
Fast Detour Computation for Ride Sharing∗

Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter
Sanders, and Lars Volker

Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
{geisberger,luxen,sanders}@kit.edu; bine.ka@gmx.de; lv@lekv.de

Abstract
Ride sharing becomes more and more popular not least because internet services help matching
offers and request. However, current systems use a rather simple-minded functionality allowing
to search for the origin and destination city, sometimes enriched with radial search around the
cities. We show that theses services can be substantially improved using innovative route planning
algorithms. More concretely, we generalize previous static algorithms for many-to-many routing
to a dynamic setting and develop an additional pruning strategy. With these measures it becomes
possible to match each request to n offers using 2n+ 1 exact travel time computations in a large
road network in a fraction of a microsecond per offer. For requests spread over Germany according
to population density, we are able to reduce the number of failing entries substantially. We are
able to find a reasonable match for more than 60% of the failing entries left by contemporary
matching strategies. Additionally, we halve the average waste of resources in the matches found
compared to radial search.

1998 ACM Subject Classification G.2.2

Keywords and phrases ride sharing, algorithm engineering, carpool

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.88

1 Introduction

The concept of ride sharing can be described by the following observation: Two people, who
we call driver and passenger, wish to travel from individual starting locations to destinations.
These independent journeys have starting and ending locations that are relatively close to
each other in the current setting. So, for economic reasons the travelers team up for some
part of their journeys. They share the same vehicle for some time. Ride sharing creates a
trade-off situation for the participants. Namely, cost of driving and owning a vehicle versus
the time, money and resources needed to organize a shared ride and then split the overall
cost among the participants.

Improving the matching mechanism has many beneficiaries. For example, ride sharers
may use special carpool lanes or companies that live off brokerage fees can offer a more
valuable service to their customers. Also, saved resources contribute to climate and envi-
ronmental protection. Also, another possible benefit is reduced overall congestion, which is
especially important in metropolitan areas.

There exist a number of web sites that offer ride sharing matching services to their
customers. Unfortunately, as far as we know, all of them suffer from limitations in their
method of matching.

Only a very small and limited subset of all the possible locations is actually modeled. This
rather limited modeling has several shortcomings. For customers from sparsely populated

∗ Partially supported by DFG grant SA 933/5-1

© Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 88–99

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 89

areas, it can be quite difficult to decide on one of the possible origin and destination places
as their location offered by the ride sharing service. Radial search around large cities has
been introduced to help selecting approximate start and end points of a trip, but still it only
helps the selection of a larger city nearby. The selection has to be done more or less manually
because sometimes circumcircles intersect each other, which makes it even harder for the
user to choose a valid starting point that leads to good matches. Also, from a technical
point of view, a trip changes its start and end points when it is mapped into a predefined set
of only a few locations. As a consequence, a correct ranking of possible matches by detour
is too much to expect from such a ride sharing matching system.

Another downside is that matching services do not support what we call lazy pickup. The
systems ignore any possible intermediate stop, if they are not given explicitly beforehand.
Note that equally short routes for same pairs of origin and destination nodes can take
arbitrarily different paths. Consider the following example to visualize the problem. Anne
and Bob both live in Germany. Anne, the driver, is from Karlsruhe and wants to go to
Berlin. Bob on the other side lives in Frankfurt and would like to travel to Leipzig. Taking
the fastest route in our example, Anne drives from Karlsruhe via Nürnberg to Berlin and is
never getting close enough to team up with Bob. However, there is a path from Karlsruhe
to Berlin via Frankfurt, which also passes by the city of Leipzig and is only about one
percent longer than the shortest path. In today’s services it is mandatory to predetermine
any possible stops artificially by hand, if they would like to pick up any passengers along
a single predetermined route. Obviously, this reduces the possibility of flexible matching a
lot. Matches that would have been perfect from a practical point of view, as in our example,
are impossible to make since the route of the trip had to be fixed before it even started.

