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Abstract. In the paper we design a protocol for sociometric question-
naires, which serves the privacy of responders. We propose a represen-
tation of a sociogram by a weighted digraph and interpret individual
and collective phenomena of sociometry in terms of graph theory. We
discuss security requirements for a privacy-aware protocol for sociomet-
ric questionnaires. In the scheme we use additively homomorphic public
key cryptosystem [2], which allows single multiplication. We present the
threshold version of the public key system and define individual phases
of the scheme. The proposed protocol ensures desired security require-
ments and can compute sociometric indices without revealing private
information about choices of responders.

1 Introduction

Sociometry is a quantitative method for measuring social relationships. It was
developed by the psychotherapist Jacob L. Moreno in his studies of the relation-
ship between social structures and psychological well-being [9].

This method is based on choices of individuals from a certain social group.
Responders are asked to choose one or more persons from the group according
to specific criteria known in the whole group. The choices of responders are
collected by a questionnaire. Relations between individuals can be represented
by a sociogram – a graphic representation of social links that persons have.

Sociometric techniques can be used for effective management of a school class
by a teacher or in team-building in organizations by managers. They can help
to discover information about the group or individuals. On the other hand, it
is desirable to protect the privacy of responders and shield them from misusing
delicate information. Our aim is to develop a cryptographic protocol for col-
lection and evaluation of sociometric questionnaires which ensures the desired
security requirements, placing emphasis on the privacy of responders.

This paper is organized as follows. The next section introduces a represen-
tation of the sociogram in terms of graph theory. The section following next
describes the proposed scheme for anonymous sociometric questionnaires. In the
last section, we present our conclusions and suggestions for the future work.
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2 Representation of a Sociogram by Graph Theory

A sociogram can be represented by a weighted digraph [7] G = (V,E), where
nodes from V represent individuals from the social group. Each social link is
represented by a weighted arc from the set E ⊆ V × V . A weight function
w : E → {−s, . . . ,−1, 1, . . . , s} expresses rates of social links. Common values of
the parameter scale s include 1, 3, or 5. We say that an arc is positive (negative)
if and only if the weight of the arc is positive (negative).

2.1 Characteristics of a Node

The number of tail endpoints adjacent to a node v is called indegree of the
node v, i.e., degIn(v) = |{u ∈ V ; 〈u, v〉 ∈ E}|. It stands for the number of social
links to the corresponding person. We distinguish between the positive indegree
degIn+

(v) and the negative indegree degIn−(v) of a node v, where degIn(v) =
degIn+

(v) + degIn−(v). The positive (negative) indegree expresses the number
of positive (negative) arcs incident to the node.

The number of head endpoints adjacent from a node v is called outdegree of
the node v, i. e., degOut(v) = |{u ∈ V ; 〈v, u〉 ∈ E}|. It stands for the number of
social links from the person. Analogically, we define positive (negative) outdegree
of a node v degOut+(v) (degOut−(v)).

We also distinguish between positive and negative weighted indegree (out-
degree). The sum of weights of all positive arcs incident to a node v is called
positive weighted indegree, i. e., In+(v) =

∑
u∈V,〈u,v〉∈E,w(u,v)>0

w(u, v). The sum

of weights of all negative arcs incident from a node v is called negative weighted
outdegree, i. e., Out−(v) =

∑
u∈V,〈v,u〉∈E,w(v,u)<0

w(v, u). Similarly, we define for

a node v negative weighted indegree In−(v) and positive weighted outdegree
Out+(v).

2.2 Sociometric Indices and Objects

There exist two approaches to a sociogram – individual and collective phenom-
ena. Individual phenomena include individual sociometric indices and objects
such as stars, isolates, ghosts. In the latter case, collective phenomena include
group sociometric indices and structures such as dyads and mutual choices.

Individual sociometric indices can be computed from the above defined char-
acteristics of a node. For example, positive social status of a node p is defined as
In+(p)
|V |−1 . In similar way, objects such as stars, outsiders, ghosts and isolates can
be recognized from individual characteristics of nodes.

A star q is a node with the maximal positive weighted indegree, i. e., In+(q) =
max{In+(v); v ∈ V }. An outsider o is a node with the minimal negative weighted
indegree, i. e., In−(o) = min{In−(v); v ∈ V }. A ghost g is a node with zero



indegree and outdegree, i. e., degIn(g) + degOut(g) = 0. Finally, an isolate i

is a node with zero positive indegree, which is not a ghost, i. e., degIn+
(i) =

0 ∧ degOut(i) > 0.
A dyad is the smallest and the most elementary social unit, i. e., a group of

two members with a mutual choice. We distinguish between positive, negative
and combined mutual choices. In the positive (negative) mutual choice the mem-
bers positively (negatively) choose each other. In the combined mutual choice,
one member chooses positively, but the other one chooses negatively.

