\left(\mathbf{P}\left(\mathbf{X}^{K}\right), d_{H}\right)$ is a compact space. (See Barnsley [1].)
Let us define a Markov operator $M: \mathbf{P}\left(\mathbf{X}^{K}\right) \rightarrow \mathbf{P}\left(\mathbf{X}^{K}\right)$, and prove a theorem which claims the existence of a certain measure.

Definition 3. The Markov operator associated with

$$
\mathcal{T}=\left\{T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{1}, i_{1}\right)\right)}:\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I\right\}
$$

is a transformation $M: \mathbf{P}\left(\mathbf{X}^{K}\right) \rightarrow \mathbf{P}\left(\mathbf{X}^{K}\right)$ defined by

$$
M(\nu)=\sum_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I} \prod_{k=1}^{K} p_{i_{k}}^{k l_{k}} \nu \circ\left(T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\right)^{-1} .
$$

Theorem 3. There exists a unique probability measure $\tilde{\mu}$ on \mathbf{X}^{K} such that $\tilde{\mu}=$ $M(\tilde{\mu})$.

Proof (Proof1: Application of Barnsley and Elton's criterion). Recall that, for $\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I$,

$$
T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\left(x_{1}, \ldots, x_{K}\right)=\left(S_{i_{1}}^{1 l_{1}}\left(x_{l_{1}}\right), \ldots, S_{i_{K}}^{K l_{K}}\left(x_{l_{K}}\right)\right) .
$$

Let s be the maximum of the contraction ratios of $\left\{S_{i}^{k l}\right\}$. Note that $s<1$. Recall that $d\left(\left(x_{1}, \ldots, x_{K}\right),\left(y_{1}, \ldots, y_{K}\right)\right)=\operatorname{Max}\left\{\left|x_{k}-y_{k}\right|: k=1, \ldots, K\right\}$, where $\left|x_{k}-y_{k}\right|$ denotes the d-dimensional Euclidean metric. Then it holds that

$$
\begin{align*}
& \left.\left.d\left(T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\left(x_{1}, \ldots, x_{K}\right)\right), T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\left(y_{1}, \ldots, y_{K}\right)\right)\right) \\
& \quad=d\left(\left(S_{i_{1}}^{1 l_{1}}\left(x_{l_{1}}\right), \ldots, S_{i_{K}}^{K l_{K}}\left(x_{l_{K}}\right)\right),\left(S_{i_{1}}^{1 l_{1}}\left(y_{l_{1}}\right), \ldots, S_{i_{K}}^{K l_{K}}\left(y_{l_{K}}\right)\right)\right) \\
& \quad=\operatorname{Max}\left\{\left|S_{i_{1}}^{1 l_{1}}\left(x_{l_{1}}\right)-S_{i_{1}}^{1 l_{1}}\left(y_{l_{1}}\right)\right|, \ldots,\left|S_{i_{K}}^{K l_{K}}\left(x_{l_{K}}\right)-S_{i_{K}}^{K l_{K}}\left(y_{l_{K}}\right)\right|\right\} \\
& \quad \leq s \operatorname{Max}\left\{\left|x_{l_{1}}-y_{l_{1}}\right|, \ldots,\left|x_{l_{K}}-y_{l_{K}}\right|\right\} \\
& \quad \leq s \operatorname{Max}\left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{K}-y_{K}\right|\right\} . \tag{1}
\end{align*}
$$

The Barnsley and Elton's condition holds if $d\left(T_{i}(x), T_{i}(y)\right) \leq s d(x, y)$ for an $s<1$. From (1) above this criterion is satisfied, and so we can apply the Barnsley and Elton's theorem and obtain the desired measure.

