Timing Anomalies Reloaded

Gernot Gebhard!

1 AbsInt Angewandte Informatik GmbH
Science Park 1, D-66123 Saarbriicken, Germany
gebhard@asbint.com

—— Abstract

Computing tight WCET bounds in the presence of timing anomalies — found in almost any modern hard-
ware architecture — is a major challenge of timing analysis.

In this paper, we renew the discussion about timing anomalies, demonstrating that even simple hard-
ware architectures are prone to timing anomalies. We furthermore complete the list of timing-anomalous
cache replacement policies, proving that the most-recently-used replacement policy (MRU) also exhibits
a domino effect.

1998 ACM Subject Classification B.2.2
Keywords and phrases Timing Anomalies, Domino Effects, MRU Replacement Policy, LEON2

Digital Object Identifier 10.4230/0ASIcs.WCET.2010.1

1 Introduction

The validation of the timing behavior of tasks in a safety-critical embedded software system requires
both safe and precise worst case execution time (WCET) bounds. Those bounds need to be safe
to ensure that each component of the software system performs its job in time. Furthermore, those
bounds are required to be precise to ensure the schedulability of such software systems. Two different
approaches have emerged to solve the timing analysis problem: measurement-based timing analysis
and static WCET analysis. In the following, we focus on static timing analysis and one of the main
challenges this analysis method has to face: timing anomalies.

Intuitively spoken, a timing anomaly is a counterintuitive behavior of a hardware architecture,
where a “good” event (e.g., a cache hit) leads to an overall longer execution, whereas the opposing
“worse” event, such as a cache miss, leads to a globally shorter execution time. In the presence of such
anomalies, the local worst case is not always a safe assumption in static timing analysis. To compute
safe timing guarantees, any static timing analysis has to consider all possible executions caused by
any non-determinism in the abstract hardware model (e.g., such as unknown cache contents). Due to
the loss of predictability, the static analysis of architectures featuring timing anomalies requires much
more effort in terms of computational power and memory consumption.

Intuitively, one would assume that timing anomalies are restricted to complex hardware archi-
tectures. In fact, the Motorola PowerPC 755 is known to have a timing anomaly due to its complex
pipeline [10]. Furthermore, architectures with caches with, e.g., PLRU or random replacement
policies feature timing anomalies as well [2].

However, even simple architectures can suffer from timing anomalies, as demonstrated throughout
this paper. We demonstrate that the LEON2 processor, developed at Aeroflex Gaisler [1], also features
a timing anomaly caused by the processor’s cache line fill mechanism.

In addition to discussing the LEON2, we complete the list of commonly used replacement policies
that are prone to timing anomalies by examining the MRU replacement policy.

Section 2 discusses related work. Section 3 formally defines timing anomalies and introduces
the existing timing anomaly classifications. Section 4 discusses the MRU replacement policy and

@@@@ © Gernot Gebhard;

AT licensed under Creative Commons License NC-ND

10" International Workshop on Worst-Case Execution Time Analysis (WCET 2010).
Editor: Bjorn Lisper; pp. 1-10

\\v OpenAccess Series in Informatics
0ASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2010.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Timing Anomalies Reloaded

proves that this replacement strategy exhibits a timing anomaly. Section 5 introduces the LEON2
architecture and demonstrates that this architecture is prone to a timing anomaly — despite its rather
simple structure. Finally, Section 6 concludes this paper.

2 Related Work

Lundqvist and Stenstrom [7] are the first to introduce the term timing anomaly. They find that the
worst case instruction execution time behavior does not necessarily contribute to the global worst case
execution time. In their paper the authors provide an example of a timing anomaly, where a cache
hit leads to the worst case timing. Engblom and Jonsson [5] also discuss timing anomalies. They
translate the notion of timing anomaly of Lundqvist and Stenstrom [7] to their model considering
(local) timing of pipeline stages instead of whole instructions.

Both Lundqvist and Engblom claim that timing anomalies cannot occur in processors that only
comprise in-order resources (i.e., two instructions can only use a resource in program order). This
statement is unfortunately not always true, as we show by means of the LEON2 hardware architecture.

Schneider [10] describes a timing anomaly present in the Motorola PowerPC 755 (MPC755). The
possibility to dispatch an instruction on two execution units with different behavior in conjunction
with pipeline stalls triggers the described timing anomaly.