A set of positive mutual choices M+ is defined as M+ = {{u, v} ⊆ V,
{〈u, v〉 , 〈v, u〉} ⊆ E,w(u, v) > 0, w(v, u) > 0}. Similarly, we define a set of
negative mutual choices M− and a set of combined mutual choices M±. A set
of all mutual choices M is defined as M = M+ ∪M− ∪M±.

Using above mentioned definitions, we define a group sociometric index – a
coherence of the group. A positive coherence of a group is defined as coh+ =
|M+|
(|V |

2 ) . Similarly, we define a negative (combined) coherence coh− (coh±).

3 The Proposed Scheme

3.1 The Homomorphic Public-Key System

For encryption of responders’ choices we use the homomorphic public-key system
from the paper [2], which is additively homomorphic. Moreover, it allows us to
use a single multiplication. Inter alia, this property is used for computing the
cardinality of the set of mutual choices. The encryption system is semantically
secure assuming the subgroup decision assumption [2].

The Key Generation. The construction of the homomorphic scheme from the
paper [2] requires to use certain finite groups of composite order that support a
bilinear map. Let G and G1 be two multiplicative cyclic groups of finite order
n, where g is a generator of G. Let e denote a bilinear map e : G × G → G1. It
holds, that for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab. Moreover,
e(g, g) is a generator of G1.

The key setup works as follows:

– Generate two random primes q1, q2 and set n = q1 · q2 ∈ Z.
– Generate a bilinear group G of order n following the paper [2]. Let g, u be

random generators of G and e : G × G → G1 be the bilinear map. Then
h = uq2 is a random generator of the subgroup G of order q1.

– The public key is Pk = (n, G, G1, e, g, h). The private key is Sk = q1.

Encryption and Decryption. To encrypt a message m ∈ {0, . . . , q2 − 1},
a sender chooses a random number r ∈ Zn−1 and computes the ciphertext C =
gmhr ∈ G. To decrypt the ciphertext C using the private key Sk = q1, observe
that Cq1 = (gmhr)q1 = (gq1)m. It is sufficient to compute the discrete logarithm



of Cq1 base gq1 in order to recover the plaintext m. For our purposes, the message
space is bounded by the value b = max{s(|V | − 1),

(|V |
2

)
}1, where s is the scale

and |V | is the number of nodes in a sociogram. This way it is sufficient to pre-
compute the table of powers (gq1)0, . . . , (gq1)b. Using binary-search, one can find
an appropriate m in the logarithmic time according to the number of nodes.

Homomorphic Properties. The encryption system is clearly additively ho-
momorphic. Given ciphertexts C1, C2 ∈ G which are encryptions of plaintexts
m1,m2, anyone can create an encryption of m1 + m2 mod n by computing the
product C1C2 = gm1hr1gm2hr2 = gm1+m2hr1+r2 . Note that we can multiply an
encrypted message m by an integer z ∈ Z+. Given the ciphertext C = gmhr,
anyone can create an encryption of zm mod n by computing the exponentiation
Cz = gzmhzr.

Anyone can once multiply two encrypted messages m1,m2 using the bilinear
map e. Set g1 = e(g, g) ∈ G1 and h1 = e(g, h) ∈ G1. Then, g1 is of order n
and h1 is of order q1. For given ciphertexts C1 = gm1hr1 , C2 = gm2hr2 ∈ G we
build an encryption of m1 · m2 as C1 ∗ C2 = e(C1, C2) = e(gm1hr1 , gm2hr2) =
e(gm1+αq2r1 , gm2+αq2r2) = gm1m2

1 hm1r2+r2m1+αq2r1r2
1 ∈ G1, where h = gαq2 .

Note that the system is still additively homomorphic in G1.

The Robust Threshold Version. The goal of the threshold version (t, l)
of the cryptosystem is to share the private key q1 among l authorities by a
threshold secret sharing scheme. A ciphertext can be decrypted when at least
t + 1 shareholders cooperate on decryption in the group G1. Note that it is
sufficient to decrypt only in the group G1 since we can use the bilinear map to
move the ciphertext from G to the group G1 without changing the plaintext.

