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Abstract. In this paper we combine an integer programming approach
and a computer simulation tool to successfully develop and verify an
improved classification schedule for a real-world train classification in-
stance. First, we derive an integer program for computing train classifi-
cation schedules based on an earlier developed bitstring representation of
such schedules. We show how to incorporate various practical restrictions
in this model. Secondly, we apply the model to one day of traffic data
of the Swiss classification yard Lausanne Triage. We incorporate all the
operational and infrastructural restrictions of this yard instance in our
integer program. Even with this high number of restrictions, we are able
to compute a schedule that saves a full sorting step and one track com-
pared to the currently applied procedure. We finally show this improved
schedule is applicable in practice by a thorough computer simulation.

Keywords. train classification, shunting of rolling stock, simulation tools for
transport operations, infrastructure planning, freight trains

1 Introduction

Classification yards are an important unit of freight train systems, and several
technical and methodological innovations have improved their operation since
their first construction in the 19th century. Many improvements concerning train
classification methods were developed in the 1950s and 1960s, and the result-
ing methods can be divided in single-stage and multistage sorting. Single-stage
sorting is applied to large-volume traffic with only basic sorting requirements,
while multistage sorting is used for traffic with lower volume but finer sorting
requirements. In this paper we focus on multistage sorting.

Even though there are recent theoretical considerations that guarantee good
classification procedures, it is still common practice to apply the traditional mul-
tistage methods of the 1950s and 1960s today. In order to support transforming
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the mentioned theoretical results from the academic environment to the applica-
tion in practice, we introduce a framework for computing classification schedules
for real-world problem instances according to the recent theoretical findings. This
approach is mainly based on the knowledge of the input for the classification in-
stance. As soon as the order of incoming cars is known, we are able to compute
classification schedules that are superior to the established methods with regard
to the number of required sorting steps. This number essentially determines the
time required to accomplish a classification task. In contrast to the traditional
methods, this method considers ordered subsequences of cars in inbound trains
when computing schedules. Since in practice trains show a high degree of pre-
sortedness, this approach has a high potential to yield shorter schedules than
the established methods in many cases. Conversely, our integer programming
approach never yields a longer schedule than the established methods; for in-
stances for which an established method does provide an optimal schedule, our
method will find a schedule of the same length.

Outline In Sect. 2 we explain the basics of classification yards and multistage
sorting, followed by the related work in this field in Sect. 3. Section 4 revises an
encoding of classification schedules from [1], which is used in Sect. 5 to introduce
an integer programming model for deriving classification schedules. We then
apply our model to effectively derive an improved schedule for the classification
yard Lausanne Triage in Sect. 6, which we prove to be applicable in practice by
a successful computer simulation. Some final remarks follow in Sect. 7.

2 Hump Yards, Multistage Sorting, and Terminology

receiving
yard

departure
yard

classification
bowlhump

Fig. 1: Typical yard with receiving and departure yard, hump, and classification bowl.

The typical layout of a hump yard, shown in Fig. 1, consists of a receiving

yard, where incoming trains arrive, a classification bowl, where they are sorted,
and a departure yard, where outgoing trains are formed. The yard features a
hump, a rise in the ground, with a hump track from which cars roll in to the tracks
of the classification bowl. A typical classification bowl is shown in Fig. 2b. Not all
yards have receiving and departure tracks, some have a single end classification
bowl as in Fig. 2a, while others have a secondary hump at their opposite end as in
Fig. 2c or two parallel hump tracks on one side. Our example of Lausanne Triage
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is a double-ended hump yard with two parallel hump tracks and no departure
yard. Further details are given in Sect. 5 and 6.1. Almost all modern yards built
after the 1960s contain the layout of Fig. 2a as a core substructure, in which
multistage sorting can be performed as explained in the following paragraph.

classification tracks

hump

track
hump

(a) single-ended yard

to receiv-

ing yard

(b) double-ended yard

secondary

hump

additional

exit

(c) advanced layout

Fig. 2: Common variants of classification bowl layouts.

