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Abstract
We summarize our experience in solving combinatorial optimization problems arising in railway
planning, illustrating all of these problems as integer multicommodity flow ones and discussing
the main features of the mathematical programming models that were successfully used in the
1990s and in recent years to solve them.
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1 Introduction

In this work we summarize our experience in solving combinatorial optimization problems
arising in railway planning. Everything started in the early 1990s and has kept on going
until today (and hopefully it will continue also later!) with various projects, some of which
funded by the EC. The specific subjects of these projects, that we will briefly overview
throughout the paper anyhow, are of limited interest here.

What we think may be interesting to a general audience, and so the real contribution
of this work, are three things. First, we make an attempt to classify all of these problems
within a common framework, in particular identifying two main categories under which these
problems seem to fall. Second, besides noting that the best thing to be done to tackle these
problems was to model them as (Mixed-)Integer Linear Programs (ILPs), which is what we
tell our students a few minutes after the beginning of our introductory courses, we point out
the big methodological change that we observed in the way these ILPs were approached,
essentially related with the concurrent improvements in computing power and algorithmic
technology for the solution of Linear Programs (LPs). Third, after having widely stressed
the fact that the best way to approach these problems at present seems to be the use of
very large ILP relaxations tackled with the combined use of general-purpose LP solvers and
column generation (or pricing), we illustrate in a general context the main successful features
of our approaches of this type.

All these problems have in common that they arise at the planning level, i.e., they have
to be solved every once in a while (for instance twice a year, when a new passenger timetable
is published) with plenty of computing power and time available. By planning horizon we
mean the period to which the solution of the problems above applies (e.g., six months). On
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2 Almost 20 Years of Combinatorial Optimization for Railway Planning

the other hand, the associated instances are generally of large size, so the models and solution
approaches have to be defined with some care. Historically, these problems used to be solved
(and in some cases are still solved) by hand by human experts. The associated solutions
were generally of good quality (though “slightly infeasible in a tolerable way”, a concept that
has always been very hard to formalize), and often optimization-based approaches could not
do any better. On the other hand, getting the hand-designed solution generally took all of
the available time to the experts, and any what-if analysis varying some of the parameters
was completely out of the question.

This work is organized as follows. In Section 2 we present the problems considered
under a unique framework, limiting ourselves to considering their essential characteristics
and leaving the details of the real-world cases to the surveys [6, 13, 16, 18, 21], and of course
also to the specific papers considering each of them, listed in the references. In Section 3
we illustrate the changes in the most successful way to tackle these problems over the last
20 years, outlining the main features of the solution approaches. Finally, in Section 4 we
discuss the main modelling issues and their implications on the solution methods.

2 Problem Classification: “Assignment” vs. “Timetabling” Problems

Regardless of the fairly different nature of the problems mentioned in the previous section,
it seems to be possible to see each of them as the following Integer Multi-Commodity Flow
(IMCF) problem [2] on a suitable graph, with additional side constraints. IMCF is formally
defined by a set of commodities C and a directed multigraph G = (V,A), whose vertex set
V contains a dummy source s and a dummy sink t and whose arc set A is partitioned into
different sets Ac, one for each commodity c ∈ C. The problem calls for finding a collection
of paths from s to t, one for each commodity c ∈ C composed by arcs in Ac, so that a
suitable objective function is minimized and a suitable set of side constraints relating the
paths in the collection is met. For convenience, the dummy arc (s, t) may be in Ac for some
commodity c ∈ C, and the associated dummy path may be selected in the solution.

2.1 “Assignment” Problems
The first class of problems we addressed are Train Unit (TU) and Crew Assignment prob-
lems, see, e.g., [8, 12, 13]. In TU and Crew Assignment, the nodes in V \ {s, t} in the IMCF
graph correspond to services to be covered, referred to as trips, which are part of a train
timetable that must be performed by the same composition of TUs/crews without changes
(trips may be different for TUs and crews since changing a crew composition is generally
much easier than changing a TU composition). Each commodity c ∈ C is either a TU or a
crew, and a path P ⊆ Ac from s to t corresponds to the sequence of trips that the TU/crew
has to perform within the planning horizon. The dummy path for a commodity represents
the fact that the associated TU/crew is not used in the solution. Generally, each commodity
c ∈ C has a cost fc which is paid if the corresponding TU/crew is used, and the objective
function is the minimization of the total cost of the TUs/crews used. Finally, each arc
(u, v) ∈ Ac represents the fact that trip v can be performed right after trip u by TU/crew
c. This means that there is enough time between the end of trip u and the start of trip v,
and that either u ends at the same station at which v starts, or there are the possibility and
the time to move the TU/crew c between the two stations. In the latter case, the associated
deadhead cost for the movement between the two stations may be assigned to arc (u, v).

