
Column Generation Heuristic for a Rich Arc
Routing Problem
Sébastien Lannez1,2,3, Christian Artigues2,3, Jean Damay1, and
Michel Gendreau4

1 SNCF I&R/SRO ; 45 rue de Londres, 75008 Paris, France,
{sebastien.lannez,jean.damay}@sncf.fr

2 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
artigues@laas.fr

3 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077
Toulouse, France

4 CIRRELT, Université de Montréal, C.P. 6128, Montréal (Québec), H3C 3J7
Canada
michel.gendreau@cirrelt.ca

Abstract
In this paper we address a real world optimisation problem, the Rail Track Inspection Scheduling
Problem (RTISP). This problem consists of scheduling network inspection tasks. The objective
is to minimise total deadhead distance. A mixed integer formulation of the problem is presented.
A column generation based algorithm is proposed to solve this rich arc routing problem. Its
performance is analysed by benchmarking a real world dataset from the French national railway
company (SNCF). The efficiency of the algorithm is compared to an enhanced greedy algorithm.
Its ability to schedule one year of inspection tasks on a sparse graph with thousand nodes, arcs
and edges is assessed.

1998 ACM Subject Classification J.m [COMPUTER APPLICATIONS]: Miscellaneous

Keywords and phrases arc routing, column generation, heuristic, railtrack maintenance

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.130

1 Introduction

One of the major problems that railway companies have faced since the very beginning are
failures in tracks. Defects in rails, as the basic part of a track may result in serious accidents.
Réseau Ferré Français (RFF), the French railway infrastructure manager, have delegated
some railway maintenances to the Société Nationale des Chemins de Fers (SNCF), a French
railway company. SNCF is committed to ensure the safety of the railway network. One of
these maintenances is to prevent tracks failures. In order to quickly inspects the French
network, SNCF is using ultrasonic defectoscopy to detect and survey imperfections in rails.
Inspection frequencies increase with speed and cumulated train weight.

Inspection frequencies range from six months to twenty years. Two third of the total
inspections (35 000 km) are performed on tracks which should be visited once or twice a year.
These tracks are called primary tracks. All the remaining inspections (secondary tracks) will
be performed by local logistic departments. A map representing these tracks is presented in
figure 1a. A schematic zoom around Bordeaux is shown in figure 1b. Ultrasonic inspections
are performed with three specialised rolling stock units, thereafter called vehicles. Their
maximum speed and working capacity are different. The detection of defects in the track is

© Sébastien Lannez, Christian Artigues, Jean Damay and Michel Gendreau;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 130–141

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


S. Lannez and C. Artigues and J. Damay and M. Gendreau 131

(a) Map of primary tracks (b) Graph model of railtracks around Bordeaux

Figure 1 French railway network model

performed by reverberation analysis of the ultrasonic waves passing through the rails. These
vehicles can move during at most six hours per day. This limitation is due to maximum shift
duration and maximum daily inspection distance. This distance is limited by the water tank
capacity needed to keep sensors and rails coupled during measure. These tanks can only be
refilled at special stations. Over the 200 stations on the primary tracks, 90 are equipped with
water supply. For organisational purposes, vehicle’s moves are geographically constrained
and their maintenances should be performed periodically.

The problem SNCF is dealing with is to visit a given set of tracks taking into account
some operational constraints. Tracks outages can alter vehicle’s speed or prevent them
from circulating during certain days. Vehicle’s speed depends whether it is inspecting or
deadheading: during deadhead trips speed can be more than three times faster than when
inspecting. Vehicle’s daily inspection capacity is limited by the total amount of water which
can be brought on board. Water tank refill is time consuming and needs rarely available
operators at the station. Hence, it is not desired to do more than one refill per shift. The
main cost indicator is a common logistic performance ratio based on the quantity of tracks
inspected per year divided by the total traveled distance in a year. The total quantity of
primary tracks to be inspected every year is constant, so minimising this performance ratio
reduces to the minimisation of the total deadhead distance.

This problem can be modeled as an arc routing problem related to the ones describing
road deicing, waste collection or network weeding as described in the survey from [18–21]. It
involves complicating constraints, namely shift limited duration, water supply, track outages
and heterogeneous fleets. Another difficulty is the network size which makes it a real challenge
to solve.

