
Weighted Dynamic Pushdown Networks

Alexander Wenner

Institut für Informatik, Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster

alexander.wenner@uni-muenster.de

Abstract. We develop a generic framework for the analysis of programs
with recursive procedures and dynamic process creation. To this end we
combine the approach of weighted pushdown systems (WPDS) with the
model of dynamic pushdown networks (DPN). Weighted dynamic push-
down networks (WDPN) describe processes running in parallel. Each
process may perform pushdown actions and spawn new processes. Tran-
sitions are labelled by weights to carry additional information. We derive
a method to determine meet-over-all-paths values for the paths from a
starting configuration to a regular set of configurations of a WDPN.

1 Introduction

The interest in writing parallel programs has increased in recent years. However
parallel programming is notoriously difficult and error-prone. Thus static analy-
sis of parallel programs has become more and more important. The goal of this
paper is to present a generic framework for the analysis of parallel programs, es-
pecially in the presence of recursive procedures and dynamic process creation. We
base our framework on DPN [1] and WPDS [2]. DPN precisely model procedures
and process creation and have been studied for reachability analyses. Since the
analysis of recursive procedures and synchronisation is undecidable [3], DPNs
do not model synchronisation between processes. However, through the addi-
tion of weights we will be able to analyse some interaction between processes.
WPDS extend pushdown systems (PDS) by labelling transitions with weights
and solving the generalised pushdown predecessor (GPP) problem, which is the
meet-over-all-paths solution for paths from a starting configuration into a reg-
ular set of target configurations. The weights can be used to formulate a wide
range of analysis problems. The GPP problem formulation allows for a specific
query depending on the shape of the entire call-stack, in contrast to standard
dataflow techniques, where typically all information at the topmost program
point is merged. Analogous to WPDS we extend DPN to WDPN by annotat-
ing weights to transitions and study the GPP problem. Even though a WPDS is
then simply a WDPN with one process, adapting the approach to solve the GPP
problem from WPDS to WDPN is problematic. In general a path of a DPN is
an interleaving of the transitions of arbitrary many parallel processes. Results
from [1] show, that such a set of paths can not be described using a constraint
system. We avoid these problems by introducing a branching semantics for DPN

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009. 
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.) 
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2344



similar to the tree semantics in [4]. Transitions of newly spawned processes are
no longer mixed with the transitions of the creating process, but contained in
their own branch. This results in executions which are tree shaped for single pro-
cesses and form hedges, which contain a tree for each process, for configurations
with multiple processes. We introduce an extended weight domain to abstract
these trees, and study the analogous branching GPP (BGPP) problem, which
is the meet-over-all-hedges solution, for these branching WDPN (BWDPN). We
show, that if the weight domain of a WDPN and the extended weight domain
of a BWDPN, based on the same DPN, are related, the solution for the GPP
problem of the WDPN can be derived from the solution of the corresponding
BGPP problem of the BWDPN. The BGPP problem can be solved using an
approach adapted from WPDS.

Up to this point our framework of WDPN and BWDPN can solve the bitvec-
tor problems for DPNs formulated in [1], the more general KILL/GEN analyses
described in [5] and the shortest path analysis from [2]. In [6] a different ap-
proach to generalize WPDS to parallel programs is presented, by introducing
a context bound. This leads to an underapproximation, whereas our approach
handles unbounded context switches precisely.

The remainder of the paper is organised as follows: Section 2 presents the
intuitive extension of WPDS to DPN called WDPN and defines the GPP. Section
3 introduces BWDPN. We formulate the BGPP problem and present the relation
to the GPP problem. Section 4 presents two applications and Section 5 presents
the approach to solve the BGPP problem for BWDPN.