The side constraints require that each node is “covered” by the paths in the collection.
To this purpose, in some cases it suffices to have at least one path visiting the node, i.e., at
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least one TU/crew performing the trip, which may be called elementary composition. Note
that generally one does not require exactly one TU/crew since the trip, although already
covered, may be used to transfer other TUs/crews to the departing station of their next trip.
In some other cases, that may be referred to as proper composition, each node v ∈ V has a
demand dv, each path associated with a commodity c ∈ C has a capacity ac, and the total
capacity of the paths visiting v must be at least dv. This happens, e.g., for TU Assignment
to passenger trips, in which dv is the (estimated) number of passengers travelling on the trip
and ac is the capacity of TU c. Clearly, a special case of proper composition is the one in
which each trip must be covered by at least a given number of TU/crews.

2.2 “Timetabling” Problems
The second class of problems considered is the one of Train Timetabling and Train Plat-
forming problems, see, e.g., [5, 7, 14, 15, 24]. In Train Timetabling and Platforming, the
nodes in V \ {s, t} in the IMCF graph correspond to resources of limited capacity, referred
to as events, which are departures/arrivals of a train at a given point (a station track or a
platform) and at a given time instant. Each commodity c ∈ C is a train, and a path P ⊆ Ac
from s to t corresponds to the sequence of events associated with the itinerary followed by
the train and the associated timetable. Note that trains may also be cancelled, i.e., not
scheduled at all, in which case the dummy path is selected for the associated commodity.
Finally, each arc (u, v) ∈ Ac represents the fact that event v can follow event u for train
c. This means that the time elapsing between u and v is either appropriate for train c to
travel from the point of u to the point of v (in case u and v are associated with distinct
points, e.g., two consecutive stations along a railway corridor), or for train c to stand at
the point of u and v (if it is the same, e.g., u represents an arrival at a platform and v the
departure from the platform, in which case the time must be appropriate for the operations
to be performed for the train at the platform).

Each train should possibly be scheduled in a certain preferred way (e.g., using a given
path). However, due to the side constraints illustrated below, not all trains can be scheduled
in this way, and there are suitably-defined penalties for deviations (including cancellations).
The objective function is the minimization of the total penalties. Penalties for deviations of
a train c ∈ C are either modelled by assigning costs to nodes u ∈ V , in case the event for
the train does not take place at the preferred time instant, or to arcs (u, v) ∈ Ac, in case
the time elapsing between u and v is different with respect to the preferred schedule. This
is the way to model penalties as the cost of the path associated with a train, given by the
sum of the costs of its nodes and arcs.

The side constraints require each node not to be contained in more than one path in the
collection. More generally, for each node v ∈ V , there exists a set Iv ⊆ V (with v ∈ Iv) of
nodes that are incompatible with v, i.e., v can be visited by a path in the collection only
if no other node in Iv is visited by some other path in the collection. This models the
fact that trains cannot depart/arrive at the same point not only at the same time, but also
too close in time. For tracks, this is a natural safety requirement, whereas for platforms
this prevents the presence of more than one train simultaneously standing at the platform
(besides imposing a minimum time between platform occupations by distinct trains). Even
more generally, the incompatibility between two paths associated with different commodities
may not be simply related with the fact that they visit two incompatible nodes, but with
their overall structure, i.e., with the overall sequence of nodes visited by the two paths. In
this more general case, there may be simply an oracle indicating, given the two paths, if
they are incompatible or not.
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4 Almost 20 Years of Combinatorial Optimization for Railway Planning

2.3 A note on the objective function
Generally, speaking, for “assignment” problems the objective function tends to be well-
defined as it is the sum of the costs of the TUs/crews employed, which are generally fairly
high. So, although solutions that are robust towards disruptions are certainly very important
in practice, it is highly desirable not to increase the nominal cost by a too large amount in
order to achieve robustness. Viceversa, for “timetabling” problems, it tends to be less clear
what would be the preferred schedule for a train, and to quantify the associated penalties for
deviations with respect to this schedule. This makes the objective function mostly not well-
defined, so robustness issues tend to play a major role in this case. In any case, robustness
issues are out of the scope of this work.