Proof (Proof2: Direct proof). Notice that, for $f \in L$,

$$
\begin{aligned}
& \left|f\left(T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\left(x_{1}, \ldots, x_{K}\right)\right)-f\left(T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\left(y_{1}, \ldots, y_{K}\right)\right)\right| \\
& \quad=\left|f\left(S_{i_{1}}^{1 l_{1}}\left(x_{l_{1}}\right), \ldots, S_{i_{K}}^{K l_{K}}\left(x_{l_{K}}\right)\right)-f\left(S_{i_{1}}^{1 l_{1}}\left(y_{l_{1}}\right), \ldots, S_{i_{K}}^{K l_{K}}\left(y_{l_{K}}\right)\right)\right| \\
& \quad \leq \operatorname{Max}\left\{\left|S_{i_{1}}^{1 l_{1}}\left(x_{l_{1}}\right)-S_{i_{1}}^{1 l_{1}}\left(y_{l_{1}}\right)\right|, \ldots,\left|S_{i_{K}}^{K l_{K}}\left(x_{l_{K}}\right)-S_{i_{K}}^{K l_{K}}\left(y_{l_{K}}\right)\right|\right\} \\
& \quad \leq s \operatorname{Max}\left\{\left|x_{l_{1}}-y_{l_{1}}\right|, \ldots,\left|x_{l_{K}}-y_{l_{K}}\right|\right\} \\
& \quad \leq s \operatorname{Max}\left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{K}-y_{K}\right|\right\} .
\end{aligned}
$$

Define
$\hat{f}\left(x_{1}, \ldots, x_{K}\right)=s^{-1} \sum_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I} \prod_{k=1}^{K} p_{i_{k}}^{k l_{k}} f\left(T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\left(x_{1}, \ldots, x_{K}\right)\right)$.
Then

$$
\begin{aligned}
& \left|\hat{f}\left(x_{1}, \ldots, x_{K}\right)-\hat{f}\left(y_{1}, \ldots, y_{K}\right)\right| \\
& \quad \leq s^{-1} \sum_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I} \prod_{k=1}^{K} p_{i_{k}}^{k l_{k}} s \operatorname{Max}\left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{K}-y_{K}\right|\right\} \\
& \quad \leq \operatorname{Max}\left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{K}-y_{K}\right|\right\},
\end{aligned}
$$

since $\sum_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I} \prod_{k=1}^{K} p_{i_{k}}^{k l_{k}}=1$. It therefore follows that $\hat{f} \in L$. If we put $\hat{L}=\left\{\hat{f}\left(x_{1}, \ldots, x_{K}\right): f \in L\right\}$, then $\hat{L} \subset L$ holds.

By the definition,

$$
\begin{aligned}
d_{H}(M(\mu), M(\nu))= & \operatorname{Sup}\left\{\int f d M(\mu)-\int f d M(\nu): f \in L\right\} \\
= & \operatorname{Sup}\left\{\int \sum_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I} \prod_{k=1}^{K} p_{i_{k}}^{k l_{k}}\right. \\
& f\left(T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\left(x_{1}, \ldots, x_{K}\right)\right) d \mu\left(x_{1}, \ldots, x_{K}\right) \\
& -\int \sum_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I} \prod_{k=1}^{K} p_{i_{k}}^{k l_{k}} \\
& f\left(T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\left(x_{1}, \ldots, x_{K}\right) d \nu\left(x_{1}, \ldots, x_{K}\right): f \in L\right\} \\
= & \operatorname{Sup}\left\{s \left(\int \hat{f}\left(x_{1}, \ldots, x_{K}\right) d \mu\left(x_{1}, \ldots, x_{K}\right)\right.\right. \\
\leq & \left.\left.\quad-\int \hat{f}\left(x_{1}, \ldots, x_{K}\right) d \nu\left(x_{1}, \ldots, x_{K}\right)\right): \hat{f} \in \hat{L}\right\} \\
\quad & \left.\left.\quad-\int f\left(x_{1}, \ldots, x_{K}\right) d \nu\left(x_{1}, \ldots, x_{K}\right)\right): f \in L\right\} \\
= & s\left(\int f\left(x_{1}, \ldots, x_{K}\right) d \mu\left(x_{1}, \ldots, x_{K}\right)\right. \\
\quad &
\end{aligned}
$$

Therefore the Markov operator M is a contraction map on $\mathbf{P}\left(\mathbf{X}^{K}\right)$. This implies that there is a unique invariant probability measure $\tilde{\mu}$ in $\mathbf{P}\left(\mathbf{X}^{K}\right)$.