2 Weighted Dynamic Pushdown Networks

A DPN [1] is a model for parallel programs with multiple processes and dynamic
process creation. Each process is modeled as a PDS, where the rules are extended
to allow creation of new processes. Formally a DPN is a tuple M = (P, Γ,∆),
where P is a finite set of control states, Γ is a finite set of stack symbols,
with P ∩ Γ = ∅, and ∆ is a finite set of transition rules of the form pγ ↪→ c
with p ∈ P , γ ∈ Γ and c ∈ (PΓ ∗)∗PΓ ∗. The right side of a rule consists
of the new control state and stacktop of the original process in the rightmost
position and the control states and stacks of all processes spawned by this rule
to the left. Configurations of the DPN are words from Conf = (PΓ ∗)∗. The
empty configuration is written as ε. For the rest of the paper we fix a DPN
M = (P, Γ,∆), a configuration c and a regular set C ⊆ Conf.

An execution of a DPN is represented by a path. A path is defined as a
sequence of rules ρ = r1 . . . rn with ri ∈ ∆. The empty path is denoted by ερ
and Paths is the set of all paths. The execution of a path is modeled by the
labelled transition relation −→ ⊆ Conf × Paths × Conf, where for c, c′ ∈ Conf,
p ∈ P , γ ∈ Γ , u ∈ (PΓ ∗)∗ and v ∈ Γ ∗(PΓ ∗)∗ :

[empty] c
ερ−→ c [rule] upγv

rρ−→ c if r = pγ ↪→ c′ and uc′v
ρ−→ c

2



Application of a rule replaces the control state and top symbol of one stack by
the new control state and stacktop specified by the rule and inserts the newly
created processes with their initial stacks to the left. We call this the interleaving
semantics of the DPN, since the rules of all processes are mixed together. We
are interested in the set Paths(c, C) = {ρ ∈ Paths | ∃c′ ∈ C with c

ρ−→ c′} of
connecting paths from c to C.

In order to abstract from the set of connecting paths to the aspects which
are relevant to the desired analysis, we assign a weight to each transition of the
DPN. The structure of the weight domain is captured by a complete idempotent
semiring, which supports the necessary operators � for concatenation of weights
along a path and ⊕ for combination of weights of different paths. A complete
idempotent semiring is a tuple S = (D,⊕,�, 0, 1), where D is a set of elements
with 0, 1 ∈ D and ⊕,� are binary operators on D with:

• (D,⊕) is a commutative monoid with neutral element 0 and ⊕ is idempotent
• (D,�) is a monoid with neutral element 1 and 0 annihilates �
• (D,v) is a complete lattice, where v, with d1 v d2 :⇔ d1 ⊕ d2 = d1

for d1, d2 ∈ D, is the partial order induced by ⊕
• � distributes over arbitrary ⊕, i.e.

⊕
D1 �

⊕
D2 =

⊕
{d1 � d2 | di ∈ Di}

for D1, D2 ⊆ D

Furthermore we assume, that a weight function f : ∆→ D is given. The weight
function assigns a weight to each transition of our DPN and depends on the
analysis, since it describes how the transitions of the DPN are connected to
the analysed information represented by the semiring. We fix the tuple W =
(M,S, f), with S = (D,⊕,�, 0, 1), called a WDPN, for the rest of the paper
and define an abstraction function α : Paths→ D for paths:

[empty] α(ερ) = 1 [rule] α(rρ) = f(r)� α(ρ)

Overloading it for sets of paths with α(M) =
⊕
{α(ρ) | ρ ∈M}, we can formu-

late the GPP problem for WDPN as computing δ(c, C) = α(Paths(c, C)).

3 Branching Weighted Dynamic Pushdown Networks

It follows from results in [1] that the set Paths(c, C) can not be characterised as
least solution of a constraint system. Therefore we can not compute the solution
for the GPP problem directly by an abstract interpretation [7] of such a con-
straint system. To avoid these problems we consider an alternative interpretation
of an execution of a DPN in form of a tree or hedge, first introduced in [4]. The
set of connecting hedges can then be described using a constraint system.