3 Solution Methods

A common feature of all real-world applications addressed here is that pretending a priori
to find a provably optimal solution is generally hopeless, and one has to resort to heuris-
tics. Moreover (and fortunately) the best heuristic methods known for all these problems
are based on mathematical programming (mainly ILP) formulations, which are driven by
appropriate (mainly LP) relaxations of these formulations.

IMCF calls for a min-cost collection of paths of G, each associated with arcs of the same
commodity, with several constraints on the feasibility of single paths and on the compati-
bility between distinct paths. This can either be expressed by arc ILP models using binary
variables xc,(i,j) equal to 1 if arc (i, j) ∈ Ac is in the path for commodity c in the solution,
or by path ILP models considering the whole list Pc of paths for commodity c and binary
variables xc,P equal to 1 if P ∈ Pc is the path for commodity c in the solution. Side con-
straints can be written in a similar way in the two models (see below). Of course, path ILP
models have a number of variables that may be exponential in the size of G, and should be
solved by column generation (or sometimes simply by pricing, see below).

The LP relaxations of the arc and path ILP models are equivalent for IMCF, so the
decision on whether to use the former or the latter depends on the solution approach. Here
comes the main difference between the state-of-the-art approaches of today with respect to
those of the 1990s.

3.1 Old days: Lagrangian relaxation for arc ILPs
Twenty years ago, solving the LP relaxations of both arc and path ILP formulations was
sometimes possible but so much time consuming that it was advisable to avoid it. There-
fore, it was natural to use methods capable of solving these LP relaxations approximately,
both able to provide bounds on the integer optimum (though weaker than the LP optimum
itself) and to drive successfully a diving heuristic search. Among these, the most successful
appeared (and still appears) to be the combined use of Lagrangian relaxation (see, e.g., [19])
and subgradient optimization (see, e.g., [23]) applied to the arc ILP formulation. Compared
to other alternatives to LP relaxation, Lagrangian relaxation has the advantage over relax-
ation by elimination that all constraints are somehow taken into account, and over surrogate
relaxation that the relaxed problems are easier to solve. Moreover, the simplicity of the re-
laxed problem makes the easy-to-implement subgradient optimization a suitable solution
method, since its slow convergence (in terms of number of iterations) with respect to more
advanced variants such as bundle (see, e.g., [20]) is compensated by the very short time per
iteration. Moreover, many iterations are an advantage for a heuristic since they mean many
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slightly different near-optimal Lagrangian multipliers that can be used to produce many
slightly different candidate heuristic solutions out of which the best one is kept [1, 4, 10, 17].

In this work, for space reasons, we omit the description of specific successful features of
the Lagrangian approaches. These approaches remain however the ones we suggest when the
problem is so large that there seems to be no hope of solving the LP relaxation of whatever
reasonable ILP formulation. The interested reader is referred, e.g., to [19, 20, 23].

3.2 These days: Column generation/pricing for path ILPs
Nowadays, while the solution of the LP relaxation of the arc ILP formulations still appears to
be too time consuming (besides requiring a large amount of core memory), the LP relaxation
of the path ILP formulations can generally be found quickly by column generation or pricing
(see below). The huge advantage of path over arc ILP formulations was systematically
true in all the applications we considered. It does not seem to be shared by all analogous
applications, as testified by the surprised reaction we could note by many audiences and
referees in these years. (From our side, we could only note that path ILP formulations do
not seem to be suited to be used together with Lagrangian relaxation.)

In all cases, the number of variables in the path ILP formulations is generally too large to
consider all of them explicitly in the LP relaxation, so one has to work with a current LP that
is (much) smaller than the whole LP relaxation, iteratively adding variables to it. In some
cases column generation is required, solving at each LP iteration an optimization problem to
check if there is some variable with negative reduced cost (or positive reduced profit) to be
added to the current LP. In some other cases, column generation is not strictly necessary as
pricing suffices, corresponding to storing in memory the whole list of variables and explicitly
computing their reduced costs at each iteration, adding (some of) those variables for which
they are negative. Finally, there are cases in which the number of constraints to be considered
is also very large, and separation has to be used, in order to keep only a small subset of
constraints in the current LP, detecting and adding further violated constraints either by
solving an optimization problem or by considering all missing constraints and checking if
they are violated.