Barnsley and Elton's theorem for random iterated algorithms can be extended to a family of graph-directed sets.
Theorem 4. Let $\tilde{\mu}$ be the unique invariant probability measure claimed in Theorem 3. Then for any $\left(x_{1}(0), \ldots, x_{K}(0)\right) \in \mathbf{X}^{K}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} f\left(x_{1}(t), \ldots, x_{K}(t)\right)=\int_{\mathbf{X}^{K}} f\left(x_{1}, \ldots, x_{K}\right) d \tilde{\mu}\left(x_{1}, \ldots, x_{K}\right) \quad \text { а.е. }
$$

for all continuous function $f: \mathbf{X}^{K} \rightarrow \mathbf{R}$.
Proof. We apply (2) of Barnsley and Elton's theorem to $T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}$ on \mathbf{X}^{K} with probabilities $\prod_{k=1}^{K} p_{i_{k}}^{k l_{k}}$.
Corollary 1. (1) For the marginal distributions $\tilde{\mu}_{1}, \ldots, \tilde{\mu}_{K}$, it holds that

$$
\tilde{\mu}_{k}=\sum_{l=1}^{K} \sum_{i=1}^{n_{k l}} p_{i}^{k l} \tilde{\mu}_{l} \circ\left(S_{i}^{k l}\right)^{-1}
$$

for $k=1, \ldots, K$.
(2) For any $\left(x_{1}(0), \ldots, x_{K}(0)\right) \in \mathbf{X}^{K}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} g\left(x_{k}(t)\right)=\int_{\mathbf{X}} g(x) d \tilde{\mu}_{k}(x) \text { a.e. }
$$

for all continuous function $g: \mathbf{X} \rightarrow \mathbf{R}$ and for $k=1, \ldots, K$.
Proof. Proof of (1). Note that for a family of Borel sets A_{1}, \ldots, A_{K} in \mathbf{X}, it holds that

$$
\begin{aligned}
& \left(T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\right)^{-1}\left(A_{1} \times \cdots \times A_{K}\right) \\
& \quad=\left\{\left(x_{1}, \ldots, x_{K}\right): \tilde{S}_{i_{k}}^{k l_{k}}\left(x_{1}, \ldots, x_{K}\right) \in A_{k}, k=1, \ldots, K\right\} \\
& \quad=\bigcap_{k=1}^{K}\left(\tilde{S}_{i_{k}}^{k l_{k}}\right)^{-1}\left(A_{k}\right)
\end{aligned}
$$

So we have
$\left(T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\right)^{-1}\left(\mathbf{X}_{1} \times \cdots \times \mathbf{X}_{k-1} \times A_{k} \times \mathbf{X}_{k+1} \cdots \times \mathbf{X}_{K}\right)=\left(\tilde{S}_{i_{k}}^{k l_{k}}\right)^{-1}\left(A_{k}\right)$, because $\left(\tilde{S}_{i_{j}}^{j l_{j}}\right)^{-1}\left(\mathbf{X}_{j}\right)=\mathbf{X}^{K}$. Recall that $\mathbf{X}_{l}=\mathbf{X}$ for all l. Note that $\tilde{\mu}=M(\tilde{\mu})$. Then it holds that

