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Abstract. We re-investigate the problem of LTL model-checking for
finite-state systems. Typical solutions, like in Spin, work on the fly, re-
ducing the problem to Büchi emptiness. This can be done in linear time,
and a variety of algorithms with this property exist. Nonetheless, subtle
design decisions can make a great difference to their actual performance
in practice, especially when used on-the-fly. We compare a number of
algorithms experimentally on a large benchmark suite, measure their ac-
tual run-time performance, and propose improvements. Compared with
the algorithm implemented in Spin, our best algorithm is faster by about
33 % on average. We therefore recommend that, for on-the-fly explicit-
state model checking, nested DFS should be replaced by better solutions.

1 Introduction

Model checking is the problem of determining whether a given hardware or
software system meets its specification. In the automata-theoretic approach, the
system may have finitely many states, and the specification is an LTL formula,
which is translated into a Büchi automaton, intersected with the system, and
checked for emptiness. Thus, model checking becomes a graph-theoretic problem.

Because of its importance, the problem has been intensively investigated.
For instance, symbolic algorithms use efficient data structures such as BDDs to
work on sets of states; a survey of them can be found in [5]. Moreover, parallel
model-checking algorithms have been developed [1]. The best known symbolic
or parallel solutions have suboptimal asymptotic complexity (O(n log n), where
n is the number of states), but are often faster than that in practice.

Büchi emptiness can also be solved in O(n) time. All known linear algorithms
are explicit, i.e. they construct and explore states one by one, by depth-first
search (DFS). Typically, they compute some data about each state: its unique
state descriptor and some auxiliary data needed for the emptiness check. Since
the state descriptor is usually much larger than the auxiliary data, approxima-
tive techniques such as bitstate hashing have been developed that avoid them,
storing just the auxiliary information in a hash table [13]. This entails the risk
of undetectable hash collisions; however the probability of a wrong result can be
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reduced below a chosen threshold by repeating the emptiness test with differ-
ent hash functions. Thus they represent a trade-off between time and memory
requirements. Henceforth, we shall refer to non-approximative methods that do
use state descriptors as exact methods.

We further identify two subgroups of explicit algorithms: Nested-DFS meth-
ods directly look for acceptings cycle in a Büchi automaton; they need very little
auxiliary memory and work well with bitstate hashing. SCC-based algorithms
identify strongly connected components containing accepting cycles; they require
more auxiliary memory but can find counterexamples more quickly.

All explicit algorithms can work “on-the-fly”, i.e. the (intersected) Büchi au-
tomaton is not known at the outset. Rather, one begins with a Büchi automaton
for the formula (typically small) and a compact system description and extracts
the initial state from these. Successor states are computed during exploration as
needed. If non-emptiness is detected, the algorithms terminate before construct-
ing the entire intersection. Moreover, in this approach the transition relation
need not be stored in memory. As we shall see, the on-the-fly nature of explicit
algorithms is very significant when evaluating their performance properly.

In this paper, we investigate performance aspects of explicit, exact, on-the-
fly algorithms for Büchi emptiness. The best-known example for such a tool is
Spin [12], which uses the nested-DFS algorithm proposed by Holzmann et al [13],
henceforth called HPY. The reasons for this choice are partly historic; the faster
detection capabilities of SCC-based algorithm were not known when Spin was
designed, having first been pointed out by Couvreur in 1999 [3]. Thus, the status
of HPY as the best choice is questionable, all the more so since the memory
advantages of nested DFS are comparatively scant in our setting. Moreover,
improved nested DFS algorithms have been proposed in the meantime.

We therefore evaluate several algorithms based on their actual running time
and memory usage on a large suite of benchmarks. Previous papers, especially
those on SCC-based algorithms [10, 15, 4, 11], provided similar experimental re-
sults, however, experiments were few or random and unsatisfying in one impor-
tant aspect: they worked from pre-computed Büchi automata, rather than truly
on-the-fly. This aspect will play a significant role in our evaluation.

To summarize, this paper contains the following contributions and findings:

– We provide improvements in both subgroups, nested DFS and SCC-based.
These concern the algorithms of Couvreur [3] and Schwoon/Esparza [15].
For new, self-contained proofs, see [7].