1.1 Related Work
Previous research on ride sharing focused on multiple areas. Several authors [5, 13, 8]
investigated the socio-economic prerequisites of wide-spread customer adoption and overall
economic potential of ride sharing. For example, Hartwig and Buchmann [8] analyze the ride
sharing business case given that there exists a central service platform that can be accessed
by mobile devices.

Other authors [15, 14] identified the missing spatial resolution of concurrent ride sharing
services and examined a sensor network approach to metropolitan-local ride sharing offerings.
Hand-held mobile devices function as nodes of the sensor network and communicate locally
over short distances. Unfortunately, the work focuses on heuristic communication strategies.
Likewise, no performance guarantees are possible and rides are only matched heuristically.
Matching is done greedily and the first ride to go geometrically closer to the destination is
taken. Note that geometric routing might lead to arbitrarily bad routes on a road network
in the worst case.

Xing et al. [15] give an approach to ad-hoc ride sharing in a metropolitan area that is
based on a multi-agent model and show the validity of their approach by simulation on a
rather small metropolitan network. But in its current form the concept does not scale. As
the authors point out it is only usable by a few hundred participants and not by several
thousands or more participants that a real world ride sharing service would have.

To the best of our knowledge, there exists no previous work on fast detour computation,
which would enable drivers and riders to meet somewhere in between. (Slow) detour com-
putation is simple, it breaks down to several shortest paths computations and is therefore
solvable by Dĳkstra’s algorithm [4] out of the box. In practice, however, these computations
take too much time. There exist speed-up techniques for the shortest path computation, see

ATMOS ’10



90 Fast Detour Computation for Ride Sharing

[3] for an overview. Transit Node Routing [1, 2] is the fastest technique whereas Contraction
Hierarchies (CH) [7, 6] has the best trade-off between preprocessing and query time. The
detour computation is similar to a distance table computation. The locations of offers in the
database are fixed and lots of matching requests are performed so that preprocessing pays
off. Currently the fastest algorithm to compute distance tables is [10] in combination with
CH. The remaining parts of this paper are as follows. Section 2 gives an introduction into
the technical model of ride sharing. Section 3 explains the algorithmic details while Section
4 gives an experimental evaluation on real-life data and an analysis of the results that we
achieved. Section 5 draws conclusions and identifies future work.

2 Our Approach to Ride Sharing

We assume two types of users that we call riders and drivers. Drivers have a car and place
offers, while riders place a request to be matched to an offer. A service is a more or less
automated procedure to make those matchings.

For many services an offer only fits a request iff origin and destination locations and the
possibly prefixed route of driver and rider are identical. We call such a situation a perfect
fit. Some services offer an additional radial search around origin and destination and fixed
way-points along the route. Usually, only the driver is able to prefix the route. The existence
of these additions shows the demand for better route matching techniques that allow a small
detour and intermediate stops. We call that kind of matching a reasonable fit. These fits
are reasonable in the sense that the benefit of the match is much larger than the cost of the
detour. However, previous approaches obviously used only features of the database systems
they had available to compute the perfect fits. And we showed in the previous section that
the previous approaches are not flexible, miss possibly interesting matches or require a lot
of manual intervention.

We present an algorithmic solution to the situation at hand that leads to better results
independent of the user’s level of cooperation or available database systems. For that, we
lift the restriction of a limited set of origin and destination points. Unfortunately, the
probability of perfect fits is close to zero in this setting. But since we want to compute
reasonable fits, our approach considers intermediate stops where driver and passenger might
meet and depart later on. More precisely, we adjust the drivers route to pick up the passenger
by allowing an acceptable detour.

