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Abstract The oriented colouring problem is intuitive and related to
undirected colouring, yet remains NP-hard even on digraph classes with
bounded traditional directed width measures. Recently we have also
proved that it remains NP-hard in otherwise severely restricted digraph
classes. However, unlike most other problems on directed graphs, the ori-
ented colouring problem is not directly transferable to undirected graphs.
In the article we look at the parameterized complexity of computing the
oriented colouring of digraphs with bounded undirected width parame-
ters, whereas the parameters “forget” about the orientations of arcs and
treat them as edges. Specifically, we provide new complexity results for
computing oriented colouring on digraphs of bounded undirected rank-
width and a new algorithm for this problem on digraphs of bounded
undirected tree-width.

1 Introduction

The study of undirected colourings of graphs has become the focus of
many authors and lead to a number of interesting results. However, only
in the last decade has this been extended to directed graphs. The no-
tion of oriented colouring was first introduced by Courcelle [2]. Oriented
colouring has been studied by several authors, see e.g. the work of Nešetřil
and Raspaud [11] or the survey by Sopena [13].

Similarly to undirected colouring, computing the oriented chromatic
number (OCN in brief) and deciding oriented colourability of digraphs
are both NP-hard problems. However, while undirected colouring becomes
easy if we restrict the input to the graph class of trees, even deciding
oriented colourability by 4 colours (also referred to as OCN4) remains
NP-hard on directed acyclic graphs (further referred to as DAGs) [3].
And since the vast majority of digraph parameters have low, fixed values
on DAGs, this alone means that they would not be useful for computing
OCN .
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Bi-rank-width (first introduced by Kanté [9]), the digraph equivalent
to rank-width, is an exception since it can have high values for DAGs
– we have recently shown that deciding OCNk is in FPT on digraphs
of bounded bi-rank-width [7] (FPT stands for fixed parameter tractable,
meaning that the time complexity is not only polynomial for any fixed
value of the parameter, but also the degree of the polynomial does not
depend on the parameter). Unfortunately, the case of computing OCN
is worse than for OCNk: there is no known parameterized algorithm for
computing OCN utilizing a digraph parameter. But what about undi-
rected graph parameters?

Most hard problems on directed graphs can be directly translated to
undirected graphs. Consider c-Path, Hamiltonian Path, Hamiltonian Cy-
cle, Directed Steiner Tree, Directed Dominating Set, Directed Feedback
Vertex Set – all of these directed problems have also been extensively
studied on undirected graphs. OCN is different; its definition only makes
sense on digraphs. Nevertheless, we show that it is still possible to nat-
urally and intuitively use well-known undirected width parameters for
computing OCN on directed graphs. In the article we present new com-
plexity results and a new parameterized algorithm for OCN on digraphs
restricted by undirected width parameters.

2 Preliminariess

We assume that the reader is familiar with all basic definitions related
to undirected and directed graphs. Keep in mind that digraph stands for
directed graph and DAG stands for directed acyclic graph.

Let G,H be digraphs. A homomorphism of G to H is a mapping
f : V (G) → V (H) such that for all (a, b) ∈ E(G), it holds (f(a), f(b)) ∈
E(H). The k-oriented chromatic number (OCNk) problem is then defined
as follows: Given a digraph G, is there a homomorphism from G to H,
where H is some (irreflexive antisymmetric) orientation of edges of the
complete graph on k vertices? OCN is the optimization problem of finding
the minimum k for a given digraph such that OCNk is true.

For simplicity, we will sometimes say that a set of vertices of G have
the same colour – meaning that they all map into the same vertex of
H. Notice that such vertices with the same colour can never have an arc
between them, and that if there is an arc from a vertex coloured A to a
vertex coloured B, then there can never be an arc from a vertex coloured
B to a vertex coloured A. This is a useful and intuitive way of looking
at oriented colouring. Next, we will need the notions of tree-width and
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rank-width – both being very successful width parameters of undirected
graphs.