The following abstract model is a simplification of the actual classification
process. Note that this simplification does not impair our results. Every multi-
stage sorting method consists of a sequence of alternating roll-in and pull-out

operations. In a roll-in operation a shunting engine slowly pushes the decoupled
cars from the hump track over the hump. The cars roll through a tree of switches,
and every car is guided separately to a preassigned classification track. To fully
specify a roll-in operation, it suffices to specify the target track for each car.
In a pull-out operation an engine drives to some classification track, is coupled
to the cars on that track, and pulls back the cars over the hump so that the
next roll-in can be performed. A single pull-out can be sufficiently specified by
the classification track to pull out cars from. A pull-out followed by a roll-in is
called sorting step or simply step, and an initial roll-in followed by a sequence of
h sorting steps is called a classification schedule of length h. There is a number
of inbound trains in the order implied by their arrival times at the yard. This
order yields an inbound train sequence. Furthermore, there are m order speci-
fications for outbound trains. The inbound train sequence has to be sorted on
the classification tracks accordingly in order to obtain each of the m outbound
trains on a separate track. A classification schedule is called valid if applying it
accomplishes this sorting task, i.e., if applied to an inbound train sequence, it
yields the correctly ordered outbound trains, each on a separate track.

Pulling out a track roughly takes a constant amount of time cpull depending
on the distance for the engineer to drive. The time to roll-in the cars in a single
hump step is proportional to the number of cars and depends on the time cpush

required for decoupling and pushing one car, which is roughly constant. Together,
a classification process of h steps and a total of r cars rolled in approximately
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requires a time of hcpull + rcpush. Our main objective is to minimize the number
of steps, i.e., the length h of the schedule, which is the approach also taken
in [1]. The total number of roll-ins r presents our secondary objective. A more
detailed overview of classification yards and their technical implementation is
given in [2].

3 Related Work

Multistage classification methods are presented in a number of publications from
the 1950s and 1960s in the field of railway engineering [3–10]. Krell [8] com-
pares the two multistage classification methods of sorting by train and the often
superior simultaneous method, as well as two variants: triangular sorting and
geometric sorting. Some of these methods appear in earlier publications of Flan-
dorffer [3] and Pentinga [7]. Boot [4] describes the operational constraints of the
simultaneous method in France, Belgium, and The Netherlands. The real-world
implementation of the methods with respect to different yard layouts and arrival
and departure times of trains is discussed in [9] and [10]. For the Swiss classifica-
tion yard Zürich Limmattal, Baumann [6] explains the design aspects that make
the simultaneous method applicable there. There are more recent descriptions of
multistage methods in the papers of Siddiquee [11] and Daganzo et al. [12, 13].

In the 2000s Dahlhaus et al. study a variant of multistage sorting [14] from a
more theoretical point of view. They also give a systematic framework for order
requirements of outbound trains. These sorting requirements are summarized in
[15], which provides a framework for classifying a wide range of single- and multi-
stage methods. There are various shunting problems related to multistage train
classification, such as single-stage sorting [12, 14, 16], train matching [16], and
blocking and block-to-train assignment [17]. In practice these problems interact
with multistage sorting as the practical solution of one problem yields restric-
tions and simplifications for the other. Further overviews of shunting problems
with theoretical focus are given by DiStefano et al. [16] and Gatto et al. [18].

The theoretical concept of recoverable robustness [19] is applied by Cicerone
et al. [20, 21] to multistage sorting. They regard small deviations in the inbound
train and yard infrastructure and three basic recovery strategies, which is an
interesting first step towards robustness in train classification.

Computer simulations are a useful tool for evaluating and refining classifi-
cation methods before applying them in practice. Several such simulations have
been performed recently to verify planned modifications of yards or changes in
operation for yards in Germany [22], Slovakia [23], and Switzerland [24]. For
our computer simulation presented in Sect. 6.3, we used the simulation system
“Villon” [25] to verify our schedule.
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4 Encoding Classification Schedules

In this section we present the encoding for classification schedules that was
derived in [1]. Based on this encoding, we introduce a new integer programming
model in Sect. 5, which we apply to a practical classification problem in Sect. 6.