We model the road network as a weighted graph G = (V,E). A path P is a series of
nodes P = 〈v1, . . . , v2〉 ∈ V with edges (vi, vi+1) ∈ E between the nodes. The length c(P ) of
a Path P is the sum of the weights, for example travel time, of all edges in P . Furthermore,
µ(u, v) denotes the length of a shortest path in G for the origin destination pair u, v ∈ V .
Consider the length of a not necessarily shortest path c(P ), P = 〈u, . . . , v〉 and the length
of a shortest path µ(u, v). The detour factorε is defined as the ratio of µ(u, v) and c(P ).

I Definition 1. Let ε > 0. We say that an offer o = (s, t) and a request g = (s′, t′)
form a reasonable fit iff there exists a path P = 〈s, . . . , s′, . . . , t′, . . . , t〉 in G with c(P ) ≤
µ(s, t) + ε · µ(s′, t′).

If we model riders’ detour having the same cost as drivers detour, then the situation is
completely symmetrical. The ε in Definition 1 depicts the maximal detour that is reasonable.
Applying the ε to the riders path gives the driver an incentive to pick up the rider. A natural
choice for the detour factor is ε ≤ 0.5. For further explanation see Section 3.3.



Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 91

3 Algorithmic Details

This section covers the algorithm to find all reasonable fits to an offer. We even solve the
more general problem of computing all detours.

For a dataset of k offers oi = (si, ti), i=1..k, and a single request g = (s′, t′), we need
to compute the 2k + 1 shortest path distances µ(s′, t′), µ(si, s′) and µ(t′, ti). The detour
for offer oi is then µ(si, s′) + µ(s′, t′) + µ(t′, ti) − µ(si, ti). A naive algorithm would do a
backward one-to-all search from s′ using Dĳkstra’s algorithm and a forward one-to-all search
from t′ to compute µ(si, s′) and µ(t′, ti). Another search returns the distance µ(s′, t′). We
cannot prune the Dĳkstra search early, as the best offer need not depart/arrive near the
source/target of the request, so that each search takes several seconds on large road networks.
In Section 4 we show that the running time of our algorithm is faster by several orders of
magnitude.

To compute the distances, we adapt an algorithm for distance table computation [10].
This algorithm is based on non goal-directed, bidirectional search in a graph, preprocessed by
a suitable speedup technique. Contraction Hierarchies [7] is currently the fastest one. Given
a forward search space S↑(x) from a source node x and a backward search space S↓(y) from
target node y, we can compute µ(x, y) by intersecting both search spaces. More formally, a
forward search space S↑(x) is a set of node/distance pairs (u, d↑) such that there is a path
from x to u with distance d↑. And a backward search space S↓(y) is a set of node/distance
pairs (u, d↓) such that there is a path from u to y with distance d↓. The speedup technique
guarantees that

µ(x, y) = min
u∈V

{
d↑ + d↓ | (u, d↑) ∈ S↑(x), (u, d↓) ∈ S↓(y)

}
. (1)

Those nodes u that are in both search spaces are called meeting nodes. Note that S↑(x)
is independent of the target node y (non goal-directed) and can serve for any target node,
and the same holds for S↓(y). Both search spaces are small due to the preprocessing by
the speedup technique [10, 7]. Nevertheless, we always compute the exact shortest path
distance.

We solve our original problem by computing for each si the forward search space S↑(si)
in advance and store it. More precisely, we do not store each S↑(si) separately, but we store
forward buckets

B↑(u) :=
{

(i, d↑) | (u, d↑) ∈ S↑(si)
}

(2)

with each potential meeting node u. To compute all µ(si, s′) for the request, we compute
S↓(s′), then scan the bucket of each node in S↓(s′) and compute all µ(si, s′) simultaneously.
We have an array of tentative distances for each µ(si, s′). Initially, the distances are∞, and
we decrease them while scanning the buckets. The decrease happens following (3) that is
deduced from (1) and (2).