$$
\begin{aligned}
\tilde{\mu}_{k}(A) & =\tilde{\mu}\left(\mathbf{X}_{1} \times \cdots \times \mathbf{X}_{k-1} \times A \times \mathbf{X}_{k+1} \cdots \times \mathbf{X}_{K}\right) \\
& =M(\tilde{\mu})\left(\mathbf{X}_{1} \times \cdots \times \mathbf{X}_{k-1} \times A \times \mathbf{X}_{k+1} \cdots \times \mathbf{X}_{K}\right) \\
& =\sum_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I} \prod_{j=1}^{K} p_{i_{j}}^{j l_{j}} \\
& =\sum_{\left(\left(T_{\left.\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)\right)}\right)^{-1}\left(\mathbf{X}_{1} \times \cdots \times \mathbf{X}_{k-1} \times A \times \mathbf{X}_{k+1} \cdots \times \mathbf{X}_{K}\right)\right)} \sum_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I} \prod_{j=1}^{K} p_{i_{j}}^{j l_{j}} \tilde{\mu}\left(\left(\tilde{S}_{i_{k}}^{k l_{k}}\right)^{-1}(A)\right) \\
& =\sum_{\left(l_{k}, i_{k}\right) \in I_{k}} p_{i_{k}}^{k l_{k}} \tilde{\mu}\left(\left(\tilde{S}_{i_{k}}^{k l_{k}}\right)^{-1}(A)\right) \prod_{j \neq k} \sum_{\left(l_{j}, i_{j}\right) \in I_{j}} p_{i_{j}}^{j l_{j}} \\
& =\sum_{\left(l_{k}, i_{k}\right) \in I_{k}} p_{i_{k}}^{k l_{k}} \tilde{\mu}\left(\left(\tilde{S}_{i_{k}}^{k l_{k}}\right)^{-1}(A)\right) \\
& =\sum_{\left(l_{k}, i_{k}\right) \in I_{k}} p_{i_{k}}^{k l_{k}} \tilde{\mu}_{l_{k}}\left(\left(\tilde{S}_{i_{k}}^{k l_{k}}\right)^{-1}(A)\right) .
\end{aligned}
$$

This proves the assertion (1).
Proof of (2). Define $f\left(x_{1}, \ldots, x_{K}\right)=g\left(x_{k}\right)$. Then by virtue of Theorem 4, it holds that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} g\left(x_{k}(t)\right) & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} f\left(x_{1}(t), \ldots, x_{K}(t)\right) \\
& =\int_{\mathbf{X}^{K}} f\left(x_{1}, \ldots, x_{K}\right) d \tilde{\mu}\left(x_{1}, \ldots, x_{K}\right) \text { a.e. } \\
& =\int_{\mathbf{X}} g(x) d \tilde{\mu}_{k}(x)
\end{aligned}
$$

We thus have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} g\left(x_{k}(t)\right)=\int_{\mathbf{X}} g(x) d \tilde{\mu}_{k}(x) \quad \text { a.e. }
$$

for all continuous function $g: \mathbf{X} \rightarrow \mathbf{R}$ and $\mathrm{k}=1, \ldots, \mathrm{~K}$.
This proves the assertion (2).

Theorem 5. Let $\tilde{\mu}$ be the unique probability measure in Theorem 3, and let $\tilde{\mu}_{1}, \ldots, \tilde{\mu}_{K}$ be the marginal distributions of $\tilde{\mu}$. Then for $m=1, \ldots, K$, the support of $\tilde{\mu}_{m}$ is F_{m}, where $\left(F_{1}, \ldots, F_{K}\right)$ is the family of graph-directed sets in Theorem 1.

Proof. The proof is analogous to that of Theorem 2 in Section 9.6 of [1].
Let A denote the support of $\tilde{\mu}$. Notice that

$$
T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\left(F_{1} \times \cdots \times F_{K}\right) \subset F_{1} \times \cdots \times F_{K}
$$

for any $\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right) \in I$. It follows that $\left\{T_{\left(\left(l_{1}, i_{1}\right), \ldots,\left(l_{K}, i_{K}\right)\right)}\right\}$ restricted on $F_{1} \times \cdots \times F_{K}$ defines a random iteration algorithm with the probabilities $\prod_{k=1}^{K} p_{i_{k}}^{k l_{k}}$. Let $\tilde{\nu}$ be an invariant probability measure for the restricted random iteration algorithm, and this $\tilde{\nu}$ is an invariant probability measure for the random iteration algorithm on \mathbf{X}^{K}. Since $\tilde{\mu}$ is unique, $\tilde{\mu}=\tilde{\nu}$. It follows that $A \subset F_{1} \times$ $\cdots \times F_{K}$, and so the support of $\tilde{\mu}_{m}$ is included in F_{m}.