2 Literature review

2.1 Industrial arc routing problems
In [14], the authors notified that industrial vehicle routing problems are rich: models are
generalisations of lots of academic ones, and input data dimension can be huge.

Road related problems have supplied researchers with a lot of arc routing problems. A
review of problems arising during winter road maintenances has been published in the articles
[18–22]. They also present industrial applications. Waste collection or postal deliveries are

ATMOS ’10



132 Column Generation Heuristic for a Rich Arc Routing Problem

also an active field from arc routing problems. In [16], a description of a waste collection
problem is presented. A nation wide postal delivery problem has been modeled as an
industrial arc routing problem in [15].

2.2 Arc routing problems
In this section, some arc routing problems and their applications are presented. For a more
complete catalog of them, a good introduction might be the books [7] and [5] and the survey
articles [8, 9].

One problem the RTISP is related with is the capacitated arc routing problem (CARP),
described in [13]. It consists in visiting a set of arcs with a single vehicle. Each visited arc
reduces by a given amount the remaining working capacity of the vehicle. In the RTISP, tasks
and deadheads circulation can be modeled with arcs. The working capacity of vehicles is
constrained by the vehicle’s water tank capacity and the duration of a shift. The capacitated
arc routing problem with time windows (CARP-TW) extends the CARP by constraining
the possible visits of arcs to belong to a set of periods. Paper [10] contains a description
of a column generation procedure. In [23], a procedure to solve this problem with a greedy
randomised adaptive search procedure (GRASP) associated with path relinking is described.
Another extension is the capacitated arc routing problem with refill points (CARP-RP)
presented in [2], also called the capacitated arc routing problem with intermediate facilities
(CARP-IF) in [12]. It extends the CARP by adding refill facilities to certain nodes.

We have not been aware of published work about methods for solving a problem having
all these features. However, this problem, which can be called multi-capacitated arc routing
problem with time windows, refill points and heterogeneous fleet (H-MCARP-RP-TW), is
suitable for the description of the RTISP and also of use for others transportation problems.

3 Assumptions and models

3.1 Hypothesis
Vehicle moves are modeled with arcs and edges. They represent either inspection tasks and
deadhead traversals of track portions or complex moves like unit switch back or station
traversal. Arcs are suitable for the description of unidirectional railway tracks whereas edges
are for bidirectional railway tracks. Nodes describe stations, communication between railway
tracks, or locations in the network where the vehicles can change their circulation mode.
Only primary tracks are directly modeled.

For the schedule to be easily adapted during operations, multiple shifts per day are not
taken into account. Each shift consists of a trip between two refill stations with a total
distance to inspect smaller than the capacity of the water tank and a total trip duration
smaller than the duration of a work shift. Given all the feasible shift pattern paths, the RTISP
becomes the problem of selecting and scheduling them in order to satisfy all inspections at
the lowest cost.

3.2 Graph and vehicle representation
A multigraph G = (V,A) containing arcs and edges (A) and nodes (V ) models the railway
network. Arcs and edges can represent tasks (Ā), deadhead traversal (Ã) or wait (Â). Nodes
can represent rest and refill stations (V̄ ), or communications between railtracks and measure
interruption possibility (Ṽ ). The corresponding arcs describe the set (A). All these sets are
indexed by k when they are related to the subnetwork which can be inspected by vehicle



S. Lannez and C. Artigues and J. Damay and M. Gendreau 133

k ∈ K. The parameter la is the length in kilometers of arc a. The parameter dak is the
traversal duration of arc a for vehicle k. The parameter wk is the working capacity, in
kilometers, of the vehicle k. Loop arcs (Â) represent dead shifts and have a traversal duration
of one shift.

3.3 Calendar

The calendar H is assumed to not contains any non working day. It is composed of integer
values representing number of “shift seconds” since the first period of the planning horizon.
The need for a small timeslot comes from the wide range of task duration and the relatively
high speed of vehicles. t is a timeslot in H, s the duration of a shift and p the first period of
the calendar. The subset D ⊆ H contains the first ”shift seconds” of each shift. The subset
H̄a,k ⊆ H contains the set of periods during which vehicle k can not traverse arc a.

3.4 Mathematical model

The binary integer program presented in this section is used to better clarify the mathematical
representation of the RTISP. The modelM contains an exponential number of variables,
each one representing a feasible shift pattern.

