
Derivation in Scattered Context Grammar via
Lazy Function Evaluation

Ota Jirák1 and Dušan Kolář2

1 FIT BUT, Brno, Czech Republic,
ijirak@fit.vutbr.cz,

WWW home page: http://www.fit.vutbr.cz/~ijirak/
2 FIT BUT, Brno, Czech Republic,

kolar@fit.vutbr.cz,
WWW home page: http://www.fit.vutbr.cz/~kolar/

Abstract. This paper discusses scattered context grammars (SCG) and
considers the application of scattered context grammar production rules.
We use function that represents single derivation step over the given sen-
tential form. Moreover, we define this function in such a way, so that it
represents the delayed execution of scattered context grammar produc-
tion rules using the same principles as a lazy evaluation in functional
programming. Finally, we prove equivalence of the usual and the delayed
execution of SCG production rules.

1 Introduction

Family of languages that is described by scattered context grammars is very
important due to their generative power. This paper discusses usage of functions
over sentential forms to simulate derivation steps. Function representing delayed
execution of scattered context grammar rules is introduced. Next, we discuss
lazy evaluation of this recursively defined function.

The main goal of this article is to prove that this function is equivalent to
commonly known derivation step.

The proof is divided into several parts:

– we use example to demonstrate that sentential form completely processed
and the same sentential form partially processed are equivalent when pro-
cessed by the delayed execution function,

– we demonstrate that introduced function can handle any SCG rules on any
sentential form,

– we demonstrate that application of nested calling of delayed function is
equivalent with nested calling of regular derivation function,

– we demonstrate that application of nested delayed derivation, lazy evaluated,
is equivalent to nested regular derivation function.

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009. 
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.) 
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2351



2 Motivation

We have several principles for implementation of compilers for SCG: deep push-
down [8] (with a certain limitation), and regulated pushdown automata [4–6]
(RPDA).

The first approach uses nonterminal expansion not only on the pushdown top,
but even deeper. Implementation of this pushdown is inefficient (linked list).

The RPDA usually uses auxiliary pushdown to restore the main pushdown.
This data shuffling from one pushdown to another is also inefficient.

We are interested in deterministic compilers. Thus, we have to use leftmost
derivation principles and LL SCGs to make the parser work deterministically [5,
6]. We need to work only with the pushdown top.

(a) Before Applying the Rule (b) After Applying the Rule

Fig. 1. Normal Derivation Using RPDA

Productions of SCG are defined as an n-tupple of CFG productions (see
Section 3 - Preliminaries and Definitions). This is origin of basic idea. We would
like to use parsing principles from CFG parsers to parse context-free parts of
SCG productions in the right time.

We rely on principles of deterministic context-free parsers. We use leftmost
derivation. We have to use some kind of LL/LR grammars to choose productions
in a deterministic way.

We use one CFG production of particular SCG production. The others are
delayed and used in the right time. The unprocessed part of sentential form is
marked to be processed later with this delayed part of SCG production.

We can see difference between regular derivation and delayed derivation on
Figures 1 and 2. Applying one production in regular way means rewrite several
nonterminals in one step. One regular derivation step is shown on Figure 1(a)
and 1(b). Nonterminals A and C are rewritten in one derivation step.

Example of delayed execution is shown on Figure 2. Production p2 should be
used in Figure 2(a). We apply A→ a and we delay C → c. Then, pop is applied
on symbol a on the top of pushdown and a under the reading head.

Production p3 should be used in Figure 2(b). We apply B → b and we delay
D → d. Then, pop is applied on symbol b on the top of pushdown and b under
the reading head.

2



(a) A → a (b) B → b

(c) C → c (d) D → d

(e) Acceptation

Fig. 2. Delayed Derivation

In Figure 2(c), there is no other option than to use delayed production C → c.
If there are more delayed productions that could be used then we use the oldest
one. So we applied delayed production C → c and then removed it from delayed
production list. Then, pop is applied on symbol c on the top of pushdown and
c under the reading head.

In Figure 2(d), there we used delayed production D → d and then removed
it from the delayed production list. Then, pop is applied on symbol d on the top
of pushdown and d under the reading head.

In Figure 2(e), there we can see accepted sentential form by given scattered
context grammar. Sentence is accepted with empty pushdown and zero delayed
productions.

3 Preliminaries and Definitions

It is expected that a reader is familiar with formal language theory [7].
Let V ∗ be a free monoid over alphabet V , w ∈ V ∗, w is called string of

symbols from V , |w| denotes the length of w. Let ε be an empty string, |ε| = 0.