Fairly general issues concerning the definition of the path ILP formulations for the ap-
plications we considered and the solution of the associated LP relaxations are discussed in
Section 4. To follow that section, some familiarity with the notions of column generation,
pricing and separation is required. For a detailed discussion of these, we refer the interested
reader to [3, 22].

A big advantage of working with path ILPs and column generation/pricing with respect
to Lagrangian relaxation and subgradient optimization is that in the latter a few parameters
have to be tuned in a proper way (at the risk of not converging at all otherwise), whereas the
former appears to be a fairly robust method both with respect to the initial set of variables
inserted in the LP and with the policy used to add columns at each iteration (many versus
few, the most violated versus any violated). Moreover, also with column generation one has
many similar near-optimal LP solutions to drive a heuristic.

The main limitation of column generation is that it restricts the formulation of the side
constraints, since the structure of the column generation problem itself depends on the
form of these constraints, as we will discuss in Section 4. Therefore, in addition to the
classical compromise between the strength of the LP relaxation and the ability to handle
the associated constraints, possibly by separation, one has to take into account also the
ability to generate the columns.

Note that branching is not a real issue in this context, as one is limited to diving heuristics
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6 Almost 20 Years of Combinatorial Optimization for Railway Planning

(see Section 3.3) that fix to 1 variables that are fractional in the LP relaxation, imposing
a path in the solution. Such a fixing poses no problem to column generation. (Fixing
a variable to zero, instead, as a branching dichotomy would naturally do, gives a lot of
troubles to column generation, see, e.g., [3].)

3.3 Evergreen: diving heuristics

The most successful heuristics used in combination with whatever relaxations of the ILP
formulations above are diving heuristics, that solve a suitable relaxation, fix some of the
variables according to the relaxed solution, solve again the relaxation subject to the fixing
constraints, and so on, until a feasible solution is found. Besides outperforming metaheuris-
tics on all the applications we considered, these diving heuristics have the advantage of
certifying the quality of the solutions through bounds obtained by solving the initial re-
laxation. In fact, it may turn out that for some (or most of) the instances considered the
bounds certify a posteriori that the solution found is indeed optimal.

Plenty of details on possible heuristic implementations are given in the references for the
interested reader. In any case, the main theme is the diving scheme, that has to be properly
adapted to the specific application at hand.

4 Defining and Solving Path ILP Formulations of IMCF

As already mentioned, for all the applications we addressed we always found that the path
ILP formulation of IMCF was the best, if not the only viable, choice for approaches based
on solving the LP relaxation by general-purpose solvers. All these formulations deal with
binary variables xc,P for each commodity c ∈ C and path P ∈ Pc, with an associated cost
fc,P paid if xc,P = 1. This ILP calls for the minimization of the total cost:∑
c∈C

∑
P∈Pc

fc,P xc,P (1)

subject to the constraint that one path is selected for each commodity:∑
P∈Pc

xc,P = 1, c ∈ C. (2)

How to model the missing side constraints depends on the specific application. For each
commodity c ∈ C and vertex v ∈ V , let Pc,v denote the sublist of paths for commodity c
that visit vertex v. Moreover, for a path P ∈ Pc for some commodity c ∈ C, let VP denote
the set of nodes visited by P .

4.1 Assignment Problems

The side constraints in TU/crew assignment must ensure that all the trips are covered.
As we will see, this poses no problem to column generation, which is a great advantage
with respect to the timetabling case. The unique issue to be addressed, as for regular ILP
formulations (with a reasonable number of variables), is to have a strong LP relaxation,
yielding lower bounds close to the integer optimum and possibly integer solutions quickly in
a diving heuristic, after having fixed a relatively small number of binary variables to 1.
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Set Covering constraints
From an LP relaxation strength viewpoint, the best situation is the case of elementary
composition, since the side constraints are expressed in the classical form of Set Covering
constraints, and are already as strong as possible:∑
c∈C

∑
P∈Pc,v

xc,P ≥ 1, v ∈ V. (3)

In this case, there is no real modelling issue to be addressed, and the best way to proceed
is to combine the solution of the LP relaxation with column generation or pricing [11].