µ(si, s′) = min
u∈V

{
d↑ + d↓ | (i, d↑) ∈ B↑(u), (u, d↓) ∈ S↓(s′)

}
. (3)

Symmetrically, we compute backward buckets B↓(u) :=
{

(i, d↓) | (u, d↓) ∈ S↓(si)
}
to accel-

erate the computation of all µ(t′, ti). Computing distances is very space- and cache-efficient,
because it stores plain distances and scans consecutive pieces of memory. The single dis-
tance µ(s′, t′) is computed separately by computing the search spaces from s′ and t′ in the
opposite directions.

Backward and forward buckets are stored in main memory and accessed as our main
data structure and running queries on that data structure is easy.

ATMOS ’10



92 Fast Detour Computation for Ride Sharing

3.1 Adding and Removing Offers
To add or remove an offer o = (s, t), we only need to update the forward and backward
buckets. To add the offer, we first compute S↑(s) and S↓(t). We then add these entries to
their corresponding forward/backward buckets. To remove the offer, we need to remove its
entries from the forward/backward buckets.

We make no decision on the order in which to store the entries of a bucket. This makes
adding an offer very fast, but removing it requires scanning the buckets. Scanning all buckets
is prohibitive as there are too many entries. Instead, it is faster to compute S↑(s) and S↓(t)
again to obtain the set of meeting nodes whose buckets contain an entry about this offer.
We then just need to scan those buckets and remove the entries. Also, we can omit removing
offers by just having a separate bucket for each day, as described in the next section. We
mark obsolete offers so that they will be ignored for any follow-up requests.

3.2 Constraints
In reality, offers and requests have constraints. For example, they specify a departure
time window or they have restrictions on smoking, gender, etc. In this case, we need to
extend the definition of a reasonable fit to meet these constraints by introducing additional
indicator variables. As we already compute the detours of all offers, we can just filter the
ones that violate the constraints of the request. Furthermore, our algorithm can potentially
take advantage of these constraints, for example having buckets for each day separately.
This way, we reduce the number of bucket entries that are scanned during a request. This
significantly reduces the time to match a request as the bucket scans take the majority of
the time.

3.3 Algorithmic Optimizations
We accelerate the request matching time by pruning bucket scans. We can omit scanning
buckets when we limit the maximum detour to ε times the cost of the rider’s shortest route.
To do so, we look at a simple pricing scheme we know from algorithmic game theory. The
so-called fair sharing rule [12] simply states that players who share a ride split costs evenly
for the duration of the ride. Additionally, we define that drivers get compensated for their
detours directly by riders using the savings from the shared ride. Implicitly, we give the
driver an incentive to actually pick the passengers up at their start s′ and to drop them off
at their destination t′. Formally, we have that a match is economically worthwhile iff there
exists a detour factor ε for which

µ(s, s′) + µ(s′, t′) + µ(t′, t)− µ(s, t) ≤ ε · µ(s′, t′) .

The solid lines symbolize the distances that are driven, while the dashed one stands for
the shortest path of the driver that is actually not driven at all in a matched ride.

Let’s assume that ε is given, then we exploit the fact that we need to obtain S↑(s′) and
S↓(t′) for the computation of µ(s′, t′). For (u, d↑) in S↑(s′) holds d↑ ≥ µ(s′, u) and (u, d↓)
in S↓(t′) holds d↓ ≥ µ(u, t′). We compute the distance µ(s′, t′) before the bucket scanning,
and additionally keep S↑(s′) and S↓(t′) that we obtained during this search. Then we can
apply Lemma 2.

I Lemma 2. Let (u, d↓) ∈ S↓(s′) and (u, d↓) ∈ S↓(t′). We will not miss a reasonable fit
when we omit scanning bucket B↑(u) only if d↓ + µ(s′, t′) > d

↓ + ε · µ(s′, t′).



Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 93

s

s′

t

t′

Figure 1 Request (s′, t′) and matching offer (s, t) with detour.