Thesing [11] discusses the Motorola ColdFire 5307 that has a rather simple in-order pipeline.
He shows that the processor exhibits timing anomalies, caused by the pseudo round-robin cache
replacement algorithm.

Berg [2] discusses cache replacement policies and their timing anomalies. He finds that caches
using first-in first-out (FIFO), round-robin, or pseudo least-recently-used (PLRU) cache replacement
strategies suffer from timing anomalies. These replacement strategies are commonly used in embedded
hardware architectures, as they require less update logic compared to the LRU policy, which is free of
timing anomalies.

In the context of WCET analysis, Reineke et al. [9] provide the first formal definition of timing
anomalies. The paper provides a classification of timing anomalies, which we adopt in this paper.

Eisinger et al. [4] provide a novel methodology to automatically detect timing anomalies. Requir-
ing an accurate hardware model to be available (e.g., in VHDL), the approach computes an instruction
sequence that triggers a timing anomaly, if such a sequence exists. Yet, the approach is not fully
automatic, because hardware features potentially causing timing anomalies need to be identified
manually.

Reineke and Sen [8] discuss a related approach. Other than Eisinger et al., they propose a method
that allows a static timing analysis to safely discard analysis states by means of A functions. A A
function computes the maximal difference in timing between two system states on any input instruction
sequence. For any pair of system states, a static timing analysis can consult the corresponding A
function to determine which of the two states can be safely discarded. This works well for small
hardware models, as demonstrated in the paper, but it remains unclear whether this approach can be
applied to complex embedded architectures in a beneficial way.

Kirner et al. [6] show that splitting up a WCET analysis into separate parallel WCET analyses
(corresponding to hardware components operating in parallel) is not generally safe in the presence of
timing anomalies. Furthermore, the authors identify special instances of “parallel’ timing anomalies
still making a parallel decomposition of the WCET problem feasible. Their findings correspond to
the classification of architectures (see Section 3.6). Non-fully timing compositional architectures do
not allow for a safe, parallel decomposition of the WCET problem.

G. Gebhard

Branch condition evaluated
1

Cache Hit: (A —I—> Prefetch B - Cache Miss I C)

Cache Miss: [A] ¢)

Figure 1 Speculation-triggered timing anomaly: The processor executes a conditional branch instruction,
whose condition is yet unresolved. Assuming a cache hit for the initial code fetch, the processor speculatively
fetches the instruction B that is not contained in the cache. This causes an overall longer execution time, because
the cache line fill operation stalls the processor longer than it takes to resolve the branch condition.

3 Timing Anomalies

Intuitively, a timing anomaly is a counterintuitive behavior of a hardware architecture, where a local
speed-up leads to a global slow-down. Several — average-performance increasing — hardware features
may exhibit this kind of non-local execution time behavior. In the following we formally define timing
anomalies in accordance to the definition found in [9]. Furthermore, we discuss some examples of
timing anomalies commonly found in modern processors.

3.1 Formal Definition

» Definition 1. (Hardware State) For a given hardware architecture A, the set H comprises all
possible hardware states of that architecture. A specific hardware state of the architecture is) € H.

» Definition 2. (Program) A program P is a directed graph P = (V, E) with E C'V x V, where
the nodes V represent instructions, and an edge (u,v) € E represents the control flow transition
Sfrom instruction u to v. A path T = w1 7o . .. through the program P = (V| E) is a possibly infinite
sequence of instructions, such that (7;,m;41) € E for each i < |T|.

» Definition 3. (Execution) The execution 7z of the path T is a function HxN-— R>¢ assigning
each instruction on the path T a non-negative (relative) execution time depending on the initial
hardware state 1) (i.e, vz(n, 1) denotes the time the processor needs to execute the instruction ;).
The (absolute) execution time under the initial state 1) until the position n € N is Tz(n,n) =

Z?:l V7 (na Z)

» Definition 4. (WCET) The worst case execution time (WCET) is determined by the worst-case
initial hardware state 0, such that lim,, |z T'z(n,n) < lim,,_,z T'z(0,n) for all hardware states 7).