– One of the algorithms we study can be extended to generalized Büchi au-
tomata, and we investigate this aspect.

– We implemented existing and new algorithms and compare them on a large
benchmark suite. We analyze the structural properties of Büchi automata
that cause performance differences.

We make the following observations: The overall memory consumption of
all algorithms is dominated by the state descriptors, the differences in auxil-
iary memory play virtually no role. The running times depend practically ex-
clusively on the number of successor computations. When experimenting with
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pre-computed automata – as done in some other papers – this operation be-
comes cheap, which causes misleading results. Our results allow to derive de-
tailed recommendations which algorithms to use in which circumstances. These
recommendations revise those from [15]; Couvreur’s algorithm which was rec-
ommended there, is shown to have weak performance; however, the modification
mentioned above amends it. Moreover, our modification of Schwoon/Esparza
improves the previous best nested-DFS algorithm.

We proceed as follows: Section 2 establishes preliminaries, Sections 3 and 4
present nested-DFS and SCC-based algorithms, including our modifications. Sec-
tion 5 details our experimental results and concludes.

2 Preliminaries

A Büchi automaton (BA) is a tuple B = (S, sI ,post, A), where S is a finite set
of states, sI ∈ S is the initial state, post : S → 2S is the successor function, and
A ⊆ S are the accepting states. A path of B is a sequence of states s1 · · · sm for
some m ≥ 1 such that si+1 ∈ post(si) for all 1 ≤ i < m. If a path from s to
t exists, we write s →∗ t. When m > 1, we write s →+ t, and if additionally
s = t, we call the path a loop. A run of B is an infinite sequence (si)i≥0 such that
s0 = sI and si+1 ∈ post(si) for all i ≥ 0. A run is called accepting if si ∈ A for
infinitely many different i. The emptiness problem is to determine whether no
accepting run exists. If an accepting run exists, it is also called a counterexample.
From now on, we assume a fixed Büchi automaton B.

Note that we omit the usual input alphabet because we are just interested in
emptiness checks. Moreover, the transition relation is given as a mapping from
each state to its successors, which is suitable for on-the-fly algorithms.

A strongly connected component (SCC) of B is a subset C ⊂ S such that for
each pair s, t ∈ C, we have s →∗ t, and moreover, no other state can be added
to C without violating this property. An SCC C is called trivial if |C| = 1 and
for the singleton s ∈ C, s /∈ post(s). The following two facts are well-known:

(1) A counterexample exists iff there exists some s ∈ A such that sI →∗ s and
s →+ s. This fact is exploited by nested-DFS algorithms.

(2) A counterexample exists iff there exists a non-trivial SCC C reachable from
sI such that C ∩A 6= ∅. This fact is exploited by SCC-based algorithms.

A Büchi automaton is called weak if each of its SCCs is either contained in
A or in S \A. This implies the following fact:

(3) Each loop in a weak BA is entirely contained in A or in S \A.

A generalized Büchi automaton (GBA) is a tuple G = (S, sI ,post,A), where
S, sI , and post are as before, and A = (A1, . . . , Ak) is a set of acceptance
conditions, i.e. Aj ⊆ S for all j = 1, . . . , k. Paths and runs are defined as
for normal Büchi automata; a run (si)i≥0 of G is called accepting iff for each
j = 1, . . . , k there exist infinitely many different i such that si ∈ Aj .
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GBA are generally more concise than BA: a GBA with k acceptance con-
ditions and n states can be transformed into a BA with nk states. There is
no known nested-DFS algorithm that avoids this k-fold blowup for checking
emptiness of a GBA, although Tauriainen’s algorithm mitigates it [17]. Some
SCC-based algorithms, however, can exploit the following fact:

(4) A counterexample exists in G iff there exists a non-trivial SCC C reachable
from sI such that C ∩Aj 6= ∅ for all j = 1, . . . , k.

3 Nested depth-first search

Nested DFS was first proposed by Courcoubetis et al [2], and all other algorithms
in this subgroup still follow the same pattern. There are two DFS iterations: the
“blue” DFS is the main loop and marks every newly discovered state as blue.
Upon backtracing from an accepting state s, it initiates a “red” DFS that tries
to find a loop back to s, marking every encountered state as red. If a loop is
found, a counterexample is reported, otherwise the blue DFS continues, but the
established red markings remain. Thus, both blue and red DFS visit each state
at most once each. Only two bits of auxiliary data are required per state.