Knapsack constraints
For proper composition the situation is more complex. Recalling that dv is the demand
of each vertex v and ac the capacity of each commodity c, the natural way to write these
constraints is:∑
c∈C

∑
P∈Pc,v

ac xc,P ≥ dv, v ∈ V. (4)

Unfortunately, the constraints in this form tend to be fairly weak, as it is typically the case
for knapsack-type constraints with large coefficients. Weakness does not only mean poor
lower bounds obtained by solving the LP relaxations, but also bad quality solutions for
heuristics driven by these relaxations, as discussed in [8].

The easiest possibility to strengthen (4) is to re-compute the coefficients so that they
are minimal, i.e., for each commodity c there is always a combination of other commodities
such that the sum of the associated capacities is exactly dv. Formally, this amounts, for
each vertex v, to first redefine its demand dv so that it can be met exactly by a subset of
commodities, i.e., as:

min
S⊆C

{∑
c∈S

ac :
∑
c∈S

ac ≥ dv

}
,

Then, one may ensure that all coefficients are minimal (not only for the commodities be-
longing to subsets whose total capacity is exactly dv) by defining initially ac,v := ac for
c ∈ C and then, iteratively for c ∈ C, by redefining ac,v as:

max
S⊆C\{c}

{
dv −
∑
d∈S

ad,v : ac,v +
∑
d∈S

ad,v ≥ dv

}
,

iterating the replacement until the coefficient does not change for all commodities (note that
the final result depends on the order in which the coefficients have been considered). The
resulting improved inequalities read:∑
c∈C

∑
P∈Pc,v

ac,v xc,P ≥ dv, v ∈ V. (5)

However, having minimal coefficients often does not lead to a strong enough LP relaxation.
The only alternative to get stronger constraints is to add more than one constraint for

each vertex v, getting say m constraints of the form:∑
c∈C

∑
P∈Pc,v

bic,v xc,P ≥ dv, v ∈ V, i = 1, . . . ,m. (6)
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8 Almost 20 Years of Combinatorial Optimization for Railway Planning

The ideal case is when the associated inequalities∑
c∈C

bic,v yc ≥ dv, i = 1, . . . ,m, (7)

define the convex hull of the Knapsack polytope:

conv

{
y ∈ {0, 1}C :

∑
c∈C

ac yc ≥ dv

}
. (8)

This is unfortunately impractical unless the number of commodities is small, or there are
other side constraints that simplify the situation (e.g., in [8] the convex hull has an ele-
mentary structure since each vertex must be covered by at most two commodities). In any
case, it is much better if the inequalities are at least a subset of the facets of the Knapsack
polytope (8).

Column generation
The structure of the column generation problem is the same whatever the form of the
covering constraints. Namely, consider the most general form (5) and let βiv denote the dual
variables associated with these constraints. Letting αc be the dual variables associated with
constraints (2), the reduced cost of variable xc,P is given by fc,P −αc−

∑
v∈VP
∑m
i=1 b

i
c,v β

i
v,

so the column generation problem amounts to finding a minimum-cost path from s to t in
G with arcs in Ac and costs associated with the nodes in V (and possibly also with the arcs
in Ac, depending on the way cost fc,P is defined).

4.2 Timetabling Problems
The side constraints in train timetabling/platforming impose that no two incompatible nodes
are visited by some path. The easiest (but also essentially the weakest) way to force this is
to consider all pairs of incompatible nodes u, v ∈ V and state that at most one path visiting
one of these two nodes is selected:∑
c∈C

∑
P∈Pc,v

xc,P +
∑
c∈C

∑
P∈Pc,u

xc,P ≤ 1, v ∈ V, u ∈ Iv \ {v}. (9)

The number of these constraints is polynomial, so even if they are too many to be handled
explicitly by the LP solver at hand, they can be separated by simple enumeration.