Tree-width: A tree decomposition of an undirected graph G = (V,E) is
a tree T together with a collection of subsets Tx ⊆ V (called bags) labeled
by the vertices x of T such that

∪
x∈T Tx = V and (1) and (2) below hold:

(1): For every edge uv of G, there is some x such that {u, v} ⊆ Tx.

(2): (Interpolation Property) If y is a vertex on the unique path in T
from x to z, then Tx ∩ Tz ⊆ Ty.

The width of a tree decomposition is the maximum value of ∣Tx∣ − 1
taken over all the vertices x of the tree T of the decomposition. We then
say that a graph G has tree-width k if G has a tree-decomposition of
width k.

Branch-width and rank-width: A set function f : 2M → ℤ is called
symmetric if f(X) = f(M ∖X) for all X ⊆ M . A tree is subcubic if all
its nodes have degree at most 3. For a symmetric function f : 2M → ℤ
on a finite set M , the branch-width of f is defined as follows.

A branch-decomposition of f is a pair (T, �) of a subcubic tree T and
a bijective function � : M → {t : t is a leaf of T}. For an edge e of T ,
the connected components of T ∖ e induce a bipartition (X,Y ) of the set
of leaves of T . The width of an edge e of a branch-decomposition (T, �)
is f(�−1(X)). The width of (T, �) is the maximum width over all edges
of T . The branch-width of f is the minimum of the width of all branch-
decompositions of f . (If ∣M ∣ ≤ 1, then we define the branch-width of f
as f(∅).)

Natural applications of this definition include not only rank-width
(introduced by Oum [10]) but also its directed counterpart bi-rank-width
(Kanté, [9]) and the branch-width of graphs (Robertson and Seymour,
[12]). In the case of rank-width we consider the vertex set V (G) = M of
a graph G as the ground set.

For a graph G, let AG[U,W ] be the bipartite adjacency matrix of a
bipartition (U,W ) of the vertex set V (G) defined over the two-element
field GF(2) as follows: the entry au,w, u ∈ U and w ∈W , of AG[U,W ] is 1
if and only if uw is an edge of G. The cut-rank function �G(U) = �G(W )
then equals the rank of AG[U,W ] over GF(2). A rank-decomposition and
rank-width of a graph G is the branch-decomposition and branch-width
of the cut-rank function �G of G on M = V (G), respectively.

Another notion we will need later on is bi-rank-width. For a digraph
G, let AG[U,W ]+ (AG[U,W ]−) be the bipartite adjacency matrix of a
bipartition (U,W ) of the vertex set V (G) defined over the two-element
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field GF(2) as follows: the entry au,w, u ∈ U and w ∈ W , of AG[U,W ]+

(AG[U,W ]−) is 1 if and only if (u,w) ∈ E(G) ((w, u) ∈ E(G)). The
bi-cutrank function of G is defined as the sum of the ranks of these two
matrices brkG(X) = rank(AG[U,W ]+) + rank(AG[U,W ]−) over the bi-
nary field GF (2). A bi-rank-decomposition and bi-rank-width of a graph
G is then the branch-decomposition and branch-width of this bi-cutrank
function brkG.

We have mentioned that for the purposes of this paper, we will apply
undirected width measures on directed graphs. So, unless otherwise spec-
ified, by tree-width and rank-width we will mean the undirected variants
of these measures, even when speaking of digraphs. Formally, given a di-
graph G = (V,E), we consider an undirected graph G′ = (V (G), E(G′))
where E(G′) = {{a, b} : (a, b) ∈ E(G)}, and by restricting G to bounded
tree-width or rank-width we actually restrict the values of these parame-
ters on G′. Informally this means that we “forget” about the orientations
of arcs when computing tree-width and rank-width.

3 OCN on digraphs of bounded rank-width

Although rank-width is not as restrictive as tree-width, in a certain sense
bounding rank-width means limiting the complexity of the structure of
the graph, and this can be exploited to design powerful parameterized
algorithms. For example, computing the “usual” undirected chromatic
number can be done in polynomial time (XP to be precise) on graphs
of bounded rank-width (see [6]), and deciding colourability can even be
done in FPT time ([5]). Unfortunately, despite its successes with undi-
rected colouring, it turns out that rank-width is not useful for computing
the more complicated OCN – even on digraphs of bounded rank-width
the problem is DET-hard, i.e. as hard as general graph isomorphism.
DET is the class of decision problems reducible in logarithmic space to
the problem of computing the determinant of an n-by-n matrix of n-bit
integers.