Objective function

Minimise total deadhead: the cost of an arc is the length of the arc if this arc is a deadhead
one. No cost is imputed for other arcs.

ca =

{
la, if a ∈ Ã,
0, else.

(1)

Shift flow model - (M)

Given the complete set of feasible trips between two refill stations, vehicles circulation can be
modeled as a flow on a multicommodity network, each arc representing feasible daily trips.

The set Q contains all shift patterns. The subset Qk contains all shift patterns valid
for vehicle k. Each shift pattern q is associated to a path between two nodes having refill
facilities. Let Pq denote the sequence containing the visited arcs in their visiting order.

Let Hq denote the set of periods during which the shift q can start. Let s be the duration
of a shift. Let ztq equal one if shift pattern q is performed during calendar day t. Let Aaq be
a parameter which equal one if arc a is inspected during shift pattern q. Let Saq and Eaq be
parameters which equals one if arc a is respectively the first and the last of the shift pattern
q.

Let δ+(v) and δ−(v) denote the set of outgoing arcs and the set of ingoing arcs of node v.
The cost of a shift pattern is defined as follows:

cq =
∑
a∈Pq

ca, ∀k ∈ K, q ∈ Qk. (2)

ATMOS ’10



134 Column Generation Heuristic for a Rich Arc Routing Problem

The mixed integer program is as follows:

minimise
∑
q∈Q

∑
t∈D

cqz
t
q (3)

subject to∑
t∈D

∑
q∈Q

Aaqz
t
q ≥ 1, ∀a ∈ Ā (4)

∑
q∈Qk

a∈A∑
a∈δ+(v)

Saqz
t+s
q −

a∈A∑
a∈δ−(v)

Eaqz
t
q = 0, ∀v ∈ V̄ , k ∈ K, t ∈ D (5)

∑
q∈Qk

ztq ≤ 1, ∀k ∈ K, t ∈ D (6)

ztq = 0, ∀t /∈ Hq (7)
ztq ∈ {0, 1}, ∀t ∈ D, q ∈ Q (8)

The objective function (3) ensures that from all feasible solutions the one with minimum
total deadhead will be selected. Constraints (4) ensure that the set of selected shift permits
to perform all inspection tasks. Constraints (5) ensure for each vehicle that two consecutive
shifts end and start at the same node. Constraints (6) enforce for each vehicle the assignment
of at most one shift per calendar day. Constraints (7) ensure that shift are scheduled during
valid periods. Constraints (8) ensure that solutions are integer.

4 Relaxation

Solving modelM with an out-of-the-box branch-and-bound method is not tractable due to
the large number of binary variables and constraints. Fortunately, space and time distribution
of inspection tasks are correlated. The analysis of the way the experts are actually scheduling
the vehicles shows that relaxing some of the time related constraints does not destroy too
much the structure of the provided feasible solutions.

The main idea of our algorithm is to relax constraints which tie together shifts, while
maintaining strong feasibility inside each of them (trip length, shift duration, task sequence
and time windows). This relaxation is strengthened by adding cuts which reduce the selection
of infeasible solutions. RM is a continuous relaxation ofM in which we relaxed shift relation
constraints (5) and (6) and time index of decision variables ztq.

4.1 RM:

The relaxed model RM is obtained by removing the time based indexation of the variables
ztq. Constraints (6) are removed because they are redundant in this new model. Constraints
(7) are removed because time is no longer taken into account. The substitution performed is∑

t∈D z
t
q = zq.



S. Lannez and C. Artigues and J. Damay and M. Gendreau 135

The linear program is as follows:

minimise
∑
q∈Q

cqzqsubject to∑
q∈Q

Aaqzq ≥ 1, ∀a ∈ Ā, (9)

∑
k∈K

∑
q∈Qk

a∈A∑
a∈δ+(v)

Saqzq −
a∈A∑

a∈δ−(v)

Eaqzq = 0, ∀v ∈ V̄ , (10)

zq ∈ [0, 1], ∀q ∈ Q. (11)

4.2 Enhancing RM with a local pseudo cut
Our preliminary computational tests on solving RM by column generation have highlighted
the selection of some columns with incompatible time windows. To reduce this side effect,
relaxation is strengthen by adding cuts inspired by Benders feasibility cuts [4]. At each
column generation iteration, a subproblem is solved to check if every shift pattern can be
assigned to a calendar date. If it is not, a cut aiming at limiting the selection of infeasible
sets of shifts is generated and added to model RM.