4.1 Model and Notation

We consider the yard layout of a single-ended classification bowl with a single
hump as depicted in Fig. 2a. (The same classification procedure can also be
applied on double-ended yards such as Lausanne Triage. Moreover, Lausanne
Triage has two parallel hump tracks, a setting to which the encoding is adapted
in Sect. 5.2.) The number of classification tracks is called the width of the yard
and denoted by W , the classification tracks are referred to by θ0, . . . , θW−1. The
maximum number of cars C that fit on any classification track is called the
capacity of the tracks.

Every car τ is represented by some positive integer τ ∈ N, and a train T is
defined as an ordered sequence T = (τ1, . . . , τk) of cars τi ∈ N, i = 1, . . . , k. The
number k of cars of T is referred to by the length of T . There is an ordered se-
quence of inbound trains, the concatenation of which (according to their arrival
at the yard) yields an ordered sequence of cars, called the inbound sequence of

cars. The order of cars in the inbound sequence is a permutation T = (τ1, . . . , τn)
of (1, . . . , n), where n is the total volume of cars. Moreover, there are m order
specifications for the m outbound trains. If ni denotes the length of the ith out-
bound train, i = 1, . . . ,m, then

∑m

i=1 ni = n. We further assume, w.l.o.g., that
the specification of the first outbound train is given by (1, . . . , n1), the second by
(n1 + 1, . . . , n1 + n2), etc., and the last by (n − nm + 1, . . . , n). During the clas-
sification process the cars of different outbound trains are sorted simultaneously
on the same set of tracks, called sorting tracks, whereas each outbound train is
finally formed on an individual track. Those tracks are called destination tracks.
Our optimization problem can now be defined as follows: Given an inbound se-
quence of cars T = (τ1, . . . , τn) and m outbound trains defined by their lengths
(n1, . . . , nm), find a valid classification schedule of minimum length.

4.2 Bitstring Representation of Classification Schedules

A track may be filled several times during a classification procedure by sending
cars to it after it has been pulled out. We call the track pulled out in the ith
step the ith logical track. For a classification schedule of length h, we map the h

logical tracks to the W physical tracks, obtaining a sequence (θi0 , . . . , θih−1
) of

h tracks, where θik
, k = 0, . . . , h − 1, is the physical track pulled out in the kth

sorting step. As shown in [1], for tracks of unbounded capacity, there always is an
optimal schedule whose track sequence (θi0 , . . . , θih−1

) satisfies k ≡ ik (mod W )
for every k = 0, . . . , h− 1; in other words, there is an optimal schedule in which
the tracks are pulled out in a round robin order. The proof given in [1] still holds
for tracks of limited but uniform capacity C, which we consider in this paper.
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Fig. 3: A classification procedure for h = 4 and n = 6, using track θ6 for the only
outbound train. The encoding is shown in (a), the inbound sequence of cars in (b).
(c)–(j) show the consecutive situations during the procedure, always pulling out the
cars of the rightmost occupied track.

For any classification schedule of h steps, the course of any car j can be
represented by a binary string bj = b

j
h−1 . . . b

j
0 with b

j
k = 1 iff the jth car visits

track θik
pulled out in the kth sorting step, k = 0, . . . , h−1. After the kth pull-out

operation, this car is rolled in to track θiℓ
with ℓ = min{k < i ≤ h − 1 | b

j
i = 1}.

If there is no bit b
j
i = 1, k < i ≤ h − 1, the car is rolled in to the destination

track of its outbound train. In this way, every classification schedule of length h

can be represented by an assignment of cars to bitstrings of length h. Figure 3
illustrates this representation in an example with a single outbound train.

Conversely, the bitstring encoding can be applied in order to derive a feasible
schedule. First, if two cars with consecutive indices j and j +1 of the same
outbound train appear correctly ordered already in the inbound train sequence,
they may be assigned the same bitstring; then, both cars take exactly the same
journey over the tracks during the classification, so they never change their
relative order and end up in their correct relative order in the outbound train.
Second, assume two consecutive cars j and j +1 of the same outbound train
occur in reversed relative order in the inbound sequence. Then, the bitstring bj+1

assigned to j+1, regarded as the binary representation of the integer
∑h−1

i=0 2ib
j+1
i ,
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must be strictly greater than the bitstring bj assigned to j. To see this, let
bj+1 > bj and k be the most significant (i.e. largest) index with b