Theorem 3.1. Computing the oriented chromatic number of digraphs is
DET-hard even when restricted to digraphs of bounded undirected rank-
width.

Proof. We employ a reduction from a problem involving tournaments.
A tournament is, simply put, a complete graph with arbitrary orientation
of edges – more precisely, a digraph with precisely one arc between every
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pair of distinct vertices. The isomorphism of two tournaments has recently
been proved to be DET-hard by Wagner [14].

The reduction works as follows: Given two tournaments G1, G2 with
n vertices each, we construct G as the disjoint union of G1 and G2. Note
that the rank-width of G is 1, yet we could still solve the problem of
isomorphism of G1 and G2 by solving OCN on G.

First, assume that the OCN of G is n. Notice that each of Gi contains
exactly n vertices and no colour can appear more than once in each Gi.
We know that there exists a colouring of G which uniquely identifies each
vertex of G1 with a vertex of G2 of the same colour. What remains is
to argue that such a bijection f : G1 7→ G2 is an isomorphism. Consider
any arc (a, b) ∈ E(G1). We need to show (f(a), f(b)) ∈ E(G2), but by
the definition of tournaments either (f(a), f(b)) or (f(b), f(a)) must be
present, and the latter would contradict the oriented colouring of G.

Now assume that G1 is isomorphic to G2 by an isomorphism f : G1 7→
G2. We need to show that G can be coloured by n colours. By definition
this means proving that there exists a homomorphism from G to some
tournament H on n vertices. Choose H ∼= G2, ℎ : G2 7→ H being the
isomorphism, and consider the following homomorphism: all v ∈ G2 map
to ℎ(v) and all v ∈ G1 map to ℎ(f(v)). Any arc (a, b) ∈ E(G) must now
be also present in E(H), proving that G is orientedly n-colourable. This
concludes our proof.

4 OCN on digraphs of bounded tree-width

The introduction of tree-width was a breakthrough in the field, and it
still remains the most popular graph parameter to this day. Tree-width
exploits the fact that almost every problem is easy on the class of trees,
and parameterizes the graph by how “tree-like” it is. Powerful tools now
exist for designing algorithms on graphs of bounded tree-width, however
these are not capable of handling OCN . Nevertheless it still turns out
that it is possible to compute OCN on digraphs of bounded tree-width
in FPT time. First, we will need a few known results:

Corollary 4.1 ([8], 6.45). Graphs with bounded degree, or tree-width,
or genus have bounded oriented chromatic number.

More precisely, the authors of [1] have proved that the “acyclic chro-
matic number” of graphs with tree-width t is at most 2t+1. Hell and
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Nešetřil in [8] obtained a bound on the oriented chromatic number of at
most k ⋅ 2k−1, with k as the acyclic chromatic number of the graph. So
altogether we get a bound on OCN of b(t) = 2t+1 ⋅ 22t+1−1 on digraphs
of tree-width at most t.

Now, all that remains is to find an FPT algorithm on tree-width which
would decide OCNk. Unfortunately, no such direct algorithm is known,
but we have recently developed an FPT algorithm doing just that running
on the bi-rank-width of digraphs [7]. What we need to do now is prove
that tree-width also bounds bi-rank-width, allowing us to use the afore-
mentioned algorithm. This theorem is of independent interest – the proof
that tree-width bounds rank-width does not immediately translate to bi-
rank-width, and no result on the relationship of these two parameters has
been previously known.

Theorem 4.2. The bi-rank-width of a digraph G with tree-width t is at
most 2 ⋅ (t+ 1).

Proof. We start by normalizing the tree-decomposition of G in a similar
way as in [4, Theorem 6.72]:

1. First, we make the decomposition sub-cubic, i.e. bounding the degrees
of nodes to 3. This is accomplished by duplicating the nodes of higher
degree and inserting them as subdivisions of incident edges. Thus,
nodes with high degrees will be duplicated several times.