This pattern of searching for accepting loops in post-order ensures that mul-
tiple red searches do not interfere; states in “deep” SCCs are coloured red first,
and when a red DFS terminates, red states are guaranteed not to be part of
any counterexample. While being memory-efficient and simple, this has two dis-
advantages. First, nested DFS prefers long counterexamples over shorter ones;
secondly, the blue DFS never notices that a complete counterexample has al-
ready been explored and continues exploring potentially many more states than
necessary before eventually noticing the counterexample during backtracking.
Also, nested DFS computes the successors of many states twice.

Several improvements have been suggested in the past, e.g. the HPY al-
gorithm [13], implemented in Spin, and the SE algorithm [15]. We present an
improvement of SE, shown in Figure 1. A self-contained presentation and proof
is provided in [7]; here, we just describe the differences w.r.t. SE.

The additions to SE are in lines 4 and from 12 to 15. These exploit the fact
that red states cannot be part of any counterexample; therefore a state that has
only red successors cannot be either. This avoids certain initiations of the red
search. The improvement is similar in spirit to [8], but avoids some unnecessary
invocations of post. Like in [2], only two bits per state are used. Our experiments
shall show that it performs best among the known nested DFS algorithms.

Finally, we remark that for weak automata a much simpler algorithm suffices,
as observed by Černá and Pelánek [18]. Exploiting Fact (3), one can simply omit
the red search because all counterexamples are bound to be reported by line 9
in Figure 1. In that case, post is only invoked once per state.
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1 procedure new dfs ()
2 call dfs blue(sI)

3 procedure dfs blue (s)
4 allred := true;
5 s.colour := cyan;
6 for all t ∈ post(s) do
7 if t.colour = cyan
8 ∧ (s ∈ A ∨ t ∈ A) then
9 report cycle

10 else if t.colour = white then
11 call dfs blue(t);
12 if t.colour 6= red then
13 allred := false;

14 if allred then
15 s.colour := red
16 else if s ∈ A then
17 call dfs red(s);
18 s.colour := red
19 else
20 s.colour := blue

21 procedure dfs red (s)
22 for all t ∈ post(s) do
23 if t.colour = cyan then
24 report cycle
25 else if t.colour = blue then
26 t.colour := red ;
27 call dfs red(t)

Fig. 1. New Nested-DFS algorithm.

4 SCC-based algorithms

An efficient algorithm for determining SCCs that works on-the-fly was first pro-
posed by Tarjan [16]. However, for model-checking purposes Tarjan’s algorithm
was deemed unsuitable because it used more memory than nested DFS while of-
fering no advantages. More recent innovations by Geldenhuys/Valmari [10] and
Couvreur [3] change the picture, however: their modifications allow SCC-based
analysis to report a counterexample as soon as all its states and transitions were
discovered, no matter in which order. In other words, if the order in which suc-
cessors are explored by the DFS is fixed, both can find a counterexample in
optimal time (w.r.t. to the exploration order).

Space constraints prevent us from presenting the algorithms in detail. How-
ever, we mention a few salient points. Tarjan places all newly discovered states
onto a stack (henceforth called Tarjan stack) and numbers them in pre-order.
Certain properties of the DFS ensure that at any time during the algorithm,
states belonging to the same SCC are stored consecutively on the stack and
therefore also numbered consecutively. The root of an SCC is the state explored
first during DFS, having the lowest number and being deepest on the Tarjan
stack. For each state s, Tarjan computes a so-called “lowlink” number, which is
identical to the number of s iff s is a root, and less than that otherwise. An SCC
is completely explored when backtracking from its root, and at that point it can
be identified as a complete SCC and removed from the Tarjan stack.

Geldenhuys/Valmari (GV) exploit properties of lowlinks; they remember the
number of the deepest accepting state on the current search path, say k, and
when a state with lowlink ≤ k is found, a counterexample is reported. They
also propose some memory savings that are of minor importance in our context.