j
k = 0 and

b
j+1
k = 1. After being pulled out from track θik

, car j+1 is sent to some track
θiℓ

, ℓ > k, which car j has been sent to in some earlier step. (Note that θiℓ

might be the destination track.) Thus, the two cars appear correctly ordered
on this track. Since they never swap their relative order at any later stage of
the classification, they arrive correctly ordered on the destination track of their
outbound train. By the same argument, if two consecutive cars j and j+1 occurs
in correct relative order in the inbound sequence, assigning bj+1 to j+1 and bj

to j is fine if bj < bj+1.
This insight yields a necessary ordering condition for a feasible assignment

of cars to bitstrings, which is independent of the number or capacity of classi-
fication tracks. This condition presents the most basic constraint of our integer
programming model introduced in the following section.

5 Deriving Schedules by Integer Programming

In this section, we present the integer programming model we apply in Sect. 6 to
successfully derive an improved schedule for a day of traffic in Lausanne Triage.
(Part of this model can be found in the ARRIVAL technical report [26].) We
start with the most basic version of this model in Sect. 5.1 and refine the model
successively from Sect. 5.2 to Sect. 5.4, incorporating all the required practical
constraints. Some constraints are specific for Lausanne Triage only, some apply
to other classification yards too.

5.1 Basic IP Model

The integer programming model applies the binary encoding of classification
schedules introduced in [1] and explained in Sect. 4. In the basic model below, we
enforce an assignment that yields the correctly ordered outbound trains. Note
this is the only constraint for completely unrestricted schedules, particularly
without any restriction on the number and capacity of tracks. Secondly, the
basic model implements limited track capacities.

We introduce binary variables b
j
i , j = 1, . . . , n, i = 0, . . . , h−1, corresponding

to the jth car in the ith sorting step. (We repeatedly introduce binary variables
in the following sections without repeating the binary constraint in the actual
formulation for space requirements.) The set of indices of cars that are the first
of their respective outgoing trains is denoted by F ⊆ {1, . . . , n}. Let further
rev(i, j) be an indicator function with rev(i, j) = 1 iff the ith and jth car appear
in reversed order in the incoming train sequence. Recall that C denotes the
maximum number of cars fitting on a track.

base: min
∑

1≤j≤n

0≤i<h

b
j
i
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s.t.
∑

0≤i<h

2ib
j
i ≥ rev(j, j−1) +

∑

0≤i<h

2ib
j−1
i ∀j ∈ {1, . . . , n} \ F (1)

∑

1≤j≤n

b
j
i ≤C ∀i ∈ {0, . . . , h−1} (2)

The objective function in this model minimizes the total number of cars rolled
in during the classification process, which presents our secondary objective as
mentioned in Sect. 2. In order to minimize our primary objective, i.e. the number
of sorting steps, we solve a short sequence of integer programs with increasing
length values h. Constraints (1) enforce a valid schedule w.r.t. the ordering of
cars in the outbound trains: If two consecutive cars j−1 and j of an outbound
train are in correct order, they may be assigned the same bitstring; otherwise,
rev(j−1, j) = 1, so j will get a strictly larger bitstring than j−1 as required
according to Sect. 4.2. Constraints 2 implements the restricted capacity of the
classification tracks.

5.2 Parallel Classification Procedures

As mentioned before, the classification yard Lausanne Triage features two paral-
lel hump tracks. For the simultaneous method, this means that we can apply two
classification procedures in parallel. The two procedures work as two indepen-
dent systems: there is one shunting engine in either system, and each available
classification track is used by only one procedure; furthermore, every outbound
train is assigned to exactly one of the systems and remains in that system from
its first roll-in until its outbound train is formed. We refer to the two systems of
Lausanne Triage by north partition and south partition.

The assignment of trains to partitions is part of the optimization process.
We add binary variables si, i = 1, . . . ,m, with si = 1 iff the ith outbound
train is a member of the north partition. For the sake of comparability, however,
we fixed eight out of 24 variables si in our test instance as further explained
in Sect. 6.2. We further double the binary variables b

j
i into two sets: b̂

j
i for

the schedule corresponding to the north and b̌
j
i for that of the south partition.