Note that Definition 3 allows for different initial hardware states before the execution of the
program. This makes sense, because the precise initial state of the processor is usually unknown in
the scope of static timing analysis. Thus static timing analyses need to consider all possible initial
hardware states to provide safe WCET bounds.

» Definition 5. (Timing Anomaly) An architecture has a timing anomaly if there exists a path 7
through a program P, i,n € N withn > i, and a hardware state 0, such that vz(0,1) < vz(n,4) and
T'z(0,n) > Tz(n, n) for all hardware states n # 0. The state 0 is called timing-anomalous.

3.2 Examples

Figure 1 gives an example of a timing anomaly caused by the interaction between the branch prediction
mechanism, the instruction cache, and the processor’s ability to execute instructions out-of-order. In

WCET 2010

Timing Anomalies Reloaded

f1 dispatchable

ALU: (ay i (7 a —} as)

FPU:

ALU:

FPU:

Figure 2 Variant execution time triggered timing anomaly: This example demonstrates that a locally fast
instruction execution might cause a global slow-down of an instruction sequence. The instructions a1, a2, and
a3 execute on the ALU. The ALU features an early-out mechanism that allows integer divide instructions, such
as a1, to complete faster under certain circumstances. The other instructions fi and f2 solely execute on the
FPU. Edges between instructions indicate definition-use dependencies.

this example the processor is currently executing a conditional change-of-flow instruction, whose
condition is not yet evaluated at the moment the instruction A is about to be fetched. Upon a cache hit
for code fetch of instruction A, the processor starts to speculatively fetch the uncached branch target
B. Although the initial cache hit locally causes a faster execution, the overall execution is slowed
down, because the cache line fill fetching B takes longer than resolving the branch condition.

This timing anomaly could also be caused by speculative execution. This means that the processor
starts to execute the fetched instructions, while the processor computes the branch condition. Instead
of fetching the instruction B and being stalled due to a cache miss, the processor could speculatively
execute the previously fetched instruction B resulting in a longer stall of the processor’s pipeline.

Figure 2 demonstrates a different timing anomaly caused by instructions with variant execution
times (e.g., due to dividers with an early-out mechanism). Here, the processor features two execution
units, an arithmetical logical unit (ALU) and a floating point unit (FPU). Depending on the input
parameters, the ALU executes integer division instructions, like a1, quicker. In this case, completing
instruction a; earlier, the processor is able to dispatch instruction f5 in front of instruction f;. This
effectively causes the processor to execute all instructions sequentially. The instruction sequence
takes longer to complete, because the processor cannot benefit from its ability to execute instructions
in parallel. On the contrary, if instruction a; takes longer to complete, the processor will dispatch
instruction f; earlier. This allows the processor to execute the instructions as and f5 in parallel,
resulting in an overall faster execution.

The variable-execution-time-triggered timing anomaly corresponds to a so-called scheduling
anomaly. In the same fashion, a task that terminates earlier could lead to an overall longer schedule.
Whereas a faster schedule could be achieved if the very same task would run to completion a bit later.
Greedy schedulers are usually unable to prevent this kind of anomaly.

3.3 Domino Effects

The presence of timing anomalies increases the complexity of static timing analyses. A static timing
analysis cannot always assume the local worst case, if the analyzed architecture is prone to a timing
analysis. Instead the analysis has to take all possibilities into account to compute safe WCET bounds.

Often the effect of a timing anomaly on the execution time stabilizes eventually. This means that
any timing-anomalous execution reaches a point where it only differs by a constant from any other

G. Gebhard

execution on the sequence of the input program. Such a timing anomaly is called k-bounded timing
anomaly, where k is the maximal difference in execution time caused by the timing anomaly. This is
formalized in Definition 6. In the presence of a k-bounded timing anomaly, a static timing analysis
could always assume the local worst case, adding the constant k to the computed WCET bound [8].!

» Definition 6. (k-bounded Timing Anomaly) An architecture has a k-bounded timing anomaly,
if there exists a k € R>¢ such that for all timing-anomalous hardware states 0 for the execution of a
path 7 through a program P holds: T'z(0,n) — T'z(n,n) < k for all n € N and all states 1.