The chosen cut is the subset variable sum. For a given solution containing n shifts, of
which only m can be scheduled together, it ensures that at most m of the corresponding
variables can be non zero. Let z̄IP be an integer solution, with z̄IPq the value of variable zq
in this integer solution. We recall that Q contains the set of shift patterns. The “subset
variables sum” cut can be expressed as follows:∑

q∈Q|z̄IPq >0

zq ≤ m. (12)

Unfortunately, this cut is not strong enough to be efficient in the linear model RM and
using out-of-the-box branch-and-bound solver to get an integer solution from RM is actually
not an option due to high computation time. To overcome this situation a heuristically
generated cut is used to remove bad integer solutions directly in the continuous space of RM.
The cut is called a local pseudo cuts. These cuts are called pseudo cuts because they are not
valid for the integer program: feasible solutions can be cut. They are called local cut because
they can help to generate integer feasible solutions in the neighborhood of the current one.
The local pseudo cut counterpart of the “subset variables sum” can be expressed as follows:∑

q∈Q|z̄IPq >0

1
z̄LPq

zq ≤ m. (13)

5 Column generation based heuristic - AlgoColGen

5.1 Overall view
The proposed algorithm is based on a mathematical decomposition which is heuristically
solved in three steps. The first one is used to aggregate simple tasks into work shifts with the
use of a column generation algorithm applied to the model RM. It generates a continuous
solution to the problem. In the second step, a rounding greedy heuristic is used to get
an integer solution. This new integer candidate solution is tested against calendar day

ATMOS ’10



136 Column Generation Heuristic for a Rich Arc Routing Problem

Figure 2 Scheme of the decomposition algorithm

assignment to check if it is feasible according to task cover constraints (6). If it is not, a local
pseudo cut is generated. If it is, the new candidate solution is used to generate a constraint
program for the third stage. This last stage is used to check the feasibility of the set of
work shifts. If this test fails, a local pseudo cut which can be added to RM is generated.
Otherwise, a solution with minimum total deadhead traversal distance is approximated. The
general scheme of this algorithm is given in the figure 2.

5.2 Stage 1 - Column generation

The master problem is a set covering problem (SCP) with additional constraints. The
subproblems are to find elementary shortest paths between two refill stations with resource
constraints.

Master problem - (RM)

The master problem of the column generation is the mathematical model RM. It is a linear
program solved by the simplex algorithm.

Subproblems - (SP)

Shift patterns are generated by solving elementary shortest path problems with two resource
constraints (water, shift duration). The implemented procedure is a label setting algorithm
inspired by the algorithm presented in [11].

The dual variable λa is associated to each constraint (9). The dual variable µak̄ is
associated to each constraint (10). The parameter k̄ is the index of the vehicle for which a
shortest path is to be computed and t̄ is the first period of a shift.



S. Lannez and C. Artigues and J. Damay and M. Gendreau 137

SP (λ, µ, k̄, t̄) =

minimise
∑
a∈A

t≤t̄+s∑
t=t̄

(caλa + µt
ak̄

)xt
ak̄

(14)

subject to∑
a∈Ã

t̄+s∑
t=t̄

lakx
t
ak̄
≤ wk̄, (15)

∑
a∈δ−(v)

x
t−dak̄
ak̄

−
∑

a∈δ+(v)

xt
ak̄

= 0, t ∈ H, t̄ ≤ t ≤ t̄+ s (16)

xtak = 0 a ∈ A, t ∈ H̄a,k (17)
xtak ∈ {0, 1}, a ∈ A, t ∈ H (18)

Constraints (15) enforce length of shortest paths to not exceed vehicle’s water capacity.
Constraints (16) ensure flow conservation. Constraints (17) ensure that no arc are traversed
during outages. Finally, constraints (18) ensure that vehicle can only move on the graph.