In the resulting model, we perform h sorting steps in each partition. Let t(j),
j ∈ {1, . . . , n}, denote the outbound train of the jth car.

min
∑

1≤j≤n

0≤i<h

(

b̂
j
i + b̌

j
i

)

s.t.
∑

0≤i<h

2ib̂
j
i ≥ rev (j, j−1) −

(

1−st(j)

)

+
∑

0≤i<h

2ib̂
j−1
i ∀j ∈ {1, . . . , n} \ F (3)

∑

0≤i<h

2ib̌
j
i ≥ rev (j, j−1) − st(j) +

∑

0≤i<h

2ib̌
j−1
i ∀j ∈ {1, . . . , n} \ F (4)

∑

1≤j≤n

b̂
j
i ≤C,

∑

1≤j≤n

b̌
j
i ≤ C ∀i ∈ {0, . . . , h−1} (5)
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Note that with this approach the jth car has two bitstrings b̂j and b̌j , one for each
partition. Consider two consecutive cars j and j−1 of the same outbound train
x that appear in reversed order in the inbound sequence of cars. If x is assigned
to the north partition, i.e. s(x) = 1, then 1 − st(j) = 0 and Constraints (3)

corresponds to Constraints (1). In this case, the values of b̌j and b̌j−1 have no
meaning. Note that Constraints (4) are satisfied if both b̌j = 0 and b̌j−1 = 0
independently of the value of rev(j, j−1). By the objective function, an optimal
solution will satisfy b̌j = 0 and b̌j−1 = 0 and its objective value actually equals
the total number of cars rolled in. A similar argument applies for s(x) = 0.

5.3 Available Classification Tracks

In the classification yard Lausanne Triage, the multistage method for classifying
multidestination freight trains is carried out in two stages. First, the trains are
collected on a number W of reserved classification tracks, while all other tracks
are used for other shunting activities such as single-stage sorting. This first stage
corresponds to the initial roll-in of every car (see Sect. 4.1). This constraint is
modeled as follows, where W = Ŵ + W̌ with Ŵ and W̌ being the numbers of
tracks corresponding to the north and south system, respectively:

initial roll-in:

∑

0≤i<Ŵ

b̂
j
i ≥st(j) ∀j ∈ {1, . . . , n} (6)

∑

0≤i<W̌

b̌
j
i ≥1−st(j) ∀j ∈ {1, . . . , n} (7)

Note that for the special case of h = Ŵ = W̌ , which holds for our solution for
the sample instance of Sect. 6, this simply means that the all-zero bitstring is
disallowed for every car; in other words, cars may not be sent to destination
tracks initially. Note that Constraints (6) and (7) do not implement the limited
number of tracks mentioned in Sect. 4.1 in full generality. In the improved sched-
ule of Sect. 6, we do not pull out any track twice, so Constraints (6) and (7)
suffice here.

In the second stage, these tracks are pulled out to build outgoing trains,
which is usually performed during the night when more than the W reserved
tracks are available for multistage sorting. There might be more and more tracks
available after every sorting step, so forming more and more outgoing trains can
be started. In the integer program, we introduce binary variables ûx,t and ǔx,t,
x = 1, . . . ,m, t = 0, . . . , h, that indicate whether forming the xth outgoing train
has started yet at time step t in the north or south partition, respectively.

train formation:

∑

j∈F

ût(j),t ≤ N̂t ∀t ∈ {0, . . . , h−1} (8)

∑

j∈F

ǔt(j),t ≤ Ňt ∀t ∈ {0, . . . , h−1} (9)
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ûj,t ≥st(j) −
∑

t≤i<h

b̂
j
i ∀j ∈ F, t ∈ {0, . . . , h} (10)

ǔj,t ≥1−st(j) −
∑

t≤i<h

b̌
j
i ∀j ∈ F, t ∈ {0, . . . , h} (11)

After every step t, the number of outgoing trains that have started to be formed
must not exceed the available number N̂t or Ňt of tracks, respectively, at this
time. This is implemented by Constraints (8) and (9). Constraints (10) and (11)
make sure each variable uj,t is actually set if forming the train of the jth car has
been started at the tth step.