3



A context-free grammar (CFG, see [7]) is a quadruple G = (V, T, P, S), where
V is a finite set of symbols, T ⊂ V is a terminal alphabet, S ∈ V \T is the starting
nonterminal, and P is a finite set of rules of the form A → w, where A ∈ V \T
and w ∈ V ∗.

Now, we introduce definition of sentential form indexing. Besides common
concepts from the formal languages, we define for a string, X, X[n] and X[n:] to
denote one symbol from string and a substring of the string.

Definition 1. Let X = a1a2 . . . an, ai ∈ V, i ∈ {1, . . . , n}, n ∈ N.

X[k] = ak, k ∈ N, 1 ≤ k ≤ n,
X[k :] = ak . . . an, k ∈ N, 1 ≤ k ≤ n,

X[k] = X[k :] = ε, k ∈ N, k > n.

A scattered context grammar (see [1]) is a quadruple G = (V, T, P, S), where
V is a finite set of symbols, T ⊂ V is a terminal alphabet, S ∈ V \T is the
starting nonterminal, and P is a finite set of production rules of the form
(A1, A2, . . . , An) → (w1, w2, . . . , wn), for some n ≥ 1, where Ai ∈ V \T and
wi ∈ V ∗. Let u = x1A1x2A2 . . . xnAnxn+1, v = x1w1x2w2 . . . xnwnxn+1, xi ∈
V ∗, Ai ∈ V \T, 1 ≤ i ≤ n, for some n ≥ 1. u ⇒ v, x1A1x2A2 . . . xnAnxn+1 ⇒
x1w1x2w2 . . . xnwnxn+1 is a derivation. If x1 ∈ T ∗, xi ∈ (V \{Ai})∗, it is a left-
most derivation. Let u0, . . . , un ∈ V ∗, p1, . . . , pn ∈ P , u0 ⇒1 u1 ⇒2 · · · ⇒i

ui ⇒ · · · ⇒n un is a sequence of leftmost derivations. Number of the derivation
step, i, is a position in the sequence of derivations. ⇒i represents usage of pi —
production of the i-th derivation step.

Definition 2. Let X = x1A1x2A2 . . . xnAnxn+1 be a sentential form, Ai ∈
V \T, xi ∈ (V \{Ai})∗, xn+1 ∈ V ∗, for some n ≥ 1, j is a number of derivation
step and pj : (A1, A2, . . . , An) → (w1, w2, . . . , wn) ∈ P is an SCG rule used in
the j-th derivation step. Function hj(X) stands for leftmost application of the
SCG rule used in the j-th derivation step that is:

hj(X) = hj(x1A1x2A2 . . . xnAnxn+1)

= x1w1x2w2 . . . xnwnxn+1 (1)

Note 1. We say, this is a regular derivation step.

Definition 3. Let X = x1A1x2A2 . . . xnAnxn+1 be a sentential form, Ai ∈
V \T, xi ∈ (V \{Ai})∗, xn+1 ∈ V ∗, for some n ≥ 1, j is a number of derivation
step and pj : (A1, A2, . . . , An) → (w1, w2, . . . , wn) ∈ P is an SCG rule used in
the j-th derivation step, m ∈ {1, . . . , n+ 1}.

gj(m,X) =


X[1]gj(m,X[2 :]) for m ≤ n,X[1] 6= Am,
wmgj(m+ 1, X[2 :]) for m ≤ n,X[1] = Am,
ε for m > n, |X| = 0,
X[1]gj(m,X[2 :]) for m > n, |X| > 1,
X[1] for m > n, |X| = 1.

(2)

4



Note 2. We say, this is a delayed derivation step.

Let x be some sentential form. x
′

is sentential form processed by function g
or h — added apostroph to x.

Let nxb is an index into SCG rule, which is used in the b-th derivation step.
Symbol x is a counter of symbols processed by function, which is used in b-th
derivation step.