For simplicity, we assume that a trusted dealer first generates the public key
including n = q1 · q2 and the private key q1. The dealer distributes shares of the
private key between l authorities. The shares are created following the technique
[13, 5], which is a modification of the Shamir secret sharing scheme [12] over Zn.
The dealer sets a0 = q1 and chooses ai at random from {0, . . . , n − 1} for i ∈
{1, . . . , t}. The numbers a0, . . . , at define the polynomial f(X) =

∑t
i=0 aiX

i ∈
Z[X]. For each shareholder i ∈ {1, . . . , l} the dealer computes si = f(i) mod n.
Let ∆ = l! and ∆? = ∆−1 mod n. For any subset P of t+1 indices from {1, . . . , l}
the modified Lagrange coefficients are defined as λi,P = ∆

Q
i′∈P/{i}−i′

Q
i′∈P/{i} i−i′ mod n.

From the Lagrange interpolation we have ∆ · f(0) =
∑

i∈P λi,P f(i) mod n, i. e.,
∆ · q1 =

∑
i∈P λi,P si mod n.

Moreover, a shareholder i which possesses the secret si publishes yi = gsi
1

in order to make a process of decryption verifiable. To decrypt a ciphertext
C = gm

1 hr
1 ∈ G1 without reconstructing the secret q1 each shareholder i pub-

lishes ui = Csi and following the Chaum-Pedersen protocol [3] proves that
logg1

yi = logC ui. From any subset of t+1 participants P who passed the proof

1 The value s(|V | − 1) is the maximal possible absolute value of weighted degrees and�|V |
2

�
is the maximum cardinality of the set of mutual choices.



the value g∆q1m
1 is computed as as

∏
i∈P u

λi,P

i =
∏

i∈P Cλi,P si = C
P

i∈P λi,P si =
(gm

1 hr
1)

∆·q1 = g∆q1m
1 . After computing (g∆q1m

1 )∆?

= gq1m
1 , the plaintext m

can be recovered by comparing with pre-computed tables of powers of gq1
1 as

mentioned above.
The zero-knowledge proofs of correct partial decryption [3] from each share-

holder can be performed interactively between shareholders and transcripts of
such interactions are made public for verification. In order to make these proofs
non-interactive, the verifier could be implemented using either a trusted source
of random bits [10] or using the Fiat-Shamir heuristic [4] which requires a hash
function. In the latter case security is obtained from the random oracle model
[8].

3.2 Security Requirements for a Scheme

The scheme is expected to satisfy certain security requirements which are rel-
evant for a privacy-aware protocol for sociometric questionnaires. The social
group which consists of responders is defined in the questionnaire. It also con-
tains a selection criterion and other parameters such as the deadline for filling.
We enumerate and informally discuss security requirements in the following list.

– Eligibility. Only valid responders who are defined as members of the group
are eligible to correctly fill in the questionnaire.

– Privacy. In the evaluation process, choices of a responder must not identify
the responder and any traceability between the responder and his choices
must be removed.

– Verifiability. Any responder should be able to individually verify whether
his choices were correctly recorded and accounted. Moreover, anyone can
universally verify that in the evaluation process only valid choices of eligible
responders were recorded and the counting process was accurate.

– Accuracy. The scheme must be error-free. The final computations of socio-
metric indices must correspond with all choices of all responders.

Note that these requirements are similar to security requirements for e-voting
protocols [11]. However, the submission of choices and computations of the re-
sults differ from usual e-voting protocols. On the other hand, a scheme does
not need to ensure requirements such as receipt-freeness or incoercibility [11],
because we do not expect “choice-buying” of responder’s choices.

3.3 The Proposed Scheme

The realization of the scheme consists of various phases. First, the questioner cre-
ates a questionnaire in which he defines a social group of responders R1, . . . , RN

and sociometric indices which have to be computed. He also sets the deadline
for filling and the sociometric parameters such as the scale s for the weights of
the arcs. Then, he registers the questionnaire by the collector. The collector col-
lects submissions of responders, checks signatures, leads the computations and



publishes results. The registration of responders R1, . . . , RN is based on digi-
tal signatures. Therefore, we assume a pre-established Public Key Infrastructure
with registered conceivable responders and other participants with relevant cer-
tificates of public keys for digital signature [8].

For encryption of choices, we use the above mentioned robust threshold (t, l)
version of the public-key scheme [2], where the private key Sk = q1 is shared
between l authorities. For simplicity, we assume that a trusted dealer first gen-
erates the public key Pk and the private key Sk = q1. Then, the dealer creates
and distributes shares of the private key between l authorities and finally deletes
the private key.

The process of decryption is realized by cooperation of at least t+1 authorities
and is universally verifiable as mentioned above. Note that we do not specify who
should be shareholders, since it depends on the usage of the protocol. However,
the robust threshold version of the cryptosystem ensures the robustness of the
protocol.