5.4 Train Departure Times

If an outbound train is finished, it will not wait until the whole classification
process is finished but leaves the yard if the traffic on the railway line allows.
Some outbound trains even have to depart early to meet the point of time they
are expected to arrive at their destinations, and we have to consider these latest-
possible departure times in the classification process. We introduce an upper
bound on the time it takes to perform one sorting step, which we chose to be
30 minutes for our example of Lausanne Triage. In this way, we obtain the latest
sorting step accx in which a train x can still receive cars.

accumulation finish:

∑

acct(j)≤i<h

(

b̂
j
i + b̌

j
i

)

=0 ∀j ∈ {1, . . . , n} (12)

In the following section, we use this model to derive a schedule for a real-world
classification task, to which we have to apply all the Constraints (3) to (12).

6 Case Study: Lausanne Triage

We apply the model of the previous section to real-world traffic data in this sec-
tion. The problem instance is illustrated in Sect. 6.1, the schedule computation
is described in Sect. 6.2, and its successful simulation in Sect. 6.3.

6.1 Classification Yard Lausanne Triage

The train classification yard of Lausanne features a receiving yard, a classifi-
cation bowl (see Fig. 4) of 38 tracks with two parallel hump tracks, and no
departure yard. Regarding the operation, there are ten tracks reserved for form-
ing multidestination freight trains, on which all cars for the multistage method
are initially collected. As mentioned in Sect. 5.3, the remaining tracks are needed
for other shunting activities. These activities are stopped at some point in the
early morning, from which time the humps are exclusively used for multistage
sorting. Still, not all multidestination freight trains can start to be formed right
after the first pull-out since there are still not enough tracks, but more and more
tracks are available after each step as mentioned in Sect. 5.3.
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Fig. 4: The classification bowl of Lausanne Triage with ten tracks for multistage sorting.

Our problem instance comprises all the cars of a complete day in 2005, which
amount to 1’346. For the multistage method there are 452 cars for 22 outbound
trains with between two and seven destinations and two outbound trains with
one destination. We extracted 331 cars for which we computed the schedule. The
remaining 121 cars of the multistage method were not included in the schedule
computation since they receive a special treatment as explained in Sect. 6.2
below.

6.2 Schedule Computation

All IP computations were done with ILOG OPL Studio 3.7 featuring CPLEX 9.0
on an Intel Xeon CPU with 2.80 GHz and 2 GB main memory running Linux.

The schedule originally applied to the above described classification instance
in 2005 comprised five steps in each partition, which corresponds to h = 5 in
the model of Sect. 5.2. Setting the values for C, N̂t, Ňt, and accx according to
the practical requirements, the problem turns out to be infeasible for putting
h = 4. However, with five steps in the north and only four steps in the south
partition, we obtain a feasible schedule. This is implemented by putting h = 5
and additionally requiring b̌

j
i = 0 for i = 4 and all cars j ∈ {1, . . . , n}. Computing

this schedule took 5.75 hours including the proof of optimality.
As mentioned above, there are 121 cars which we did not consider in the

schedule computation. These cars belong to destinations for which there is a very
big number of cars. In the original schedule, these cars were not rolled in to the
ten classification tracks for multistage sorting but directly sent to their respective
destination tracks. Except for one case, for which some extra shunting must be
done, these destinations are at the very front of their respective outbound trains,
so the classification process is not impaired by this practice. In this way, the
cars of the huge destinations did not have to be sent over the hump a second
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time. For the sake of an easier comparison, we took the same approach: in order
not to interfere with the operation of shunting activities other than multistage
sorting, we chose the same tracks for the large destinations; this includes a fixed
assignment to the north or south partition for the affected outbound trains by
forcing si = 0 or si = 1, respectively. Our improvement was achieved with this
additional constraint.

We also tried to compute a schedule with h = 5 steps in each partition
and Ŵ = W̌ = 4, i.e. a schedule in which the first track of either partition is
pulled twice. This would save even two classification tracks by revoking the saved
sorting step from above, but there is no feasible solution for this combination.