For $m=1, \ldots, K$, let Σ_{m} be the set of sequences $\left\{\left(l_{1}, i_{1} ; \ldots, ; l_{n}, i_{n} ; \ldots\right)\right.$: $n_{l_{n-1} l_{n}}>0,1 \leq i_{n} \leq n_{l_{n-1} l_{n}}$ for $\left.n=1, \ldots\right\}$, where $l_{0}=m$.

For each point $a \in F_{m}$, there is a (not necessarily unique) sequence in Σ_{m} such that

$$
a \in S_{i_{1}}^{m l_{1}} \circ S_{i_{2}}^{l_{1} l_{2}} \circ \cdots \circ S_{i_{n}}^{l_{n-1} l_{n}}\left(\mathbf{X}_{l_{n}}\right)
$$

holds for all n. Let O be an open set in \mathbf{X} which contains a. By the fact that $S_{i}^{k l}$ is a contraction, there is a positive integer n such that

$$
\left.S_{i_{1}}^{m l_{1}} \circ S_{i_{2}}^{l_{1} l_{2}} \circ \cdots \circ S_{i_{n}}^{l_{n-1} l_{n}}\left(\mathbf{X}_{l_{n}}\right)\right) \subset O
$$

Note that $\tilde{\mu}_{m}\left(S_{i_{1}}^{m l_{1}} \circ S_{i_{2}}^{l_{1} l_{2}} \circ \cdots \circ S_{i_{n}}^{l_{n-1} l_{n}}\left(\mathbf{X}_{l_{n}}\right)\right) \geq \prod_{j=1}^{n} p_{i_{j}}^{l_{j-1} l_{j}}>0$. It holds that $\tilde{\mu}_{m}(O)>0$, and so F_{m} is included in the support of $\tilde{\mu}_{m}$.

Remark 1. In the above proofs we have not used the independence of choosing $\left\{S_{i_{1}}^{1 l_{1}}, \ldots, S_{i_{K}}^{K l_{K}}\right\}$, or the productivity of the probabilities $\prod_{k=1}^{K} p_{i_{k}}^{k l_{k}}$. So we can formulate the random iteration algorithm so that the probability of choosing $\left\{S_{i_{1}}^{1 l_{1}}, \ldots, S_{i_{K}}^{K l_{K}}\right\}$ can be expressed as $p_{\left(l_{1}, i_{1} ; \ldots, l_{K}, i_{K}\right)}$, which is not restricted to the independent case of $p_{i_{1}}^{1 l_{1}} \ldots p_{i_{K}}^{K l_{K}}$. Theorems 3,4 and 5 hold for thus modified random iteration algorithm.

Remark 2. We propose a variation of this algorithm which changes only one coordinate X_{k} on each step. Let $\left\{q_{1}, \ldots, q_{K}\right\}$ be a probability, that is, $q_{k}>0$ for $k=1, \ldots, K$ and $\sum_{k=1}^{K} q_{k}=1$. For $k=1, \ldots, K$, let $\left(p_{1}^{k 1}, \ldots, p_{n_{k 1}}^{k 1}, \ldots\right.$, $\left.p_{1}^{k K}, \ldots, p_{n_{k K}}^{k K}\right)$ be a system of probabilities defined in Section 2.

Choose $\left(x_{1}(0), \ldots, x_{K}(0)\right) \in \mathbf{X}^{K}$. Next choose randomly $k(1) \in\{1, \ldots, K\}$, with probability $q_{k(1)}$, and then choose randomly $S_{i}^{k(1) l}\left(x_{l}(0)\right)$ for $l=1, \ldots, K$ with $n_{k(1) l}>0$ and $1 \leq i \leq n_{k(1) l}$, with probability $p_{i}^{k(1) l}$. Let $x_{k(1)}(1)=$ $S_{i}^{k(1) l}\left(x_{l}(0)\right)$ and $x_{j}(1)=x_{j}(0)$ for $j \neq k(1)$. Continue this procedure recursively and independently.