2. Next, we make all the sets in the tree decomposition uniform of size
t + 1 by adding new vertices to the node if necessary. This can be
accomplished by adding vertices from neighbours.

3. We ensure that neighbouring sets differ by at most one. This can be
achieved by adding interpolating nodes where necessary.

4. Now we make sure all sets of leaves have bags of size 1. This is done
by adding a path to each former leaf and reducing the size of each
consecutive bag on the path by one, omitting a random vertex. Notice
that this cannot break the interpolation property. The sets on these
paths will be smaller than t+ 1, and will be exempt from step 2.

5. Finally, for each node of degree 3 in the decomposition, we create an
attachment node with the same set by subdividing any of its incident
edges.

Now we will transform this tree-decomposition into a bi-rank-decom-
position, and argue that such a bi-rank-decomposition has bounded bi-
rank-width. First, we perform a Depth-first search starting from any leaf
of the tree-decomposition. Every time we come across a new, previously
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unvisited vertex in a bag at some node, we add it as a pendant vertex
to the node if the node has degree at most 2. The decomposition must
remain subcubic, so if the degree is already 3, we add it to the node’s
attachment vertex. In this way, all the vertices previously in bags will be
added to the decomposition as leafs in the same order as they appeared
in bags.

What remains is to argue that such a bi-rank-decomposition truly
has bounded bi-rank-width. Consider any edge of the decomposition. The
edges incident to leaves of the decomposition can have a bi-rank-width of
at most 2, due to the matrices having a single row or column. All other
edges were already present in the tree-decomposition, and due to the
nature of tree-decompositions (particularly the interpolation property),
only at most t + 1 vertices could occur in bags on both “sides” of the
edge. This means that of all the vertices in the rows of A+

G (those on
one “side” of the edge), only at most t + 1 could have ever met with
the vertices in the columns of A+

G (i.e. those on the other “side” of the
edge) in a bag – and since every edge must be present in some bag, we
immediately get that all rows or columns other than those of these t+ 1
vertices will only contain zeros. The same of course holds for the other
matrix A−G. Thus rank(A+

G) + rank(A−G) ≤ 2 ⋅ (t+ 1).

Recall that on digraphs of tree-width at most t, OCN is bounded
by b(t) = 2t+1 ⋅ 22t+1−1. On the other hand, the algorithm for OCNk on
digraphs of bi-rank-width at most r runs in time O(2k

2 ⋅ (2kr(r+1)/2 ⋅ kr3 ⋅
∣V (G)∣)) – the runtime is not written explicitly in [7], however it is based
on first considering all orientations of arcs of the tournament on k vertices
(2k

2
possibilities), and for each it is possible to straightforwardly apply

our algorithm for deciding unoriented k-colourability on rank-width [6]
which runs in time (2kr(r+1)/2 ⋅ kr3 ⋅ ∣V (G)∣).

So, to compute OCN , it suffices to simply run through all b(t) ad-
missible colours and for each colour compute OCNk by the bi-rank-width
algorithm. The number of tested colours can be trivially improved to
log b(t) in the same way as one can find a number between 1 and k by
using only O(log k) greater/less-or-equal queries. Altogether, we get:

Corollary 4.3. OCN can be computed on digraphs of tree-width at most
t in time O

(
log b(t) ⋅ 2b(t)2 ⋅ 2b(t)⋅(t+1)(2t+3) ⋅ b(t)(2t+ 2)3 ⋅ ∣V (G)∣

)
.
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5 Conclusion

In the article we have introduced new positive as well as negative results
for computing the oriented chromatic number of digraphs. The positive
result on tree-width is of particular interest. This is the first polynomial
parameterized algorithm for OCN . Future research should focus on uti-
lizing undirected width measures on other digraph problems, especially
those which do not translate directly to undirected graphs. Another direc-
tion for future research would be studying OCN on digraphs of bounded
bi-rank-width. If it indeed turns out to be hard, would it be possible to
find a new powerful directed measure capable of dealing with such hard
problems as OCN?
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