Example 1. Now, we demonstrate that sentential form completely processed and
the same sentential form partially processed are equivalent when processed by
the delayed execution function.
g(n0

1, x1x2 . . . xixi+1 . . . xk) = x
′

1 . . . x
′

ig(ni1, xi+1 . . . xk), i ∈ {1, . . . , k}, xi ∈ V
for some k ∈ N

g(n0
1, x1x2 . . . xk) = ∣∣ x

′

1g(n1
1, x2 . . . xk)

based on definition 3

(3)

= ∣∣ x
′

1x
′

2g(n2
1, x3 . . . xk)

based on definition 3

(4)

· · ·
= ∣∣ x

′

1x2
′ . . . x

′

k−1g(nk−1
1 , xk)

based on definition 3

(5)

= ∣∣ x
′

1x
′

2 . . . x
′

k
based on definition 3

(6)

⇒ g(n0
1, x1x2 . . . xixi+1 . . . xk) = x

′

1 . . . x
′

ig(ni1, xi+1 . . . xk) for some i ∈ {1,
. . . , k}

Lazy evaluation [9] based on call-by-need strategy is a scheduling policy that
does not evaluate an expression (or invoke a procedure) until the results of the
evaluation are needed. Lazy evaluation may avoid some unnecessary work. It
may allows a computation to terminate in some situations that otherwise would
not.

Lazy evaluation is often used in functional and logic programming, e.g.
Haskell[2].

Lazy evaluation of delayed derivation is application of delayed derivation
in a lazy way. It means that the leftmost symbols of sentential form are pro-
cessed by several derivation steps while the rest of the sentential form is still
unchanged. In other words, we make recursive step (see definition 2) only on the
leftmost outermost symbol being unprocessed by particular function for delayed
derivation.

4 Basic Idea

Each scattered context grammar derivation step can be described as an appli-
cation of some function over given sentential form. In our case, this function
represents leftmost application of an SCG rule.

5



We go through the sentential form and test each symbol. If the tested symbol
is a particular nonterminal from the appropriate (context-free) part of the SCG
rule we replace it with the right-hand side of the part of the SCG rule. And so
on until the whole string is processed.

5 Results

At first, we show that delayed function can process sentential forms of any length
and any number of context-free parts of an SCG rule.

Lemma 1. g(1, uA1α1 . . . αkAk+1αk+1) = h(uA1α1 . . . αkAk+1αk+1), i ∈
{1, . . . , k} for some k ∈ N, u ∈ T ∗, xi ∈ (V \{Ai+1})∗, (A1, . . . , Ak+1) →
(β1, . . . , βk+1) ∈ P

Proof. k — number of parts of SCG rule.

Basis. g(1, uA1α1) = h(uA1α1), k = 1

g(1, uA1α1) =∣∣ ug(1, A1α1)
based on definition 3

(7)

=∣∣ uβ1g(2, α1)
based on definition 3

(8)

=∣∣ uβ1α1
based on definition 3

(9)

=∣∣ h(uA1α1)
based on definition 2

(10)

⇒ g(1, uA1α1) = h(uA1α1) ut

g(1, uA1α1A2α2) = h(uA1α1A2α2), k=2

g(1, uA1α1A2α2) =∣∣ ug(1, A1α1A2α2)
based on definition 3

(11)

=∣∣ uβ1g(2, α1A2α2)
based on definition 3

(12)

=∣∣ uβ1α1g(2, A2α2)
based on definition 3

(13)

=∣∣ uβ1α1β2g(3, α2)
based on definition 3

(14)

=∣∣ uβ1α1β2α2
based on definition 3

(15)

=∣∣ h(uA1α1A2α2)
based on definition 2

(16)

⇒ g(1, uA1α1A2α2) = h(uA1α1A2α2) ut

Induction Hypothesis. We suppose that the statement holds for all k, 1 ≤ k ≤ n,
for some n ≥ 1.

6



Induction Step. g(1, uA1α1 . . . Ak+1αk+1) = h(uA1α1 . . . Ak+1αk+1), n = k + 1

g(1, uA1α1 . . . Ak+1αk+1) (17)

=∣∣ g(1, uA1α1 . . . Ak−1αk−1Akγ)
γ=αkAk+1αk+1

(18)

=∣∣ uβ1α1 . . . βk−1αk−1βkg(k + 1, γ)
based on induction hypothesis and equation 14

(19)

=∣∣ uβ1α1 . . . βk−1αk−1βkg(k + 1, αkAk+1αk+1)
γ=αkAk+1αk+1

(20)

=∣∣ uβ1α1 . . . βk−1αk−1βkαkg(k + 1, Ak+1αk+1)
based on definition 3

(21)

=∣∣ uβ1α1 . . . βk−1αk−1βkαkβk+1g(k + 2, αk+1)
based on definition 3

(22)

=∣∣ uβ1α1 . . . βk−1αk−1βkαkβk+1αk+1
based on definition 3

(23)

=∣∣ h(uA1α1 . . . αk−1AkαkAk+1αk+1)
based on induction hypothesis and definition 2

(24)

Therefore, g(1, uA1α1 . . . Ak+1αk+1) = h(uA1α1 . . . Ak+1αk+1), so the lemma
holds.