It should be noticed that it would be intractable to compute, at each column generation
iteration, K ·D constrained shortest paths. Our implementation enables finding valid shortest
paths for multiple calendar days. It can be parameterised to generate from K to K · D
subproblems. At the first extreme, the feasible solution space of each of the K subproblems
is large. Solving one of them is very time consuming. In the other extreme, the feasible
solution space of each of the K ·D subproblems is narrow and solving one of them is fast.

5.3 Stage 2 - Early feasibility test
The column generation model becomes quickly degenerated with a lot of columns and few
constraints. Getting an integer solution from RM with a general purpose branch-and-bound-
and-cut is not a realistic choice because the solution space is far too wide. In order to quickly
get an integer feasible solution, a rounding heuristic, named AlgoGreedyCover , inspired by
the greedy algorithm proposed by Chvàtal [6] is applied to the set covering problem. This
heuristic selects columns to be rounded up by computing a ratio of the column cost and
the number of times it appears in the rows. It ensures the satisfaction of cover constraints
(4). The selected shifts are tested against calendar day assignment with a max flow problem.
The optimal flow gives an upper bound on the maximum number of shifts which can be
scheduled. If it is lower than the number of shifts, a local pseudo cut is generated and added
to the master problem, see Section 4.2. Otherwise, a new candidate solution has been found.
It is saved and will be tested against feasibility for modelM in the third stage. It should
be noticed that the rounding heuristic and the max flow algorithm are both polynomial
algorithms [1].

Rounding heuristic - AlgoGreedyCover

The rounding heuristic consists in computing, for each fractional variable, the ratio between
the objective function coefficient and the number of times it appears in the rows. The value of
the variable with lowest ratio is rounded up and removed from the list of selectable columns
(Q̄). The related cover constraints are marked as satisfied. Each variable which is selectable
and for which every cover constraints are marked as satisfied is removed from Q̄ and its value
set to zero. The ratio of each column is updated and the algorithm iterates until all cover
constraints are satisfied or no variable is selectable.

ATMOS ’10



138 Column Generation Heuristic for a Rich Arc Routing Problem

Calendar day assignment - (Mcal)

The problem of flow maximisation in a graph is used for modeling possible assignment of
shifts to calendar days. This problem has been proved to be polynomially solvable, [1].

Let Bqt be a parameter which equals one if shift q can be assigned to calendar day t.
Let Q̄k be the set of selected shift patterns of vehicle k. Let yqt be a binary variable which
equals one if shift pattern q is assigned to calendar day t.

The assignment problem is defined as follows: Mcal(k) =

maximise
∑
t∈D

∑
q∈Q̄k

Bqtyqt (19)

subject to∑
t∈D

Bqtyqt ≤ 1 ∀q ∈ Q̄k (20)∑
q∈Q̄k

Bqtyqt ≤ 1 ∀t ∈ D (21)

yqt ∈ {0, 1} ∀t ∈ D, q ∈ Q̄k (22)

The objective function (19) ensures that among all feasible solutions, the one maximising
the number of assigned shifts is to be chosen. Constraints (20) ensures that a shift pattern
can be assigned to at most one calendar day. Constraints (21) ensures that a calendar day
can not be assigned to more than one shift.

5.4 Stage 3 - Complete feasibility test
The above-described rounding heuristic does not take into account tasks sequencing con-
straints. Solutions found during stage 2 can still violate the flow conservation constraints
between shifts (5). To overcome this situation, an extension of a Traveling Salesman Problem
with Time Windows [3] is used to construct a feasible solution from the task groups selection
of these solutions. This problem models at a macroscopic level the RTISP with a period
duration of one shift. A list algorithm is presented to solve it. Each node of the TSP graph
represents a shift pattern. For each node, a list of time windows, during which vehicles can
go through, are defined. Arcs between nodes represents end of day deadhead moves. Their
cost is the total distance between the end of the shift and the start of the next shift. The
duration needed to traverse each arc depends on the shift pattern duration and the vehicle
deadhead speed.

This problem is solved with a heuristic named AlgoSchedList, based on a constraint
propagation and list scheduling. It relies on depth first search without backtracking. Indeed,
due to computational difficulty, we replace backtracking by a guided multi start framework.
At the end of each search, each decision taken during the search (branch selection) is priced.
These prices are used to update a transition cost matrix. Once matrix cost is fully updated,
the search is restarted. The pricing mechanism is inspired by the Vickrey-Clarke-Groves
mechanism, a well known externality measure described in [17]. At first, these prices
are initialised with travel distance between tasks. They are further estimated after each
AlgoSchedList run.