Let (u, d↑) ∈ S↑(t′) and (u, d↑) ∈ S↑(s′). We will not miss a reasonable fit when we omit
scanning bucket B↓(u) only if d↑ + µ(s′, t′) > d

↑ + ε · µ(s′, t′).

Proof. Let (u, d↓) ∈ S↓(s′) and (u, d↓) ∈ S↓(t′), and d↓ + µ(s′, t′) > d
↓ + ε · µ(s′, t′). Let

(i, d↑) ∈ B↑(u) be a pruned offer. If the path from si to s′ via node u is not a shortest
path, another meeting node will have offer oi in its bucket, see (3). Therefore, WLOG we
assume that d↑ + d↓ = µ(si, s′). Let P be a path P = 〈si, . . . , s′, . . . , t′, . . . , ti〉 as visualised
in Figure 2, then

c(P ) ≥ µ(si, s′) + µ(s′, t′) + µ(t′, ti)
= d↑ + d↓ + µ(s′, t′) + µ(t′, ti)
L.2
> d↑ + d

↓ + ε · µ(s′, t′) + µ(t′, ti)
d↑=µ(si,u), d↓≥µ(u,t′)

≥ (µ(si, u) + µ(u, t′) + µ(t′, ti)) + ε · µ(s′, t′)
4-inequality
≥ µ(si, ti) + ε · µ(s′, t′)

Therefore, P is not a reasonable fit. The proof is completely symmetric for omitting the
scan of B↓(u). J

Assume, that a passenger will not pay unreasonable high costs to share a ride, i.e. if it is
cheaper to travel on his or her own. It is easy to see that any reasonable passenger will not
pay more for the drivers detour than the gain for the shared ride which is at most 1

2 ·µ(s′, t′).
Therefore, we conclude ε ≤ 0.5. Of course, we acknowledge cultural differences and that an
ε > 0.5 may be perfectly alright in certain parts of the world. Figure 1 gives a sketch on the
line of argumentation.

u

s′ t′

si
ti

d↓

µ(s′, t′)

d
↓

d↑

Figure 2 The difference d↓ + µ(s′, t′)− d↓ is a lower bound on a detour via u.

ATMOS ’10



94 Fast Detour Computation for Ride Sharing

Figure 3 original node locations (left), perturbed node locations (middle), population density
(right).

4 Experimental Results

4.1 Environment
Experiments have been done on one core of a single AMD Opteron Processor 270 clocked at
2.0 GHz with 8 GiB main memory and 2 × 1 MiB L2 cache, running SuSE Linux 11.1 (kernel
2.6.27). The program was compiled by the GNU C++ compiler 4.3.2 using optimization
level 3.

4.2 Test Instances
Our graph of Germany is derived from the publicly available data of OpenStreetMap and
consists of 6 344 491 nodes and 13 513 085 directed edges. The edge weights are travel times
computed for the OpenRouteService car speed profile 1. To test our algorithm, we obtained a
dataset of real-world ride sharing offers from Germany available on the web. We matched the
data against a list of cities, islands, airports and the like, and ended up with about 450 unique
places. We tested the data and checked that the lengths of the journeys are exponentially
distributed. This validates assumptions from the field of transportation science. We assumed
that requests would follow the same distribution and chose our offers from that dataset as
well.

To extend the data set to our approach of arbitrary origin and destination locations,
we applied perturbation to the node locations of the data set. For each source node we
unpacked the node’s forward search space in the contraction hierarchy up to a distance of
3 000 seconds of travel time. From that unpacked search space we randomly selected a new
starting point. Likewise we unpacked the backward search space of each destination node
up to the distance and picked a new destination node. This approach applies to both offers
and requests. We observed that perturbation preserved the distribution of the original data
set.

Figure 3 compares the original node locations on the left to the result of the node
perturbation in the middle. The right side shows a population density plot of Germany2 to
support the validity of the perturbation.