We recursively define the sets Trees and Hedges = Trees∗ of execution trees
and hedges. The empty hedge is written as εσ. The empty tree ετ consisting of a
single leaf node, representing a finished execution, is a tree. r(στ) is a tree with
a root node labelled with a rule r ∈ ∆, describing the first step of the execution,
and an ordered list of subtrees στ ∈ Hedges, representing the executions σ of

3



spawned processes and the rest of the execution τ of the spawning process. We
define the ; operator to concatenate a tree to the last tree of a hedge:

[hedge] (στ) ; τ ′ = σ(τ ; τ ′) [empty] ετ ; τ ′ = τ ′ [rule] r(σ) ; τ ′ = r(σ ; τ ′)

Appending a tree replaces the rightmost leaf of the hedge with that tree. Thus
concatenation of trees is concatenation of the rightmost branches. Since the
rightmost branch represents the execution of the initial process, this will later
be used to assemble execution trees from partial executions of an initial process.
The execution of a hedge is modeled by the labelled transition relation =⇒ ⊆
Conf × Hedges× Conf, where for c, c′, c̃ ∈ Conf, p ∈ P , γ ∈ Γ and w ∈ Γ ∗:

[none] ε
εσ=⇒ ε [tree] cpw στ=⇒ c′c̃ if c σ=⇒ c′ and pw

τ=⇒ c̃

[empty] pw ετ=⇒ pw [rule] pγw
r(σ)
=⇒ c if r = pγ ↪→ c′ and c′w

σ=⇒ c

We call this the branching semantics of the DPN, since each process has its
own branch in the execution. We are interested in the set Hedges(c, C) = {σ ∈
Hedges | ∃c′ ∈ C with c

σ=⇒ c′} of connecting hedges.
To abstract hedges we define an extended complete idempotent semiring,

which contains the additional ⊗̄ operator for parallel combination of weights.
An extended complete idempotent semiring E = (E, ⊕̄, �̄, ⊗̄, 0̄, 1̄) is a tuple,
where E is a set of values and ⊕̄, �̄, ⊗̄ are binary operators on E with:

• (E, ⊕̄, �̄, 0̄, 1̄) is a complete idempotent semiring
• (E, ⊗̄) is a semigroup, 1̄ ⊗̄ e = e for e ∈ E and 0̄ annihilates ⊗̄
• ⊗̄ distributes over arbitrary ⊕̄, i.e.

⊕̄
E1 ⊗̄

⊕̄
E2 =

⊕̄
{e1 ⊗̄ e2 | ei ∈ Ei}

for E1, E2 ⊆ E
• (e1 ⊗̄ e2) �̄ e3 = e1 ⊗̄(e2 �̄ e3), for e1, e2, e3 ∈ E

The fourth property ensures, that ; is abstracted by �̄, by always appending
weights to the rightmost weight of a parallel combination. In this regard the ⊗̄
operator differs from the interleaving operator ⊗ introduced in [8], since weights
that are concatenated after an interleaving need to be considered as well.

Furthermore we assume, as with WDPN, that a weight function f̄ : ∆→ E
is given. We fix the tuple B = (M, E , f̄), with E = (E, ⊕̄, �̄, ⊗̄, 0̄, 1̄), called
BWDPN, for the rest of the paper and define an abstraction function β :
Hedges→ E for hedges:

[none] β(εσ) = 1̄ [tree] β(στ) = β(σ) ⊗̄β(τ)
[empty] β(ετ ) = 1̄ [rule] β(r(σ)) = f̄(r) �̄β(σ)

Overloading it for sets of hedges with β(M) =
⊕̄
{β(σ) | σ ∈M}, we define the

BGPP problem for BWDPN as computing θ(c, C) = β(Hedges(c, C)).
There is a strong connection between the interleaving and branching seman-

tics of a DPN. A hedge represents of a set of paths, which can be constructed
by interleaving the branches and trees of the hedge. In [4] it was shown, that if
we take a function ψ : Hedges→ 2Paths that computes the set of interleavings of
a hedge, and overload it for sets of hedges, we have:

4



Theorem 1. Paths(c, C) = ψ(Hedges(c, C))