So we have

$$
\begin{aligned}
x_{k(t+1)}(t+1) & =S_{i}^{k(t+1) l}\left(x_{l}(t)\right), \\
x_{j}(t+1) & =x_{j}(t) \text { for } j \neq k(t+1),
\end{aligned}
$$

with probability $q_{k(t+1)} p_{i}^{k(t+1) l}$, where $k(t+1)=1, \ldots, K, l=1, \ldots, K$ with $n_{k(t+1) l}>0$ and $1 \leq i \leq n_{k(t+1) l}$.

This produces a sequence of K-tuples of points $\left\{\left(x_{1}(t), \ldots, x_{K}(t)\right): t=\right.$ $0,1, \ldots\}$. We then have the following results.
(1) There exists a unique probability measure $\hat{\mu}$ on \mathbf{X}^{K} such that $\hat{\mu}=\hat{M}(\hat{\mu})$, where \hat{M} is the associated Markov operator.
(2) Let $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$ be the marginal distributions of $\hat{\mu}$. Then for $m=1, \ldots, K$, the support of $\hat{\mu}_{m}$ is F_{m}, where $\left(F_{1}, \ldots, F_{K}\right)$ is the family of graph-directed sets in Theorem 1.
(3) For any $\left(x_{1}(0), \ldots, x_{K}(0)\right) \in \mathbf{X}^{K}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} f\left(x_{1}(t), \ldots, x_{K}(t)\right)=\int_{\mathbf{X}_{K}} f\left(x_{1}, \ldots, x_{K}\right) d \hat{\mu}\left(x_{1}, \ldots, x_{K}\right) \quad \text { a.e. }
$$

for all continuous function $f: \mathbf{X}^{K} \rightarrow \mathbf{R}$.
(4) (i) For the marginal distributions $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$, it holds that

$$
\hat{\mu}_{k}=\sum_{l=1}^{K} \sum_{i=1}^{n_{k l}} p_{i}^{k l} \hat{\mu}_{l} \circ\left(S_{i}^{k l}\right)^{-1}
$$

for $k=1, \ldots, K$.
(ii) For any $\left(x_{1}(0), \ldots, x_{K}(0)\right) \in \mathbf{X}^{K}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} g\left(x_{k}(t)\right)=\int_{\mathbf{X}} g(x) d \hat{\mu}_{k}(x) \text { a.e. }
$$

for all continuous function $g: \mathbf{X} \rightarrow \mathbf{R}$ and for $k=1, \ldots, K$.
Acknowledgement This work has been supported in part by Research Grant from $\operatorname{KSU}(2008,282)$, Research Grant from $\operatorname{KSU}(2008,339)$, JSPS Grant-in-Aid No. 20540143, and JSPS Grant-in-Aid No. 18500013, respectively.

References

1. M. Barnsley, Fractals everywhere. Academic Press, INC, Boston, 2000.
2. M. Barnsley and J. Elton, A new class of Markov processes for image encoding. Adv. Appl. Prob., 20, 14-32, 1988.
3. T. Bedford, Dimension and dynamics of fractal recurrent sets. J. London Math. Soc. (2), 33:89-100, 1986.
4. V. Brattka, Some Notes on Fine Computability. Journal of Universal Computer Science, 8:382-395, 2002.
5. G.A. Edgar, Measure, Topology and Fractal Geometry. Springer-Verlag, 1990.
6. J.H. Elton, An ergodic theorem for iterated maps. Ergodic Theory and Dynamical Systems, 7:481-488, 1987.
7. K. J. Falconer, Fractal Geometry. John Wiley \mathcal{E} Sons, Chichester, 1990.
8. J. E. Hutchinson, Fractals and self similarity. Indiana Univ. Math. J.,30:713-747, 1981.
9. R.D. Mauldin and S.C. Williams, Hausdorff dimension in graph directed constructions. Trans. Amer. math. Soc,309:811-829, 1988.
10. Y. Tsujii, T.Mori, Y.Yasugi and H.Tsuiki, Fine-Continuous Functions and Fractals Defined by Infinite Systems of Contractions. Proceeding Volume ILC2007 (to appear).
11. I.Werner, Contractive Markov Systems. J. London Math. Soc. (2) 71:236-258, 2005.