6 Enhanced greedy heuristic - AlgoGreedy

In order to evaluate our column generation heuristic, we additionally designed a greedy
algorithm to solve the complete RTISP based on the dynamic programming method described



S. Lannez and C. Artigues and J. Damay and M. Gendreau 139

in 5. Starting from a node, a period and a vehicle, a shortest path satisfying resource
constraints is computed. The shortest path is appended to the schedule of the current vehicle.
We let the vehicle go forward until the end of the schedule horizon is reached. Then, we
continue with the next vehicle. If no task is reachable from the current node, then a deadhead
move is performed to find the nearest node which enables performing a task.

In order for the tasks to be selected during shortest path computation, different weight
update rules have been tested. The one used in this paper uses information about task time
windows and tasks duration.

Let wka denote the cost of performing task i on vehicle k. This cost is defined as follows:

wka = −M + ca2.0−
esa
lsa

),

with esa and lsa the earliest and latest start of task a. M should have a value such that
the algorithm will always prefer performing a task rather than deadheading.

7 Computational tests

7.1 Real dataset
The test dataset contains mainly two distinct parts which are static data and dynamic data.
Static data contains the network representation of the railway network and the vehicles
outages which are likely to rarely change during the life cycle of the decision tool. Dynamic
data contains the tasks time windows and tracks outages which can be updated at most
every months. For the purpose of this article we present a dataset based on information
acquired for 2009.

The infrastructure graph has 1000 arcs, 500 edges and 760 nodes. A total of 500 tasks
must be performed per year. The generated graph has 1600 arcs, 500 edges and 770 nodes of
which 90 are refill stations. Task time windows have a fixed size of 28 days and duration
ranging from few minutes to six hours. The duration of a shift is fixed to seven hours. The
horizon used for shortest paths computation is one month, which yields 12 subproblems per
vehicle.

7.2 Computational tests
Based on the real dataset we derived three scenarios. In the first one, named no outage,
we removed all track outages. In the second one, small outages, we divided by 10 the
duration of each outage. The last one, named full outages, is the real dataset provided by
the company. For each algorithm and each scenario, we show the task completion rate (r)
and the performance ratio (p).

The performance ratio (p) is calculated to reflect the rate between the total inspected
distance (di) and the total deadhead (dd) moves :

p = di
di + dd

.

The task completion rate (r) is used for getting information about the hardness of the
instance. The real dataset is actually in constant evolution and is known not to be feasible.
In fact, the information about whether outages can be traversed or not is not yet available.
To cope with this situation, a slack variable with a prohibitive cost is added to each covering
constraints of the model.

ATMOS ’10



140 Column Generation Heuristic for a Rich Arc Routing Problem

In the table in figure 3, it can be seen that the column generation heuristic outperforms
the greedy algorithm in terms of task coverage and solution quality. In the table in figure 4,
it can be seen that the performance of the column generation algorithm seems to be better
when time windows are tight.

No outages small outages full outages
r p r p r p

AlgoGreedy 100% 18.82% 27% 9.77% 23% 9.06%
AlgoColGen 100% 30.50% 37% 25.54% 31% 22%

Figure 3 Task coverage and solution quality

No outages small outages full outages
t t t

AlgoGreedy 47 767 539
AlgoColGen 3434 180 61

Figure 4 Computation time (in seconds)

8 Conclusion

In this paper, a railway maintenance routing problem and a mixed integer formulation is
presented. An original column generation heuristic is proposed to solve it. Cut generators
based on model relaxation resolution are proposed and implemented. A comparison between
this heuristic and an enhanced greedy algorithm is presented. The numerical tests show that
the column generation heuristic performs better than the greedy heuristic. Furthermore, it
highlights the difficulty for the greedy algorithm to tackle dataset with highly constrained
time windows. The difficulty to perform all tasks is due to the presented dataset. It is an
extreme situation in which it is forbidden to traverse during every outages and the minimum
outage duration is one day.

This work on train units for ultrasonic inspection can be extended to other maintenance
train units which also have a limited capacity. An extensive study of the pseudo local cut
impact is also of interest.