6.3 Simulation and Results

Fig. 5: Situation of the cars on the classification tracks after the initial roll-in for the
improved schedule. North is at the bottom of the picture.

We simulated the above described schedule using the simulation system “Vil-
lon” [25]. First of all, the above described schedule did not produce any conflicts
when our computer simulation was run on it, which basically means, with regard
to the technical implementation, that the schedule works in practice.

The total number of cars rolled in during the complete improved classification
procedure amounts to 1’700, compared to 1’706 in the original schedule, which is
only a marginal saving. Nevertheless, the theoretical considerations on multistage
sorting in [1] shows that increasing the number h of steps in the multistage
method over the optimum value generally allows decreasing the total number
r of cars rolled in and vice versa. Even though the experiments of [26] suggest
only a mild rise of r for decrementing h, our schedule does not yield any increase
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at all. Therefore, the marginal reduction of r by six is a great success since we
do not have to pay for the reduced number of sorting steps with more roll-ins
compared to the original schedule. This finding also underlines the suboptimality
of the schedule originally applied.

The number of settings of switches for our schedule amounts to 789 com-
pared to 914 for the old schedule, which is a considerable saving of 125 settings
or 13.7 %. This significantly reduces the wear of the switches and saves main-
tenance, which is further contributed to by only 1’481 movements of cuts over
switches. (A cut is a small set of coupled cars—if consecutive cars on the hump
track are about to be rolled in to the same track, they will not be decoupled.)
Compared to 1’691 for the original schedule, this is a saving of 210 cuts or 12.4 %.

The main improvement, however, consists in saving one full sorting step: in
the original procedure the track labeled “F28” in Fig. 5 contained the cars that
were pulled out in the fifth sorting step of the south partition. In the improved
procedure this track is empty after the initial roll-in, and is now available to be
used for various purposes. the original procedure comprised five sorting steps in
the south partition, whereas our improved procedure only performs four steps.
The track made available by saving the fifth step can be used, for example, for
multistage sorting in order to increase the upper limit of traffic with a higher
attractiveness for this method through an increased potential traffic volume. The
track may also be used for other shunting activities, such as building very long
trains with no order restriction by collecting their cars on several classification
tracks before coupling them into one train.

7 Conclusion and Future Work

The results of this paper demonstrate the power of the classification schedule
encoding established in [1]. We have effectively applied this encoding to obtain
a highly flexible integer programming model for train classification that allows
incorporating various practical restrictions, which underlines the applicability
in practice. As the main result, we are able to derive a schedule for real-world
traffic data of the example classification yard Lausanne Triage that outperforms
the current schedule by one sorting step. Implementing this schedule in practice
would yield a more efficient sorting process with less engine movement and a
significantly reduced wear of switches. Most importantly, the improved schedule
makes an additional classification track available. This raises a potential for
more traffic for the multistage method itself or other shunting methods applied
in parallel, such as single-stage sorting.

For Lausanne Triage dropping the fixed assignment of some trains to par-
titions mentioned in Sect. 6.2 may yield an even better schedule with higher
savings. Beyond that, it would also be interesting to derive and simulate more
schedules for further real-world data. In particular, there are larger classification
yards than Lausanne Triage with higher volumes of traffic for multistage sorting.
For such yards an even higher improvement can be expected, so an application
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to yards with a higher traffic volume and more sorting steps and tracks appears
promising.

The commonly applied classification methods triangular and geometric sort-
ing yield correctly ordered outbound trains regardless of the order of inbound
trains [18]. Such methods are called strictly robust. However, only a fraction
of trains is actually delayed in practice, so providing strict robustness wastes
a lot of potential as the results of this paper show. As mentioned before, our
improvement is based on complete knowledge of the order of inbound cars. Since
trains may be delayed, the actual order may differ from the scheduled order,
and the optimal classification schedule for the expected order cannot be applied
anymore. This dilemma can be tackled by regarding realistic scenarios of delay
and providing optimal robust solutions w.r.t. a limited amount of recovery in
case of disturbance [19, 20]. This approach balances between strictly robust and
optimal non-robust solutions and may thus yield robust classification methods
that still improve on the current practice.
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