Next, we show that we can use any number of rules.

Lemma 2. gk(1, . . . g2(1, g1(1, α))) = hk(. . . h2(h1(α))), α ∈ V ∗ for some k ∈ N

Proof. k — number of nested functions.
Basis. g1(1, α) = h1(α), k = 1. Proof in Lemma 1.
g2(1, g1(1, α)) = h2(h1(α)), k = 2

g2(1, g1(1, α)) =∣∣ g2(1, h1(α))
apply lemma1 on g1

(25)

=∣∣ h2(h1(α))
apply lemma1 on g2

(26)

⇒ g2(1, g1(1, α)) = h2(h1(α)) ut
Induction Hypothesis. We suppose that the statement holds for all k, 1 ≤ k ≤ n
for some n ≥ 1.
Induction Step. gk+1(1, gk(1, . . . g1(1, α))) = hk+1(hk(. . . h1(α)))

gk+1(1, gk(1, . . . g1(1, α))) =∣∣ gk+1(1, β)
based on induction and β=hk(hk−1...h1(α))

(27)

=∣∣ hk+1(β)
apply lemma1 on hk+1

(28)

=∣∣ hk+1(hk(. . . g1(α))
based on induction and β=hk(hk−1...h1(α))

(29)

Therefore, gk+1(1, gk(1, . . . g1(1, α))) = hk+1(hk(. . . h1(α1))), so the lemma
holds.

The following Lemma 3 shows that delayed derivation steps (lazy evaluated)
return the same values as regular derivation steps.

7



Lemma 3. Lazy evaluation of gk+1(1, . . . g1(1, ω1 . . . ωm)) = hk+1(. . . h1(ω1 . . .
ωm)), ωi ∈ V, i ∈ {1, . . . ,m} for some m ≥ 1 and k ≥ 1.

Proof. Basis. For k = 1 holds from definition 3. For k = 2, lazy evaluation of
g2(n0

2, g1(n0
1, ω1 . . . ωm)) = h2(h1(ω1 . . . ωm)), n0

1 = n0
2 = 1

g2(n0
2, g1(n0

1, ω1 . . . ωm)) (30)

=∣∣ g2(n0
2, ω

′

1g1(n1
1, ω2 . . . ωm))

apply one step from definition3 on g1

(31)

=∣∣ ω
′′

1 g2(n1
2, g1(n1

1, ω2 . . . ωm))
apply one step from definition3 on g2

(32)

. . .

=∣∣ ω
′′

1 . . . ω
′′

m−1g2(nm−1
2 , g1(nm−1

1 , ωm)) (33)

=∣∣ ω
′′

1 . . . ω
′′

m−1g2(nm−1
2 , ω

′

m)
apply one step from definition3 on g1

(34)

=∣∣ ω
′′

1 . . . ω
′′

m
apply one step from definition3 on g2

(35)

=∣∣ h2(h1(ω1 . . . ωm))
based on definition 2

(36)

⇒ lazy evaluation of g2(n0
2, g1(n0

1, ω1 . . . ωk)) = h2(h1(ω1 . . . ωk)) ut
Induction Hypothesis. Suppose that the statement holds for all k, 1 ≤ k ≤ n, for
some n ∈ N.

Induction Step. gk+1(n0
k+1, . . . g1(n0

1, ω1 . . . ωm)) = hk+1(. . . h1(ω1 . . . ωm)), ωi ∈
V, i ∈ {1, . . . ,m} for some m ∈ N and n0

j = 1, j ∈ {1, . . . , k+1}. We can say with-
out loss of generality that it returns one processed symbol in each step. To sim-
plify the proof, we write gk(n0

k, ω1 . . . ωm) instead of gk(n0
k, . . . g1(n0

1, ω1 . . . ωm)).

gk+1(n0
k+1, gk(n0

k, ω1ω2 . . . ωm)) (37)

=∣∣ gk+1(n0
k+1, ω

′

1gk(n1
k, ω2 . . . ωm))

apply one step from definition3 on gk

(38)

=∣∣ ω
′′

1 gk+1(n1
k+1, gk(n1

k, ω2 . . . ωm))
apply one step from definition3 on gk+1

(39)

. . .