1 See: http://wiki.openstreetmap.org/wiki/OpenRouteService
2 Picture is an extract of an image available at episcangis.hygiene.uni-wuerzburg.de



Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 95

●
●

●

●

●

●

●

●

●

0 0.05 0.1 0.2 0.3 0.4 0.5 1 ∞∞

0
10

20
30

40

Max. detour εε

M
at

ch
 r

eq
ue

st
 ti

m
e 

[m
s]

●

random
unperturbed
perturbed

Figure 4 Match request performance for 100 000 offers.

We evaluated the performance of our algorithm for different numbers of offers where
source and target are picked at random or from our un-/perturbed real-world dataset, see
Table 1. We used CH (aggressive approach [6]) as bi-directed, non goal-directed speed-up
technique. The size required for the bucket entries is linear with the number of offers, as a
forward/backward search space have at most a few hundred nodes. The time to add an offer
o = (s, t) is independent of the number of offers, the main time is spent computing S↑(s) and
S↓(t). However, removing an offer requires scanning the buckets, and therefore the more
offers are in the database the more expensive it is. For our real-world offers, we have just 450
different source/target nodes, so that the bucket entries are clustered in only a few buckets,
this still holds when we perturb the data. Of course, the bucket entries are more evenly
distributed for completely random offers, the buckets are therefore smaller and removing an

Table 1 Performance of our algorithm for different types of offers/requests, numbers of offers
and max. detours ε.

#offers bucket add remove match request [ms]
size offer offer ε =

type [MiB] [ms] [ms] 0.0 0.05 0.1 0.2 0.3 0.4 0.5 1 ∞
perturbed 1 000 3 0.27 0.00 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.9
perturbed 10 000 28 0.24 0.29 0.9 1.0 1.1 1.3 1.5 1.6 1.8 2.7 4.1
perturbed 100 000 279 0.24 0.30 4.4 5.2 6.1 8.1 10.2 12.1 14.0 25.1 43.4
unperturbed 1 000 3 0.26 0.27 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 1.0
unperturbed 10 000 32 0.26 0.32 1.1 1.2 1.3 1.6 1.7 1.9 2.1 2.8 4.3
unperturbed 100 000 318 0.27 6.26 5.6 6.7 7.9 10.4 12.4 14.5 16.1 26.3 44.6
random 1 000 3 0.24 0.25 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.9 1.0
random 10 000 31 0.25 0.30 1.1 1.2 1.3 1.5 1.7 1.9 2.1 3.5 4.3
random 100 000 306 0.26 0.32 6.0 6.7 7.8 10.1 12.6 15.4 18.5 34.9 45.1

ATMOS ’10



96 Fast Detour Computation for Ride Sharing

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Max. detour ε

F
ra

ct
io

n 
of

 m
at

ch
ed

 r
eq

ue
st

s

100000
10000
1000

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Max. detour ε

F
ra

ct
io

n 
of

 m
at

ch
ed

 r
eq

ue
st

s

100000
10000
1000

Figure 5 Fraction of rides matched for a given detour (unperturbed left, perturbed right).

offer takes less time. We report the time for matching a request for different values of ε.
Even with no further optimization (ε =∞), we can handle large datasets with 100 000 offers
within 45ms. In comparison, the fastest speedup technique today, Transit Node Routing
(TNR) [2, 1] requires 1,9µs3 for each of the 2n+ 1 queries and would take about 380ms for
the largest dataset whereas our algorithm is 8.4 times faster. For a realistic ε = 0.5, we get
a further speed-up of about 3. Figure 4 visualizes the performance for different ε. It mainly
depends on ε and our algorithm is fairly robust against the different ways to pick source and
target nodes.

Our method is also faster than TNR when we look at preprocessing. Although TNR
does not need to add and store offers, our algorithm based on CH is still faster. The
preprocessing of CH is one order of magnitude faster and has no space overhead, whereas
TNR would require more than 1 GiB on our graph of Germany. This is more than enough
time to insert even 100 000 offers and more than enough space to store the bucket entries,
as Table 1 indicates.