Submitting Choices. A responder Ri fills in the questionnaire, i. e., defines
all relations from the node Ri in the sociogram. To represent a relation from
the node Ri to node Rj we use s + 2 bits b+

ij , b
−
ij , b

w1
ij , . . . , bws

ij , where s is the
scale as defined in Section 2. The bits b+

ij , b
−
ij indicate whether the weight of the

arc is positive, negative, or there is missing arc. The bit b
w|wij |

ij = 1 defines the
absolute value of the weight of the arc |wij |. We consider three possible relations
from the node Ri to the node Rj :

– The arc 〈Ri, Rj〉 has a positive weight wij > 0, then b+
ij = 1, b

wwij

ij = 1, and
other bits are 0;

– The arc 〈Ri, Rj〉 has a negative weight wij < 0, then b−ij = 1, b
w|wij |

ij = 1,
and other bits are 0;

– There is missing arc 〈Ri, Rj〉, then an arbitrary bit bwa
ij = 1, where a ∈

{1, . . . , s} and other bits are 0.

Note that, when the parameter scale s = 1, it is sufficient to represent a relation
from the node Ri to the node Rj with just two bits b+

ij , b
−
ij .

For each responder Rj , j 6= i each bit b♦ij ,♦ ∈ {+,−, w1, . . . , ws} is encrypted
by responder Ri using the public key Pk as c♦ij = EPk(b♦ij). All these encrypted
bits are sent along with the signature of the encrypted bits by the responder Ri

to the collector.

Verification of Submissions. The collector checks the validity of signatures
of all submissions of responders R1, . . . , RN . If the responder Ri does not submit
his choices in time, or his signature is incorrect, then he is disqualified from the
set of responders. The encrypted relations to the node Ri are excluded as well.
Finally, the collector publishes submissions with correct signatures in order to
verification.



In the e-voting protocols based on homomorphic encryption, are usually used
zero-knowledge proofs for verification of validity of ballots [11]. These proofs are
used in the non-interactive version using Fiat-Shamir heuristic [4]. As a bonus of
the public key system, we do not need to use these proofs according to verification
of validity of submissions.

The submissions of responders in the bit representation are valid, if the fol-
lowing conditions hold:

1. b♦ij ∈ {0, 1}, which is equivalent to the formula b♦ij · (b♦ij − 1) = 0, where
i 6= j,♦ ∈ {+,−, w1, . . . , ws};

2. b+
ij · b

−
ij = 0, where i 6= j;

3.
∑s

k=1 bwk
ij = 1, which is equivalent to the formula

∑s
k=1 bwk

ij − 1 = 0, where
i 6= j.

We need to verify all these equations of the form – left side le is equal to
zero. We can use the homomorphic properties for preparing ciphertexts of le for
(s+2)N(N−1) equations of the first type, N(N−1) of the second and N(N−1)
of the third type. We have to check v = (s + 4)N(N − 1) equations total.

To prepare ciphertexts of equations of first and third type the collector pub-
lishes a deterministic encryption of −1 mod n. The equations can be checked
by shareholders by v cooperatively-made decryptions. To decrease the compu-
tation complexity, the shareholders check simultaneously a batch of equations∑v

i=1 ri · lei = 0, where ri are chosen cooperatively by shareholders. They can
run a binary search to identify the invalid submissions following the technique
from [1]. This way, in the optimistic scenario (when all submissions are valid) is
used just one decryption of shareholders.

Computations of the Sociometric Indices. We define computations in the
bit representation of a sociogram as shown in Table 1. Let Ji denote the set
{1, . . . , N}/{i}. A relation from a node Ri to a node Rj is represented by bits
b+
ij , b

−
ij , b

w1
ij , . . . , bws

ij . If there exists an arc 〈Ri, Rj〉, the value |wij | =
∑s

k=1 k ·bwk
ij

represents the absolute value of the weight of the arc 〈Ri, Rj〉. If there is no arc
〈Ri, Rj〉, the value |wij | =

∑s
k=1 k · bwk

ij = a, since exactly one arbitrary chosen
bit bwa

ij = 1 as defined above. Note that it is easy to show that the definitions of

Table 1. Computations in the bit representation of a sociogram

degIn+
(Ri) =

P
j∈Ji

b+ji degIn− (Ri) =
P

j∈Ji
b−ji degOut+ (Ri) =

P
j∈Ji

b+ij

degOut− (Ri) =
P

j∈Ji
b−ij degIn(Ri) =

P
j∈Ji

b+ji + b−ji degOut(Ri) =
P

j∈Ji
b+ij + b−ij

In+(Ri) =
P

j∈Ji
b+ji · |wji| In−(Ri) = −

P
j∈Ji

b−ji · |wji|

|M+| =
PN

i=1
P

j>i b+ij · b+ji |M±| =
PN

i=1
P

j>i(b
−
ij · b+ji) + (b+ij · b−ji)

|M−| =
PN

i=1
P

j>i b−ij · b−ji |M | =
PN

i=1
P

j>i(b
−
ij · b+ji) + (b+ij · b−ji) + (b+ij · b+ji) + (b−ij · b−ji)

computations from Table 1 correspond with the definitions from Section 2.