Couvreur (C99) omits both Tarjan stack and lowlinks but introduces a roots
stack that stores the roots of all partially explored SCCs on the current search
path. When one finds a transition to a state with number k, properties of the
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1 procedure couv ()
2 count := 0;
3 Roots := ∅; Active := ∅;
4 call couv dfs(sI)

5 procedure couv dfs(s):
6 count := count + 1;
7 s.dfsnum := count;
8 s.current := true;
9 push(Roots, (s, A(s)));

10 push(Active,s);
11 for all t ∈ post(s) do
12 if t.dfsnum = 0 then
13 call couv dfs(t)

14 else if t.current then
15 B := ∅;
16 repeat
17 (u, C) := pop(Roots);
18 B := B ∪ C;
19 if B = K then report cycle
20 until u.dfsnum ≤ t.dfsnum;
21 push(Roots, (u, B));
22 if top(Roots) = (s, ?) then
23 pop(Roots);
24 repeat
25 u:=pop(Active);
26 u.current := false
27 until u = s

Fig. 2. Amendment of Couvreur’s algorithm.

numbering imply that no state with number larger than k can be a root, prompt-
ing their removal from the roots stack. This effectively merges some SCCs, and
one checks whether the merger creates an SCC with the conditions from Fact (2).

Both algorithms report a counterexample after seeing the same states and
transitions, provided they work with the same exploration order. However, it
turns out that the removal of the Tarjan stack in C99, while more memory
efficient, was a crucial oversight: when backtracking from a root, another DFS
is necessary to mark these states as “removed”. These extra post computations
severely impede its performance. This makes GV superior to C99 in practice.

We propose to amend C99 by re-inserting the Tarjan stack.3 This amendment
makes it competitive with GV while using slightly less memory; more crucially,
C99 can deal directly with GBAs, which GV cannot. Since GBAs tend to be
smaller than BAs for the same LTL formula, the amended algorithm can hope
to explore fewer states and be faster.

The amended algorithm, working with GBAs, is shown in Figure 2. A more
detailed presentation and a proof are given in [7]. Note that in C99 accceptance
conditions are annotated on the transitions, whereas here we place them on the
states, which is only a minor difference. Figure 2 assumes k acceptance sets,
denoting A(s) := { j | s ∈ Aj } and K := {1, . . . , k}. Note that if k is “small”,
the union operation in line 18 can be implemented with bit parallelism.

5 Experiments

We implemented a framework for testing and comparing the actual performance
of all the known Büchi emptiness algorithms. For practical relevance, the best
framework for such an implementation would have been Spin. However, Spin
3 The problem with C99 was first hinted at in [15]. After creating this improvement

independently, we learned that similar changes were already proposed in [4] and [11].
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turned out too difficult to modify for this purpose. Instead, we based our testbed
on NIPS [19], a reverse-engineered Promela engine. Essentially, NIPS allows to
process a Promela model, provides the initial state descriptor and a function
for computing its successors. It is thus ideally suited for testing on-the-fly algo-
rithms, and we believe that the conditions are as close to Spin as possible.

We used 266 test cases from the BEEM database [14], including many differ-
ent algorithms, e.g., the Sliding Window protocol, Lamport’s Bakery algorithm,
Leader Election, and many others, together with various LTL properties.

Among the algorithms tested and implemented were HPY [13], GV [10],
C99 [3], SE [15], and the amended algorithms presented in Sections 3 and 4,
henceforth called AND and ASCC. For weak automata, we report on simple DFS
(SD, see Section 3). We also implemented and tested other algorithms, notably
those from [2] and [8]. However, these were always dominated by others, and we
omit them in the following. Naturally, our concrete running times and memory
consumptions are subject to certain implementation-specific issues. Nonetheless,
we believe that the tendencies exhibited by our experiments are transferrable.

In the following, we give a summary of our results. A more detailed descrip-
tion of our framework, the benchmarks, and the experimental results is given
in [6]; here, we just summarize the most important findings.

We first found that, in the context of exact model checking, the differences in
auxiliary memory usage was basically irrelevant. Certainly, the auxiliary memory
used by the various algorithms ranged from 2 bits to 12 bytes, a comparatively
large difference. However, this was dwarved by the memory consumption of state
descriptors, which ranged from 20 to 380 bytes, averaging at 130.