We varied the allowed detour and investigated what influence it has on the number of
matches that can be made. A random but fixed sample of 1 000 requests was matched
against databases of various sizes. Figure 5 and Table 2 report on these experiments. The

3 This query time is on the European road network, but since the number of access nodes should be the
same on Germany, we can expect a similar query time there.

Table 2 Request matching rate for different values of maximum allowed detour.

unperturbed perturbed
ε = ε =

#offers 0 0.05 0.1 0.2 0.5 0 0.05 0.1 0.2 0.5
1000 0.248 0.281 0.370 0.558 0.865 0.003 0.028 0.096 0.271 0.715

10000 0.718 0.755 0.840 0.917 0.989 0.006 0.093 0.248 0.569 0.914
100000 0.946 0.963 0.981 0.993 1.000 0.029 0.289 0.537 0.793 0.988



Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 97

Table 3 Detour factors relative to the riders route length for the best answer achieved using
radial search and using our algorithm.

#offers radial search detour smallest detour
1 000 0.806 0.392

10 000 0.467 0.227
100 000 0.276 0.128

experiment with unperturbed data represents the algorithms currently in use, where any
user is allowed to do city-to-city queries only. For a realistic database size of 10 000 entries4
and maximum allowed detour of ε = 0.1 we improve the matching rate to 0.84. This is a
lot more than the 0.718 matching rate without detours. As expected, the matching rate
increases with the number of offers.

The more realistic scenario with the perturbed data, where offers and requests are not
only city-to-city, but point-to-point, becomes only practically possible with our new algo-
rithm. The probability to find a perfect match in this scenario is close to zero. It is necessary
to allow at least a small detour to find some matches. The ε required to find a match be-
comes larger, as we now also include intra-city detours and not only inter-city detours. Still,
with a detour factor of ε = 0.2 we achieve a matching rate of 0.569, and for the maximum
reasonable detour of ε = 0.5, we match 0.914 of all requests, that is 20% more than the
0.718 possible with a city-to-city perfect matching algorithm (unperturbed, ε = 0).

We also tested the quality of our algorithm against radial search. In the radial search
setting, each request is matched against the offer with the smallest sum of Euclidean dis-
tances w.r.t. to origin and destination location of the request. This mimics radial search
functions (with user supplied radii) offered in some current ride sharing systems. Table 3
reports the results. The average detour of all matches is less than half the detour that is
experienced with radial search, which shows the performance of our approach. On the other
hand, these numbers show the inferiority of radial search.

5 Conclusions and Future Work

We developed an algorithmic solution to efficiently compute detours to match ride sharing
offers and request. This improves the matching rate for the current city-to-city scenario.
In the new scenario for arbitrary starting and destination points, our algorithm is the first
one feasible in practice, even for large datasets. Our algorithm is perfectly suitable for
a large scale web service with potentially hundreds of thousands of users each day. This
new scenario can increase the quality of the matches and the user satisfaction, potentially
increasing the usage of ride sharing in the population.

Other cost functions are possible as well and perhaps not a single one, but several func-
tions are used. Ranking the functions to produce a pareto-optimal solution or computing
the skyline [11], i.e. the set of maxima, is an interesting problem in its own right.

We identify the adaption of our algorithm to time-dependent road networks and the
incorporation of shared memory parallelism as as well as a distributed implementation [9]

4 The database size of 10 000 entries is a realistic case and closely resembles the current daily
amount of matches made by a known German ride sharing service provider, see: http://www.ea-
media.net/geschaftsfelder/europealive/geschaftsfelder.html

ATMOS ’10



98 Fast Detour Computation for Ride Sharing

as fields of future work. Incorporating car switching and multiple passengers per car will
bring new and interesting algorithmic challenges. Although, the algorithm is sufficiently fast
when dealing with 100 000 entries, we’d like to further improve it to deal with even larger
input sizes of a magnitude of order and more. An adaption of the algorithm to the shared
taxi system of developing countries will be very interesting as well.