Unfortunately, some hardware features cause timing anomalies whose effects on timing are
unbounded. Such timing anomalies are known as domino effects. Domino effects are essentially
different from k-bounded timing anomalies: A k-bounded timing anomaly occurring in a loop only
has a limited timing effect that eventually stabilizes. In other words, the loop body runtime will only
differ for a bounded number of iterations and converge finally. In the presence of a domino effect, the
loop body runtime will take different values without convergence in the future.

» Definition 7. (Domino Effect) An architecture has a domino effect, if it exhibits a timing anomaly
that is not k-bounded. Such timing anomalies are also known as unbounded timing anomalies.

Domino effects are real. Schneider [10] has demonstrated that the MPC755 pipeline actually
causes a domino effect. Furthermore, Berg [2] was able to show that, in contrast to the LRU
replacement policy, the pseudo LRU, the FIFO, and the round-robin replacement strategies suffer
from domino effects. Section 4 completes this list, proving the MRU policy to feature a domino effect
as well.

3.4 Challenges for Static Timing Analysis

The presence of timing anomalies impacts both performance and precision of a static timing analysis.

In general, an analysis must not always choose the locally most expensive execution, as this decision
might not always lead to the global worst case execution time. Consequently, the number of states to
consider during analysis time increases greatly, if the absence of timing anomalies cannot be proven
for an analysis state, where multiple successor states are possible.

Furthermore, the inability of proving the absence of a timing anomaly might also lead to an
increase in the computed WCET bound. The timing anomaly discussed in Section 5 can lead to an
overestimation of up to 20% (strongly depending on the analyzed program).

3.5 Classification of Timing Anomalies
Reineke et al. [9] discern three different classes of timing anomalies:

Scheduling timing anomaly: Most timing anomalies found in the literature correspond to this class
of timing anomalies. Figure 2 is actually an instance of a scheduling timing anomaly. Depending
on the execution time of a task, a faster execution might lead to a globally longer schedule. This
kind of anomaly is well-known in the scheduling domain and has been thoroughly studied on
various scheduling routines.

Speculation timing anomaly: Figure 1 demonstrates such a timing anomaly. An initial cache hit
(the local best case) causes a speculative prefetch addressing an instruction that is not cached. The
cache miss leads to an overall longer execution. Section 5 discusses a speculation anomaly found
in the LEON?2 core.

"Note that & is an overestimation of the caused effect on timing. In most cases the precision of a static timing analysis
will degrade by assuming the local worst case and adding the constant £ to the computed WCET bound.

WCET 2010

Timing Anomalies Reloaded

Cache timing anomaly: Cache timing anomalies are caused by some non-LRU cache replacement
strategies. Various cache replacement algorithms have been proven to cause domino effects.

The above classification sorts timing anomalies in accordance to the hardware property that is
responsible for the timing anomaly. So far, this classification appears to be exhaustive in the sense
that it covers all possible hardware features that might trigger timing anomalies.

Yet, the sole knowledge about the timing anomaly class does not suffice for static timing analysis.
In addition to the hardware feature causing the anomaly, it is necessary to know the kind of anomaly.
A static timing analysis of a hardware architecture that has a k-bounded timing anomaly can be
realized with less effort? than a static analysis of an architecture that suffers under a domino effect as
discussed in Section 3.3.

Currently, it is unclear how to determine whether an instance of a timing anomaly is k-bounded
for a certain system state. Depending on the initial hardware state, a hardware feature triggering a
domino effect might only cause a constantly-bounded anomaly for this special case. Furthermore,
there exists no general approach to compute the constant k for a k-bounded timing anomaly.

3.6 Classification of Architectures

Depending on whether a hardware architecture exhibits k-bounded timing anomalies or domino
effects, the architecture can be classified into three categories. Wilhelm et al. introduce the following
categorization in [12]:

Fully timing compositional architectures: The architecture does not exhibit any timing anomalies.
Hence, the analysis can safely follow local worst-case paths only. The ARM7 is one example
architecture of this class. On a timing accident all components of the pipeline are stalled until the
accident is resolved. This even allows for a much simpler analysis where architecture components
(e.g., cache, bus occupancy, etc.) can be analyzed separately (i.e., a safe parallel decomposition of
the WCET problem is feasible).