Node incompatibility constraints
In order to formalize the incompatibility relation, which is extremely common in combi-
natorial optimization, one can represent it by an auxiliary undirected node incompatibility
graph I = (V,E), in which the neighbors of each node v ∈ V are precisely its incompatible
nodes Iv. The side constraints can then be imposed in a much stronger form by considering
maximal subsets of pairwise incompatible nodes and stating that at most one path visiting
one of the nodes in a subset is selected. Formally, let K denote the list of the maximal
cliques of I, i.e., K ∈ K if K is a maximal vertex subset so that (u, v) ∈ E for each pair
u, v ∈ K. The side constraints can be modelled as:∑
v∈K

∑
c∈C

∑
P∈Pc,v

xc,P ≤ 1, K ∈ K. (10)
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In general these constraints are exponential in number but can often be handled conveniently
by separation. In particular, the complexity of their separation is the same as the complexity
of finding a maximum-weight clique in I, where the weight of each vertex v ∈ V is given by∑
c∈C
∑
P∈Pc,v xc,P . Even if finding a maximum-weight clique in I is computationally too

heavy, one may resort to heuristics, making sure that the final violated constraint added
to the current LP relaxation is associated with a maximal clique of I by possibly adding
nodes if the clique found by a heuristic is not maximal. Moreover, the use of (10) can easily
be combined with column generation, as explained below. A discussion on various ways to
define and handle these constraints in the Train Timetabling case can be found in [7, 9].

Path incompatibility constraints
Constraints (10) can also be seen as associated with cliques of the following path incompat-
ibility graph J = (P, F ), where P :=

⋃
c∈C Pc, which provides more information, but is also

much larger, than the node incompatibility graph I above. The path incompatibility graph
contains a node for each path P ∈ P, i.e., for each variable xc,P , and an edge in F joining
each pair of incompatible paths, corresponding to two variables that cannot both take the
value 1 due to constraints (10). Namely, two paths are incompatible if they either are asso-
ciated with the same commodity or visit a pair of incompatible nodes. Moreover, with the
path incompatibility graph one may represent incompatibilities that are not associated with
nodes, specified by an oracle as discussed at the end of Section 2.2.

Letting L denote the list of the maximal cliques of J , alternatively to (10) the side
constraints can be expressed by:∑
c∈C

∑
P∈Pc∩L

xc,P ≤ 1, L ∈ L. (11)

Even in case all incompatibilities are associated with nodes of G, constraints (11) may be
much stronger than (10), although this does not seem to happen in practice. The first
evident disadvantage of using (11) rather than (10) is that their separation may be much
more complex. Even worse, their use is generally not compatible with column generation, so
it is essentially limited to the cases in which all variables can be listed explicitly and pricing
can be used. In the latter case, the only issue to be addressed is separation, which becomes
easy in case one considers the relaxation of (11) involving paths associated with only two
commodities, as discussed below.

Column generation
The structure of the column generation problem heavily depends on the form of the in-
compatibility constraints. For the form (10) let βK denote the dual variables associated
with these constraints and, as before, αc the dual variables associated with constraints (2).
Moreover, let Kv be the sublist of the maximal cliques of I containing node v ∈ V . The
reduced cost of variable xc,P is given by fc,P−αc−

∑
v∈VP
∑
K∈Kv β

K , and again the column
generation problem amounts to finding a minimum-cost path from s to t in G with arcs in
Ac and costs associated with the nodes in V and the arcs in Ac. The case of constraints (9)
is analogous.

On the other hand, for constraints (11), the associated dual variables γL should be
associated with all paths belonging to clique L in J . Therefore, in the column generation
problem, one should charge the cost γL to the path being generated only if it belongs to L,
which is problematic in general since this condition depends on the path itself. Note that
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10 Almost 20 Years of Combinatorial Optimization for Railway Planning

the tempting trivial trick to consider all variables not belonging to the current LP as having
coefficient 0 in all inequalities (11), so as to forget about the γL values in the generation,
does not work! Indeed, one may end-up generating an already existing variable, having a
nonnegative reduced cost in the current LP, since this reduced cost was underestimated by
the (wrong) trick.