References
1 R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms, and

applications. Prentice-Hall, Inc., 1993. ISBN 0-13-617549-X.
2 A. Amaya, A. Langevin, and M. Trépanier. The capacitated arc routing problem with

refill points. Operations Research Letters, 35(1):45–53, 2007. ISSN 0167-6377.
3 D.L. Applegate, R.E. Bixby, V. Chvàtal, and W.J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton Press, 2007.

4 J.F. Benders. Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4:238–252, 1962.

5 S. Raghavan B.L. Golden and E.A. Wasil, editors. The Vehicle Routing Problem: Latest
Advances and New Challenges. Springer US, 2008.



S. Lannez and C. Artigues and J. Damay and M. Gendreau 141

6 Vasek Chvàtal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of
Operations Research, 4(3):233–235, 1979.

7 M. Dror, editor. Arc Routing: Theory, Solutions and Applications. Springer, 2000. ISBN
0-79237-898-9.

8 H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part I: The chinese
postman problem. Operations Research, 43(2):231–242, 1995.

9 H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part II: The rural
postman problem. Operations Research, 43(3):399–414, 1995.

10 J.L Ellis and S. Wohlk. Solving the capacitated arc routing problem with time windows
using column generation. CORAL Working Papers L-2008-09, University of Aarhus,
Aarhus School of Business, Department of Business Studies, January 2009.

11 D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the elementary
shortest path problem with resource constraints: Application to some vehicle routing
problems. Networks, 44(3):216–229, 2004.

12 G. Ghiani, G. Improta, and G. Laporte. The capacitated arc routing problem with
intermediate facilities. Networks, 37(3):134–143, 2001.

13 B.L. Golden and R.T. Wong. Capacitated arc routing problems. Networks, 11(3):305–315,
1981.

14 G. Hasle and O. Kloster. Geometric Modelling, Numerical Simulation, and Optimization,
chapter Industrial Vehicle Routing, pages 397–435. Springer Berlin Heidelberg, 2007.

15 Stefan Irnich. Solution of real-world postman problems. European Journal of Operational
Research, 190(1):52 – 67, 2008. ISSN 0377-2217. DOI: 10.1016/j.ejor.2007.06.002. URL .

16 B. Kim, S. Kim, and S. Sahoo. Waste collection vehicle routing problem with time
windows. Computers & Operations Research, 33:3624–3642, 2006.

17 A. Max-Colell, M.D. Whinston, and R. Green. Microeconomic Theory. Oxford University
Press, 1995.

18 N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and algorithms for
winter road maintenance. Part I: system design for spreading and plowing. Computers &
Operations Research, 33:209–238, 2006.

19 N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and algorithms for winter
road maintenance. Part II: system design for snow disposal. Computers & Operations
Research, 33:239–262, 2006.

20 N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and algorithms for
winter road maintenance. Part III: Vehicle routing and depot location for spreading.
Computers & Operations Research, 34:211–257, 2007.

21 N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and algorithms for
winter road maintenance. Part IV: Vehicle routing and fleet sizing for plowing and snow
disposal. Computers & Operations Research, 33:239?262, 2007.

22 N. Perrier, A. Langevin, and C.A. Amaya. Vehicle routing for urban snow plowing
operations. Transportation Science, 42:44–56, 2008.

23 M. Reghioui, C. Prins, and N. Labadi. Grasp with path relinking for the capacitated
arc routing problem with time windows. In Proceedings of the 2007 EvoWorkshops
2007 on EvoCoMnet, EvoFIN, EvoIASP,EvoINTERACTION, EvoMUSART, EvoSTOC
and EvoTransLog, pages 722–731, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
978-3-540-71804-8.

ATMOS ’10


	Introduction
	Literature review
	Industrial arc routing problems
	Arc routing problems

	Assumptions and models
	Hypothesis
	Graph and vehicle representation
	Calendar
	Mathematical model

	Relaxation
	RM: 
	Enhancing RMwith a local pseudo cut

	Column generation based heuristic - AlgoColGen
	Overall view
	Stage 1 - Column generation
	Stage 2 - Early feasibility test
	Stage 3 - Complete feasibility test

	Enhanced greedy heuristic - AlgoGreedy
	Computational tests
	Real dataset
	Computational tests

	Conclusion