Compositional Architectures with k-bounded effects: The architecture suffers from k-bounded
timing anomalies but not from domino effects. In general, an analysis has to consider all paths.
To trade precision with efficiency, it would be possible to safely discard local non-worst-case
paths by adding a constant to the computed WCET bound, as discussed in Section 3.3. So far, no
non-fully timing compositional architecture has been formally proven to belong to this class.
Non-compositional architectures: Architectures belonging to this class exhibit domino effects.
The MPC755 is known to belong to this class of architectures, because its complex pipeline might
cause a domino effect (see Section 3.3). For such architectures timing analyses always have to
follow all paths since any local effect may influence the future execution arbitrarily.

4 MRU Domino Effect

This section discusses the most-recently-used replacement strategy in the context of static timing
analysis. In contrast to the LRU replacement algorithm, MRU discards the most-recently accessed
cache line upon a cache miss. The MRU replacement algorithm is most useful when older data is
likely to be reused (e.g., after sequentially scanning an array or a file for data) [3].

Figure 3 demonstrates the domino effect by means of a 2-way cache using the MRU replacement
strategy. In this example, the memory locations a and b are accessed in an alternating pattern. Starting
with an empty cache, the cache set contents stabilize after two accesses. After the first two accesses

2 Assuming the constant k is known.

G. Gebhard

a* b* a b Zero misses per
— a — b a — a b — b a . .
iteration
T |

a b* a* b* two misses per
a c I c — c — a c — c . .
iteration
T |

timing-anomalous state

Figure 3 An example domino effect for a 2-way cache using an MRU replacement policy for the repeating
access sequence (a, b) ™. The left-hand side of a set depicts the most-recently accessed element. The first row
features an empty initial cache state, where no misses occur for the given sequence. The second row demonstrates
a different initial cache state that causes all accesses except the first to miss the cache. Each miss is marked by *.

that miss the cache set the access sequence will only produce hits. Starting with a cache set that
contains the addresses a and ¢, where a is the most-recently accessed one, each access to the cache
except for the first will lead to a cache miss. Because the MRU policy retains older data (i.e., the
memory location c in this case), an access to a will evict b from the cache and vice versa.

Proof. (The MRU algorithm exhibits a domino effect) Let n € N>5 be the associativity of a cache
governed under the MRU replacement policy. Additionally, let i, m € R with h < m, where h
and m are the costs for cache hit and cache miss, respectively.

To show the presence of a domino effect, we need to find a path through a program and two initial
hardware states, such that the difference in execution times starting from the two initial states is not
constantly bounded.

Let P be a program alternately accessing the distinct memory locations a and b (starting with
a) that map to the same cache set and 7 be a path through that program. Furthermore, let ey, pey be
a hardware state where the target cache set is initially empty, and 7,,; be an initial hardware state,
where the target cache set contains the disjoint memory locations a, my, ms, ..., My _1 With m; # b
fori € {1,2,...,n — 1} and where the cache line containing « is the most-recently accessed one.

It holds:

V7 (Mempty, 1) = { h otherwise
h i=1

Y&(Mpui, 1) = {

m otherwise

Furthermore, it holds vz(1fuir, 1) < Yz(Nempty, 1) and Tz (0w, 1) > Tz (Nempty,) for all
I > 2. Thus, the state 7, is timing-anomalous, in accordance to Definition 5.

The timing anomaly is not k-bounded. For any & € R>(we can choose an ! € N,[> 2, such
that the k-boundedness according to Definition 6 does not hold:

Laz(npuirs 1) — Tz (Mempty, 1) <k | Tz(Mfutts 3) — Lz (Nempty, 3) = 0
& Sia(rpun i) = 2 Olempry i) <k
& Yica(m = 1) <k
& (I1—3)(m—h) <k
& l <—F+ 3
For [l > [ﬁw + 3 the above relation is false. |

WCET 2010

Timing Anomalies Reloaded

LEON?2 Core:
5-Stage
Integer Unit
Instruction Data
Cache Cache

Memory Man-

agement Unit

Memory Controller

(proM) (10) (sbraM) (_SRAM)

Figure 4 Simplified block diagram of the LEON2 architecture.

5 LEON2 Timing Anomaly

In this section we discuss the LEON2 hardware architecture. The LEON2 was developed at Aeroflex
Gaisler as a successor of the ERC32 processor. A radiation-hardened version of the LEON?2 is
available [1] which makes it suitable for the space domain, where fault-tolerance is required.