=ω
′′

1 . . . ω
′′

m−1gk+1(nm−1
k+1 , gj(n

m−1
j , ωm)) (40)

=∣∣ ω
′′

1 . . . ω
′′

m−1gk+1(nm−1
k+1 , ωm)

apply one step from definition3 on gk

(41)

=∣∣ ω
′′

1 . . . ω
′′

m
apply one step from definition3 on gk+1

(42)

=∣∣ hk+1(hk(ω1 . . . ωm))
based on definition 2

(43)

Therefore, lazy evaluation of gk+1(n0
k+1, . . . g1(n0

1, ω1ω2 . . . ωm)) = hk+1(
. . . h1(ω1 . . . ωm)), so the lemma holds.

8



The following theorem and its proof, which represents the main result of this
paper, demonstrates that delayed execution of SCG rules is equivalent with SCG
derivation.

Theorem 1. Lazy evaluation of gm(1, gm−1(1, . . . g1(1, ω1 . . . ωj))) =
hm(hm−1(. . . h1(ω1 . . . ωj))) = w ≡ ω1 . . . ωj ⇒m w,ωi ∈ V, i ∈ {1, . . . , j} for
some j,m ∈ N.

Proof. α ∈ V ∗

1. Using function g or h is equivalent for sentential forms of any length and for
any SCG rules. It has been proved in Lemma 1.

2. Using any number of functions, gn(. . . g1(α)), is equivalent to hn(. . . h1(α)),
for any n. It has been proved in Lemma 2.

3. Lazy evaluated g returns the same result as h. It has been proved in Lemma 3.
4. hm(. . . h1(ω1 . . . ωj)) = w ≡ ω1 . . . ωj ⇒m w holds by definition 2.

From 1, 2, 3, and 4 follows:
gm(1, gm−1(1, . . . g1(1, ω1 . . . ωj))) = hm(hm−1(. . . h1(ω1 . . . ωj))) = w ≡
ω1 . . . ωj ⇒m w. ut

6 Conclusion

In this paper, we have shown usage of functions instead of derivation steps.
Lazy evaluation of delayed execution of scattered context grammar rules has
been presented.

The main result of this article is equivalence of lazy evaluated delayed ex-
ecuted function and the function representing regular leftmost derivation over
a string. This approach allows us to work only with the pushdown top during
compilation time.

7 Open Questions and Future Work

Scattered context grammar was introduced by Greibach and Hopcroft in 1969
(see [1]). Since these days, several implementation methods of compilers for
scattered context grammars has been discovered [4–6, 8].

Next research will lead to study compilers that use delayed execution of SCG
rules and to compare with compilers using regulated pushdown automata.

Intuitively, it should be faster, because we expand only topmost symbol on
the stack. Basic principle of using delayed executed SCG rules in compilers is in
[3].

Nevertheless, exploitation of lazy evaluation in implementation of an SCG
parser traditional way [6] may be an option. That is why; we want to compare
both approaches.

The work has been supported by Research Plan No. MSM 0021630528 -
Security-Oriented Research in Information Technology and by the Czech Min-
istry of Education, Youth and Sports grant MŠMT 2C06008 ”Virtual Laboratory
of Microprocessor Technology Application”.

9



References

1. Greibach, S., Hopcroft, J.: Scattered context grammars. J. Comput. Syst. Sci. 3,
233-247(1969)

2. Haskell, http://www.haskell.org/haskellwiki/Haskell/Lazy evaluation, cited Sep.
2009

3. Jirák, O.: Delayed Execution of Scattered Context Grammar Rules, In: Proceedings
of the 15th Conference and Competition STUDENT EEICT 2009 Volume 4, Brno,
CZ, FIT VUT, 2009, p. 405-409, ISBN 978-80-214-3870-5

4. Kolář, D., Meduna, A.: Regulated Pushdown Automata, In: Acta Cybernetica, Vol.
2000, No. 4, US, p. 653–664, ISSN 0324-721X

5. Kolář, D.:Pushdown Automata: Another Extensions and Transformations, Brno,
CZ, FIT BUT, 2005, p. 76

6. Kolář, D.: Scattered Context Grammar Parsers, In: Proceedings of the 14th Interna-
tional Congress of Cybernetics and Systems of WOSC, Wroclaw, PL,PWR WROC,
2008, p. 491–500, ISBN 978-83-7493-400-8

7. Meduna, A.: Automata and Languages: Theory and Applications. Springer-Verlag,
London, 2000

8. Meduna, A.: Deep Pushdown Automata, In: Acta Informatica, Vol. 2006, No. 98,
DE, p. 114–124, ISSN 0001-5903

9. University of Florida, http://www.cise.ufl.edu/research/ParallelPatterns/glossary.htm,
cit. Sep 07 2009

10