A similar result can be shown for the solutions of the GPP and BGPP prob-
lems, if the semiring of the WDPN is related to the extended semiring of the
BWDPN. We describe the necessary relation by an extension. An extension is a
tuple (S, E , ι, η), containing embedding and projection functions ι : D → E and
η : E → D, where for d, di ∈ D, e, ei ∈ E the following conditions must hold:

• E is the smallest set with ι(D) ⊆ E, closed under �̄, ⊗̄ and arbitrary ⊕̄
• ι(0) = 0̄, ι(1) = 1̄ and η(ι(d)) = d
• η distributes over arbitrary ⊕̄, i.e. η(

⊕̄
M) =

⊕
{η(e) | e ∈M} for M ⊆ E

• η(ι(d) �̄ e) = d� η(e)
• η(e1 ⊗̄ . . . ⊗̄ en) = η(ei1 ⊗̄ . . . ⊗̄ eim) with ei = 1̄ for i /∈ {i1, . . . , im}
• η(e1 ⊗̄ . . . ⊗̄ en) =

⊕n
i=1 di � η(e1 ⊗̄ . . . ⊗̄ e′i ⊗̄ . . . ⊗̄ en) with ei = ι(di) �̄ e′i

The first three points ensure, that every weight of the original semiring has a
corresponding weight in the extended semiring. The fourth point guarantees,
that a simple concatenation of extended weights is mapped to the corresponding
concatenation of weights. The last two points ensure, that the parallel combi-
nation of extended weights is mapped to the meet over all interleavings of the
weights they are constructed from. For the rest of the paper, we assume that the
semiring and extended semiring are connected by the extension (S, E , ι, η).

If f̄(r) = ι(f(r)), for all r ∈ ∆, i.e. the analysis of the WDPN is embedded in
the BWDPN, we can proof α(ψ(σ)) = η(β(σ)) for all σ ∈ Hedges by induction
on σ. Consequently with Theorem 1 we have:

Theorem 2. δ(c, C) = η(θ(c, C)).

4 Applications

Since the existence of an extended semiring and a matching extension for a given
semiring is not self-evident, we first give two examples of semirings, for which
an extended semiring and a corresponding extension can be constructed, before
describing the approach to solve the BGPP problem in Section 5.

The shortest path analysis assigns a positive integer weight to all transitions.
The weight of a path is the sum of the weights of the transitions occurring on
the path. The goal is to find the weight of the path with the smallest weight.
We use the semiring S = (N ∪ {0,∞},min,+,∞, 0) introduced in [2]. Since
+ is commutative and associative, the order in which transitions occur and are
combined on a path is irrelevant. Thus + can be used as the interleaving operator
⊗̄ in an extended semiring. The semiring in combination with the interleaving
operator fulfills all necessary conditions for an extended semiring E = (N ∪
{0,∞},min,+,+,∞, 0) and the matching extension is simply (S, E , id, id).

Bitvector Analyses analyse a property represented by a single bit. For lack
of space, we consider only forward may bitvector analysis. Backward or must
analyses can be handled similarly. The transitions of the DPN are annotated
with transformers, that change the current state of the bit. We use the semiring

5



S = (D,⊕,�, zero, id), where D = {gen, id, kill, zero}. Here gen represents the
transformer setting the bit to 1, id is the identity and kill sets the bit to 0. The
artificial weight zero is introduced to represent the zero element of the ring. �
is reversed functional concatenation extended to include zero. ⊕ is a meet oper-
ator inducing the ordering gen v id v kill v zero. In [8] it was shown, that the
operator ⊗, defined as f ⊗ g = (f � g)⊕ (g � f), is an interleaving operator on
the path level. However the semiring in combination with the interleaving oper-
ator can not be used as extended semiring, since it does not fulfill the property
(f ⊗ g) � h = f ⊗ (g � h) for all f, g, h ∈ D. Especially for f = gen, g = id and
h = kill, the terms (f ⊗ g)� h = kill and f ⊗ (g � h) = gen evaluate differently.
This is caused by the fact, that a gen occurring in a parallel process can always
be executed last in an interleaving and reset the bit. However the operator ⊗
does only consider the gen to be parallel to g and not the later appended h. We
solve this problem by introducing a new weight gen, that stores the information,
that a gen weight was encountered in parallel. This leads to the extended semir-
ing ({gen, gen, id, kill, zero}, ⊕̄, �̄, ⊗̄, zero, id) and extension (S, E , ι, η), where ⊕̄
induces the ordering gen v gen v id v kill v zero and:

f �̄ g =
{
f � g if f, g 6= gen
gen if f = gen or g = gen

f ⊗̄ g =
{
f �̄ g if f /∈ {gen, gen}
gen if f ∈ {gen, gen}

η(f) =
{
f if f ∈ {gen, id, kill, zero}
gen if f = gen

ι(f) = f

5 Solving the BGPP Problem for BWDPN.

We use M- and M∗-automata, adapted from [1], as a compact representation
for the target set. AM∗-automaton is a finite automaton A∗ = (S, P ∪Γ, δ, ṡ, F )
that satisfies the following additional conditions:

• Sc, Sp ⊆ S, where for all s ∈ Sc, p ∈ P exists a unique and distinguished
state sp ∈ Sp
• δ = δP ∪δΓ where δP = {(s, p, sp) | s ∈ Sc, p ∈ P} and δΓ ⊆ S×(Γ ∪{ε})×S
• L(A∗) ⊆ Conf

A M-automaton A is a M∗-automaton, where ṡ ∈ S \ Sp and the transition
relation δ satisfies the stronger condition δΓ ⊆ S× (Γ ∪{ε})× (S \Sp). We write

s
λ−→δ s

′ for (s, λ, s′) ∈ δ and s c−→
∗
δ s
′ for the transitive closure. For the rest of

the paper we fix an M-automaton A = (S, P ∪ Γ, δ, ṡ, F ) describing the set C.
Now consider an execution hedge in Hedges(c, C). Each tree of the hedge

transforms a stack in c into a configuration containing the transformed original
stack and stacks of spawned processes. Analogous to the approach in [2], we can
split each tree into several phases along the rightmost branch, each transform-
ing a stacksymbol of the corresponding initial stack. During these transformation
new processes may be spawned and transformed themselves. The idea is to com-
pute for each symbol of the starting configuration the set of trees, that transform
the stack symbol into a configuration, that is part of a configuration in C.

6



To this end we take a closer look at the saturation procedure used in [1]
to construct the set PRE∗(C) = {c | ∃c′ ∈ Conf, σ ∈ Hedges with c

σ=⇒ c′}
of all predecessor configurations. The saturation procedure works by adding
new transitions to the automaton A, thus allowing more configurations to be
accepted. The result is a M∗-automaton A∗ = (S, P ∪ Γ, δ′, ṡ, F ), with δ′ =
δP ∪ δ′Γ , where δ′Γ is the smallest set fulfilling the conditions:

[init] t ∈ δ′Γ if t ∈ δΓ
[step] (sp, γ, s′) ∈ δ′Γ if r = pγ ↪→ c ∈ ∆, s ∈ Sc and s

c−→
∗
δ′ s
′

A transition is added, if there is a rule transforming the symbol into a configu-
ration which can be read by previously existing transitions. If these transitions
were also added by the saturation, they themselves have a rules, which trans-
form their symbols. If we follow this recursion and assemble the rules into a
tree, we have a tree that transform the symbol of the newly added transition
into a configuration that can be read using only transition of A and therefore
is part of a configuration in C. We extend the saturation procedure to keep
track of these trees by constructing a constraint system L over (2Trees,∪). The
variables of the constraint system L[t] with t ∈ δ′Γ can be seen as annotations
to the transitions of the saturated automaton. Additionally we define a function
πL : S × Conf × S → 2Hedges that constructs a set of hedges for a configuration
by reading the annotations from the automaton:

[empty] πL(s, ε, s′) =
{
{εσ} if s ε−→

∗
δ′ s
′

∅ else
[control] πL(s, cp, s′) =

⋃
{πL(s, c, s̃)ετ | s

c−→
∗
δ′ s̃

p−→δ′P
ŝ

ε−→
∗
δ′ s
′}

[stack] πL(s, cγ, s′) =
⋃
{πL(s, c, s̃) ; L[(s̃, γ, ŝ)] | s c−→

∗
δ′ s̃

γ−→δ′Γ
ŝ

ε−→
∗
δ′ s
′}

ε transitions do not contribute any information and are simply skipped. If a
control state is encountered a new empty tree is added to the current hedges
for the following new process stack. In case of a stack symbol, the trees which
transform the stack symbol are appended to the current hedges. By appending
the trees of the individual stack symbols, we get a single tree, that transforms
the whole stack.

We construct a set of constraints in a similar way the saturation procedure
adds transitions to the automaton. Here r(·) : 2Hedges → 2Trees are operators
generating new trees out of a root node labelled with r ∈ ∆ and lists of subtrees
from a given set:

[init] L[t] ⊇ {ετ} if t ∈ δΓ
[step] L[(sp, γ, s′)] ⊇ r(πL(s, c, s′)) if r = pγ ↪→ c ∈ ∆, s ∈ Sc and s

c−→
∗
δ′ s
′

If we annotate the transitions of A∗ with the least solution lfp(L) of L we can
proof, by induction on the length of c, that the solution of the constraint system
can be used to describe the set of all connecting hedges:

Theorem 3. Hedges(c, C) =
⋃
{πlfp(L)(ṡ, c, s) | s ∈ F}.

7



To compute the weight of the hedges, we construct a constraint system L#

and a function π#
L# over the weight domain by replacing the operators and con-

stants in the constraint system L and the function πL, with the correspond-
ing operators and constants according to the abstraction function β. By stan-
dard results from abstract interpretation [7], we get lfp(L#) = β(lfp(L)) and
π#

lfp(L#)
= β(πlfp(L)) and with Theorem 3 we have:

Theorem 4. θ(c, C) =
⊕̄
{π#

lfp(L#)
(ṡ, c, s) | s ∈ F}.

Thus we can solve the BGPP problem by solving for lfp(L#) using standard
techniques and evaluating π#

lfp(L#)
. Theorem 2 states, that we get the solution to

the GPP problem by applying η.

6 Conclusion

We presented the GPP problem for a WDPN, which is a model for parallel
programs with dynamic process creation and recursive procedures. The GPP
problem is a general problem formulation, which can, for example, be used to
capture basic dataflow analysis problems. Since the GPP problem can not be
solved directly, our approach is based on an alternative branching semantics
for DPN. The resulting tree shaped executions can be characterised using a
constraint system, which can then be solved over an abstract domain to get
a solution for the BGPP problem for BWDPN. If the weight domains for the
BWDPN and WDPN are connected through an extension, the solution for the
GPP problem can be derived from the corresponding BGPP problem. We have
shown how the results can be used to solve basic dataflow analysis problems like
bitvector analyses or shortest path problems.

References

1. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: CONCUR. LNCS 3653, Springer (2005)

2. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. Comp. Prog. 58(1-2) (2005)

3. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2) (2000)

4. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: CAV. LNCS 5643, Springer (2009)

5. Lammich, P., Müller-Olm, M.: Precise fixpoint-based analysis of programs with
thread-creation and procedures. In: CONCUR. LNCS 4703 (2007)

6. Lal, A., Touili, T., Kidd, N., Reps, T.W.: Interprocedural analysis of concurrent
programs under a context bound. In: TACAS. LNCS 4963, Springer (2008)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, ACM
Press (1977)

8. Seidl, H., Steffen, B.: Constraint-based inter-procedural analysis of parallel pro-
grams. Nordic J. of Computing 7(4) (2000)

8