The only practical difference therefore was in the running time. Here, we
found that, no matter which auxiliary data structures were employed, the run-
ning time was practically proportional to the number of post invocations (more
precisely: the number of individual successor states generated by post), by far
the most costly operation. In retrospect, these two observations may seem obvi-
ous; however, we find that they were consistently under-represented in previous
papers, therefore it is worth re-emphasizing their relevance. The two main fac-
tors contributing to the running time were fast counterexample detection and
whether an algorithm had to compute each transition at most once or twice.

Discussing individual test cases would not be very meaningful: for instance,
the early-detection properties of some algorithms can cause arbitrarily large
differences. Instead, we exhibit certain structural properties that occurred in
many test cases and caused those differences. We first discuss algorithms working
on “normal” Büchi automata, followed by a discussion of ASCC with GBAs.

First, we observe that most test cases constitute weak Büchi automata. Note
that the intersection BA is weak if the BA arising from the formula is weak.
Černá and Pelánek [18] estimate the proportion of weak formulae in practice
to 90–95 %; indeed, we found that only 8 % of our test cases were non-weak.
For weak test cases, five out of six tested algorithms (GV, C99, SE, AND, SD)
detect counterexamples with minimal exploration. The three main structural
effects causing performance differences (which may overlap) were as follows:

7



– In 86 test cases, we observed many trivial SCCs consisting of one accepting
state. A typical example is the LTL property GFp, which (when negated)
yields a weak automaton with a looping accepting state. Then, any non-
looping part of the system necessarily yields such trivial SCCs. In these
cases, GV and SD dominate, sometimes with a factor of two, whereas C99,
SE, and HPY fall behind because they explore the accepting trivial SCCs
twice. In our test cases, the AND algorithm had the same performance as
GV and SD, although this is not guaranteed in general.

– In 98 cases, we observed non-accepting SCCs not preceded by accepting
SCCs. In this case, C99 falls behind all the others.

– HPY reports counterexamples only during the red DFS, whereas SE and
AND discovers some during the blue DFS. This accounts for 101 test cases
in which HPY fared worst, whereas all others showed the same performance.

Non-weak automata also had these effects, af-
algorithm run-time
ASCC 67.0 %
GV 69.2 %
AND 69.7 %
SE 96.3 %
HPY 100.0 %
C99 128.3 %

Fig. 3. Performances

fecting 18, 17, and 7 out of 21 test cases. In 7 cases,
GV and C99 found counterexamples more quickly
than the others, being faster by a factor of up to
six. Since we used the same exploration order in all
algorithms, these results are directly comparable.

We then tested the ASCC algorithm with GBA,
generated by the LTL2BA tool [9]. Most formulae
yielded GBA with only one acceptance condition,
meaning that the GBA had the same size as the
corresponding BA. Notice that the running times
of GBA with multiple conditions are not directly comparable with those of the
corresponding BA. This is because using a different automaton changes the order
of exploration, therefore in some “lucky” cases the BA-based algorithms may still
find a counterexample more quickly.

The running times summed up over all 266 test cases are given in Figure 3,
expressed as percentages of each other. Additionally, SD had the same perfor-
mance as GV for the weak cases. Note that every set of benchmarks would lead
to the same order among the algorithms because it reflects their different quali-
tative properties (e.g., quick counterexample detection or number of post calls).
The concrete numbers in Figure 3 tell their quantitative effect in what we believe
to be a representative set of benchmarks. We draw the following conclusions:

– Because of the dominance of weak test cases and GBAs with only one ac-
ceptance condition, the sum of running times yields small differences; only
SE, HPY, and C99 clearly fall behind. The performance differences in the
comparatively few other cases is very pronounced however.

– Overall, ASCC is the best algorithm if GBAs can be used. Due to the tech-
nical reasons explained above, it did not perform best in all examples.

– Among the BA-based algorithms, GV is the best for general formulae; it
is never outperformed on any test case by any other BA-based algorithm.
ASCC performs equally well when used with simple BAs.

– For weak formulae, SD is the best algorithm for bitstate hashing.
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– For general formulae, AND is the best algorithm for bitstate hashing, im-
proving the previous best algorithm for this setting (SE) by 28 %.

– There remains no reason to use either SE, HPY, or C99.

Acknowledgements: The authors would like to thank Michael Weber for cre-
ating and helping us use the NIPS framework.
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