Similar to the ARM7, the LEON?2 features a rather simple pipeline. The pipeline comprises five
stages. To speed up execution the LEON2 comprises disjoint instruction and data caches. Figure 4
depicts a block diagram of the LEON2 showing the memory hierarchy.

On a first view, the LEON2 appears to be a fully timing compositional architecture. The processor
neither performs speculative fetching nor does it execute instructions speculatively. The LEON2 does
not possess any branch-prediction mechanism. Instruction are executed and completed in-order. Each
instruction has to visit the five pipeline stages one after another. Thus, an instruction cannot overtake
a slower instruction blocking a certain pipeline stage. This prevents the possibility of a scheduling
anomaly. Upon a timing accident (i.e., a cache miss) the internal pipeline is stalled until the accident
is resolved. Both caches commonly use the LRU replacement policy?, which is known to behave in
a timing compositional manner. It appears that none of the above described timing anomalies can
occur. However, in the following we will show that the LEON2 has a hardware feature that potentially
triggers a timing anomaly (depending on the system state).

Upon a cache miss, the processor needs to load the missing cache line from main memory. Usually,
the whole cache line is loaded and put into the cache. Until the cache line has been filled, the processor
stalls the originating memory access. To reduce latencies, some architectures start loading the cache
line at the requested address directly forwarding the received data to the core (cache streaming).

A similar technique is available in the LEON2 architecture. Each cache line is equipped with
valid bits for each word* inside the cache line. A cache line is either 16 or 32 byte wide and thus

3The LEON2 is synthesized from a VHDL model where different replacements algorithms can be configured. Among
others, MRU is a possible choice.
4 A word is four bytes on the LEON2 hardware architecture.

G. Gebhard

A bler Code: |

Initial Cache Hit:
A: 0x00: ba 0x10

0x04: nop Burst Fetch: Burst Fetch:
0x10 .. Oxlc 0x08 .. Oxlc
.............................. > Y
B: 0x08: call <exit> C >t B ¢)
0x0c: nop
Legend:
Initial Cache Miss: Cache Hit
@3 0x10: nop
s et
; . he Mis:
0x18: ba 0x08 0x00 .. Oxlc sl :
Oxle: nop || e >
(A m Basic Block

Figure 5 LEON?2 timing anomaly: The example demonstrates a timing anomaly present in the LEON2
processor caused by the instruction cache line fill mechanism. The basic blocks A, B, and C reside in the same
cache line. The local best case — assuming a cache hit for the instructions in basic block A — causes the global
worst case execution of the example: The core performs ten instructions fetches. On the contrary, only eight
instruction fetches are issued upon an initial cache miss.

comprises either four or eight valid bits. Upon a data cache miss, solely the requested word is loaded
from memory and put into the corresponding cache line. The instruction cache operates slightly
differently than the data cache. If an instruction fetch misses the code cache, the processor burst-fills
the corresponding cache line starting from the requested instruction till the end of the line. The
processor does not issue wrap-around burst fetches. Consequently, cache lines might only be filled
partially. Furthermore, the processor does not check for existing entries upon burst-filling the cache
line. A timing anomaly finally becomes possible, as the LEON2 processor allows cache line fills to
be interrupted under certain circumstances.

Figure 5 demonstrates how the described cache line fill mechanism can trigger a timing anomaly.

In this example the contents of the cache are assumed to be initially unknown. Each cache line can
hold up to eight instructions. Assuming an initial cache miss, the core fills the whole cache line. All
in all, the processor issues eight instruction fetches. Assuming cache hits for the first two instruction
fetches (basic block A) causes a timing anomaly. The remainder of the target cache line still remains

unknown. Reaching the basic block C, a static analysis then would need to assume a cache miss.

Recall that the processor might abort a cache line fill operation. Thus, the instructions of basic block
C need not necessarily be cached, although cache hits have been assumed for the initial accesses
to the cache line. In this case, the core will fill the upper half of the target cache line. Eventually,
the program branches to the basic block B. Again, a static analysis would need to assume a cache
miss. Because the processor does not check whether burst-fetched instructions are already cached,
the instructions in basic block C' will be fetched again. Altogether the core performs ten fetches
after the initial cache hits. So, the processor performs 20% more memory accesses under the initial
assumption.