Computations on Encrypted Sociogram. The collector computes the value cw
ij

from encrypted values cw1
ij , . . . , cws

ij , i. e., cw
ij =

∏s
k=1(c

wk
ij )k =

∏s
k=1 EPk(bwk

ij )k =∏s
k=1 EPk(k · bwk

ij ) = EPk(
∑s

k=1 k · bwk
ij ) = EPk(|wij |). For an encrypted repre-

sentation of a relation from the node Ri to Rj we use values c+
ij , c

−
ij , c

w
ij in the

encrypted sociogram.
The ciphertext of the positive indegree of a node Ri is computed as∏

j∈Ji
c+
ji =

∏
j∈Ji

EPk(b+
ji) = EPk(

∑
j∈Ji

b+
ji) = EPk(degIn+

(Ri)). Similarly,

we can compute the ciphertext of the negative indegree EPk(degIn−(Ri)). Finally
the ciphertext of the indegree of the node Ri is EPk(degIn(Ri)) =

∏
j∈Ji

c+
jic

−
ji.

Analogously, we can compute ciphertexts of outdegrees, for example the encryp-
tion of the positive outdegree EPk(degOut+(Ri)) =

∏
j∈Ji

c+
ij .

To compute encryptions of weighted degrees, we use also the multiplicative
property of the homomorphic system. The ciphertext of positive weighted inde-
gree of the node Ri can be computed as

∏
j∈Ji

c+
ji ∗ cw

ji =
∏

j∈Ji
EPk(b+

ji|wji|) =
EPk(

∑
j∈Ji

b+
ji|wji|) = EPk(In+(Ri)). Similarly, we can compute other weighted

degrees.
Anyone can compute the encrypted value of the cardinality of the set of

positive mutual choices as
∏N

i=1

∏
j>i c+

ij ∗ c+
ji =

∏N
i=1

∏
j>i EPk(b+

ijb
+
ji) =∏N

i=1 EPk(
∑

j>i b+
ijb

+
ji) = EPk(

∑N
i=1

∑
j>i b+

ijb
+
ji) = EPk(|M+|). The set of neg-

ative and the set of combined mutual choices are defined similarly. The ci-
phertext of the cardinality of the set of all mutual choices one can count as∏N

i=1

∏
j>i(c

+
ij ∗ c+

ji)(c
+
ij ∗ c−ji)(c

−
ij ∗ c+

ji)(c
−
ij ∗ c−ji).

This way we derived encrypted values of individual and collective phenomena
with respect to definitions from Section 2 only by using homomorphic proper-
ties of the encryption system. Note that the process of computations is uni-
versally verifiable by anyone. After computing and publishing encrypted socio-
metric indices, the shareholders of the private key Sk = q1 individually verify
the correctness of computation and cooperate to decrypt the desired sociometric
indices. The process of decryption is universally verifiable by anyone including
the responders, the collector and the questioner. Finally, the collector publishes
obtained sociometric indices which express quantitative information about indi-
viduals or the group.

4 Conclusions

In this paper we designed the protocol for anonymous sociometric question-
naires. In the protocol each responder sends only one message. To prepare the
submission costs (N − 1)(s + 2) encryptions of the cryptosystem [2] and one
digital signature, where N is the number of responders and s is the parameter
scale. The protocol guarantees the security requirements from Section 3. 2. The
eligibility property is ensured by digital signatures of the submissions by respon-
ders and checking of the validity of submissions. The signatures are checked by
the collector and verified by anyone. The validity of submissions is checked by
shareholders and verified by anyone. The privacy of responders is provided by



the public key cryptosystem [2], which is semantically secure and homomorphic
operations are also commutative. The process of computation and decryption
of sociometric indices is universally verifiable according to universal verifiability
of the threshold version of the cryptosystem and the defined computations on
encrypted sociogram.

In the future work we are planning to formal model and analyze the scheme
in the applied pi-calculus. For a future design of the protocol, recently announced
fully homomorphic public key encryption scheme [6] looks promisingly. The re-
sults from the paper were presented as a talk on Primelife/IFIP Summer School
2009 – Privacy and Identity Management for Life
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