Oracle incompatibilities without column generation
As already mentioned, incompatibilities defined by an oracle and not associated with nodes
of G can generally be handled, by using constraints (11), only if column generation is not
required. The issue to be addressed in this case is the separation of (11), corresponding (in
optimization version) to the determination of a maximum-weight clique in J . This itself is
generally very complex, but can be greatly simplified if one considers the relaxation of (11)
in which only two commodities are involved:∑
P1∈Pc1∩L

xc1,P1 +
∑

P2∈Pc2∩L
xc2,P2 ≤ 1, L ∈ L, c1, c2 ∈ C. (12)

In this case, the separation calls for a maximum-weight clique in the subgraph of J induced
by the paths in Pc1 ∪ Pc2 . Given that all paths in Pc1 (or Pc2) are pairwise incompatible,
this subgraph is the complement of a bipartite graph. Complementing everything, the
separation problem calls for a maximum-weight stable set in a bipartite graph, which can
be found efficiently by flow techniques. For details, see [15].

4.3 Linearizing quadratic objective functions
In some cases the objective function happens to be quadratic in the variables (if not multi-
linear in general). This happens, e.g., for Timetabling Problems when two paths P1 ∈ Pc1
and P2 ∈ Pc2 are “slightly” incompatible and, rather than forbidding the selection of both
in the solution, one wants to penalize it with a penalty gc1,P1,c2,P2 . The resulting quadratic
objective function reads:∑
c∈C

∑
P∈Pc

fc,P xc,P +
∑
c1∈C

∑
P1∈Pc1

∑
c2∈C

∑
P2∈Pc2

gc1,P1,c2,P2 xc1,P1 xc2,P2 . (13)

The textbook approaches to linearize such an objective function, with the introduction
of additional variables yc1,P1,c2,P2 to model the product xc1,P1 · xc2,P2 , appear to be fairly
unsuccessful in this context, given that even the xc,P variables are so many to have to be
handled with care. On the other hand, taking into account constraints (2), rather than
these product variables one may simply introduce variables zc1,c2 to model the whole term∑
P1∈Pc1

∑
P2∈Pc2

gc1,P1,c2,P2 xc1,P1 xc2,P2 , knowing in advance that exactly one of the xc1,P1 ·
xc2,P2 products in the summation will take the value 1 in the optimal integer solution. The
number of these variables is only quadratic in the number of commodities, so they can
generally be all inserted explicitly in the current LP relaxation. The linearized objective
function reads:∑
c∈C

∑
P∈Pc

fc,P xc,P +
∑
c1∈C

∑
c2∈C

zc1,c2 , (14)

and the issue is to link the zc1,c2 and the xc,P variables appropriately. While it is not clear
how to do this in general when column generation is required for the xc,P variables, and
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we are not aware of successful applications of this, the task is fairly easy when column
generation is not necessary, as illustrated next.

For a given c1, c2 pair, consider the polytope defined by the convex hull H of the following
vectors with 1 + |Pc1 | + |Pc2 | components. The first component is associated with zc1,c2 .
The subsequent |Pc1 | components are associated with xc1,P1 , P1 ∈ Pc1 . The last |Pc2 |
components are associated with xc2,P2 , P2 ∈ Pc2 . There are |Pc1 | · |Pc2 | vectors defining
the convex hull H, namely those associated with a unique component xc1,P1 = 1, a unique
component xc2,P2 = 1, and the first component given by zc1,c2 = gc1,P1,c2,P2 . These vectors
correspond to all possible values of the associated variables in the solution. Accordingly, as
link inequalities one may impose all those valid (and facet-defining) for the convex hull H,
having the generic form:∑
P1∈Pc1

αc1,P1 xc1,P1 +
∑
P2∈Pc2

αc2,P2 xc2,P2 + βc1,c2 zc1,c2 ≤ γ. (15)

Even restricting attention to the facet-defining ones, not only the number of these constraints
is exponential, but also their structure is unknown (to the best of our knowledge). On the
other hand, these constraints may be separated in time polynomial in |Pc1 |·|Pc2 | by explicitly
setting up a separation LP to test if the current LP solution is a convex combination of the
|Pc1 | · |Pc2 | vectors defining the convex hull. If this is not the case, the dual of this separation
LP yields a violated inequality (15). The reader is referred to [15] for details.

5 Conclusions

In this work we have briefly illustrated the mathematical formulations and the solution
approaches that we found most successful for a few real-world optimization problems arising
in railway planning. In a forthcoming full version of this work, we plan to provide further
details and some theoretical foundations and justifications of the various qualitative and
vague notions of “good”, “bad”, “strong” and “weak” given here, that so far were only
motivated by computational evidence.
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