Despite the simple structure of the LEON2 a timing anomaly is possible, caused by a rather
simple, average-case performance increasing hardware feature. Obviously, the timing anomaly is a
speculation timing anomaly (see Section 3.5). Fetching subsequent instructions upon an instruction
cache miss, the processor assumes a sequential execution of the program.

The described timing anomaly is k-bounded. It is easy to see that the described effect will
eventually stabilize — a positive side effect of the employed cache replacement policy. Due to space
limitations we can not include the proof in this paper.

The code structure that causes the timing anomaly depicted in Figure 5 is not uncommon.
Analyzing industry LEON2 software, we were able to verify that due to the code structure this

WCET 2010

10

Timing Anomalies Reloaded

phenomenon might occur in real world applications. Due to a non-disclosure agreement we must not
provide further details about this particular software.

6

Conclusion

In this paper we have proved that the MRU replacement policy is prone to domino effects. By this,
we have completed the list of commonly used replacement policies suffering under timing anomalies.
Additionally, we have shown that the LEON2 exhibits a timing anomaly, despite its simple structure.

In the future, we plan to study other hardware architectures that are being used in the automotive

and the aerospace domain. Furthermore, we will check whether known instances of timing anomalies
can be proven to be k-bounded.

—— References

1
2

10

11

12

AEROFLEX GAISLER. http://www.gaisler.com.

Christoph Berg. PLRU cache domino effects. In Frank Mueller, editor, 6¢h Intl. Workshop on Worst-
Case Execution Time (WCET) Analysis, Dresden, number 06902 in Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), July 2006.

Hong-Tai Chou and David J. DeWitt. An evaluation of buffer management strategies for relational
database systems. In VLDB 1985: Proceedings of the 11th international conference on Very Large
Data Bases, pages 127-141. VLDB Endowment, 1985.

Jochen FEisinger, Ilia Polian, Bjorn Becker, Stephan Thesing, Reinhard Wilhelm, and Alexander
Metzner. Automatic identification of timing anomalies for cycle-accurate worst-case execution
time analysis. In DDECS ’06: Proceedings of the 2006 IEEE Design and Diagnostics of Electronic
Circuits and systems, pages 13—18, Washington, DC, USA, 2006. IEEE Computer Society.

Jakob Engblom and Bengt Jonsson. Processor pipelines and their properties for static WCET ana-
lysis. In EMSOFT '02: Proceedings of the Second International Conference on Embedded Software,
pages 334-348, London, UK, 2002. Springer-Verlag.

Raimund Kirner, Albrecht Kadlec, and Peter Puschner. Precise worst-case execution time analysis
for processors with timing anomalies. In Proceedings of the 21st Euromicro Conference on Real-
Time Systems, pages 119-128, Dublin, Ireland, July 2009. IEEE.

Thomas Lundqvist and Per Stenstrom. Timing anomalies in dynamically scheduled micropro-
cessors. In Real-Time Systems Symposium (RTSS), December 1999.

Jan Reineke and Rathijit Sen. Sound and efficient wcet analysis in the presence of timing anom-
alies. In Niklas Holsti, editor, 9th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,
Dagstuhl, Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

Jan Reineke, Bjorn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen Eisinger, and
Bernd Becker. A definition and classification of timing anomalies. In Workshop on Worst-Case
Execution-Time Analysis (WCET), July 2006.

Jorn Schneider. Combined Schedulability and WCET Analysis for Real-Time Operating Systems.
PhD thesis, Saarland University, 2003.

Stephan Thesing. Safe and Precise WCET Determinations by Abstract Interpretation of Pipeline
Models. PhD thesis, Saarland University, 2004.

Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and Christian
Ferdinand. Memory hierarchies, pipelines, and buses for future architectures in time-critical em-
bedded systems. IEEE Transactions on CAD of Integrated Circuits and Systems, 28(7):966-978,
July 20009.

http://www.gaisler.com

	Introduction
	Related Work
	Timing Anomalies
	Formal Definition
	Examples
	Domino Effects
	Challenges for Static Timing Analysis
	Classification of Timing Anomalies
	Classification of Architectures

	MRU Domino Effect
	LEON2 Timing Anomaly
	Conclusion