References

1 Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast Routing in Road
Networks with Transit Nodes. Science, 316(5824):566, 2007.

2 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-Up Techniques
for Dĳkstra’s Algorithm. ACM Journal of Experimental Algorithmics, 15:2.3, January 2010.
Special Section devoted to WEA’08.

3 Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering Route
Planning Algorithms. In Jürgen Lerner, Dorothea Wagner, and Katharina A. Zweig, edi-
tors, Algorithmics of Large and Complex Networks, volume 5515 of Lecture Notes in Com-
puter Science, pages 117–139. Springer, 2009.

4 Edsger W. Dĳkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

5 John F. Dillenburg, Ouri Wolfson, and Peter C. Nelson. The Intelligent Travel Assistant. In
ITSS 2002: Proceedings of the 5h International Conference on Intelligent Transportation
Systems, pages 691–696. IEEE Computer Society, September 2002.

6 Robert Geisberger. Contraction Hierarchies. Master’s thesis, Universität Karlsruhe
(TH), Fakultät für Informatik, 2008. http://algo2.iti.uni-karlsruhe.de/documents/
routeplanning/geisberger_dipl.pdf.

7 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In Catherine C.
McGeoch, editor, Proceedings of the 7th Workshop on Experimental Algorithms (WEA’08),
volume 5038 of Lecture Notes in Computer Science, pages 319–333. Springer, June 2008.

8 Stephan Hartwig and Michael Buchmann. Empty Seats Travelling. Technical report, Nokia
Research Center, 2007.

9 Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Distributed Time-
Dependent Contraction Hierarchies. In Paola Festa, editor, Proceedings of the 9th Interna-
tional Symposium on Experimental Algorithms (SEA’10), volume 6049 of Lecture Notes in
Computer Science. Springer, May 2010.

10 Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.
Computing Many-to-Many Shortest Paths Using Highway Hierarchies. In Proceedings of
the 9th Workshop on Algorithm Engineering and Experiments (ALENEX’07), pages 36–45.
SIAM, 2007.

11 H. T. Kung, Fabrizio Luccio, and F. P. Preparata. On Finding the Maxima of a Set of
Vectors. Journal of the ACM, 22(4):469–476, 1975.

12 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vĳay V. Vazirani, editors. Algorithmic
Game Theory. Cambridge University Press, 2007.

13 Masyuku Ohta, Kosuke Shinoda, Yoichiro Kumada, Hideyuki Nakashima, and Itsuki Noda.
Is Dial-a-Ride Bus Reasonable in Large Scale Towns? — Evaluation of Usability of Dial-a-
Ride Systems by Simulation —. In Multiagent for Mass User Support - First International
Workshop, volume 3012 of Lecture Notes in Computer Science, pages 105–119. Springer,
2004.

http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/geisberger_dipl.pdf
http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/geisberger_dipl.pdf


Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 99

14 Yun Hui Wu, Lin Jie Guan, and Stephan Winter. Peer-to-Peer Shared Ride Systems. In
GeoSensor Networks, volume 4540 of Lecture Notes in Computer Science, pages 252–270.
Springer, August 2006.

15 Xin Xing, Tobias Warden, Tom Nicolai, and Otthein Herzog. SMIZE: A spontaneous
Ride-Sharing System for Individual Urban Transit. In Proceedings of the 7th German
Conference on Multiagent System Technologies (MATES 2009), volume 5774 of Lecture
Notes in Computer Science, pages 165–176. Springer, September 2009.

ATMOS ’10


	Introduction
	Related Work

	Our Approach to Ride Sharing
	Algorithmic Details
	Adding and Removing Offers
	Constraints
	Algorithmic Optimizations

	Experimental Results
	Environment
	Test Instances

	Conclusions and Future Work

