
Bounding the Effects of Resource Access
Protocols on Cache Behavior
Enrico Mezzetti1, Marco Panunzio1, and Tullio Vardanega1

1 University of Padua, Department of Pure and Applied Mathematics,
via Trieste, 63 35121 Padua, Italy
{emezzett,panunzio,tullio.vardanega}@math.unipd.it

Abstract
The assumption of task independence has long been consubstantial with the formulation of many
schedulability analysis techniques. That assumption is evidently advantageous for the mathem-
atical formulation of the analysis equations, but ill fit to capture the actual behavior of the
system. Resource sharing is one of the system design dimensions that break the assumption of
task independence. By shaking the very foundations of the real-time analysis theory, the advent
of multicore systems has caused resurgence of interest in resource sharing and synchronization
protocols, and also dawned the fact that the assumption of task independence may be forever
broken. Research in cache-aware schedulability analysis instead has paid very little attention to
the impact that synchronization protocols may have on cache behavior. A blocked task may in
fact incur time penalties similar in kind to those caused by preemption, in that some useful code
or data already loaded in the cache may be evicted while the task is blocked. In this paper we
characterize the sources of cache-related blocking delay (CRBD). We then provide a bound on
the CRBD for three synchronization protocols of interest. The comparison between these bounds
provides striking evidence that an informed choice of the synchronization protocol helps contain
the perturbing effects of blocking on the cache state.

Keywords and phrases Resource access protocols, cache, worst-case response time

Digital Object Identifier 10.4230/OASIcs.WCET.2010.11

1 Introduction

The correctness of schedulability analysis techniques for preemptive real-time systems relies
on the use of safe estimates of both the worst-case execution time (WCET) of the system tasks
and the additional costs due to interrupts and task preemptions. Whereas the determination
of safe and tight WCET bounds is a widely acknowledged and studied problem [14], most
schedulability analysis techniques rest on the simplifying assumption of constant (and
negligible) context-switch costs. Unfortunately, the use of hardware acceleration features
like caches and complex pipelines breaks this assumption for good. With the adoption of
caches, in particular, the context-switch cost is no longer constant as it must account for the
interferences between tasks: interrupt handling and preemption may influence the execution
time of a preempted task. On resumption in fact, the preempted task may incur a number of
additional cache misses as some useful cache contents may have been evicted from the cache.
Cache-aware schedulability analysis techniques [5, 12, 13] aim at including those cache effects
in the schedulability analysis by accounting for the so-called cache-related preemption delay
(CRPD) overheads in the response time of individual tasks.

However, interference caused by tasks is not limited to task preemptions. The assumption
of task independence rarely holds in practice and real systems often include shared resources
which multiple tasks can access in mutual exclusion. Task blocking therefore occurs, which

© E. Mezzetti and M. Panunzio and T. Vardanega;
licensed under Creative Commons License NC-ND

10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010).
Editor: Björn Lisper; pp. 11–22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

12 Bounding the Effects of Resource Access Protocols on Cache Behavior

causes priority inversion to arise, and the need for resource access protocols to bound it. In
response time analysis (RTA) for fixed-priority systems, the time a task is forced to wait for
a shared resource in use by lower priority tasks (the task blocking time) is assumed to be
bounded.

When it comes to cache interference, however, task blocking may cause effects similar in
kind to task preemption, in that some useful code or data blocks already loaded in the cache
may be evicted while the task is being blocked. Very few works [10] consider the additional
time spent in reloading the evicted cache contents, which is referred to as Cache-Related
Blocking Delay (CRBD). Although a task typically suffers from blocking as it shares some
resources with lower priority tasks, different patterns and durations of blocking – and thus
the amplitude of the CRBD – can be induced by the specific resource access policy in use.

We contend that the CRBD cannot be dismissed as a negligible cache-related effect, and
should instead be accounted for by cache-aware schedulability analysis. The contribution of
this paper is a characterization of the effects of blocking on the cache behavior (i.e., CRBD)
in fixed-priority preemptive systems and the formalization of a worst-case bound of the
incurred delay under different resource access protocols. The rest of the paper is organized
as follows: section 2 surveys the state-of-the art approaches to cope with cache interference
between tasks; section 3 provides a formal definition of the CRBD and defines a bound to it
for three resource access protocols of interest; section 4 finally draws some conclusions.

2 Related Work

In general, WCET analysis approaches focus on intra-task cache behavior and, while not
directly accounting for inter-task (i.e., extrinsic) interference, try to include the cache effects
of the latter in schedulability analysis. In this paper we do not consider limited-preemptible
systems, cache partitioning or locking techniques, which may attenuate inter-task interference.

Since task preemption is typically regarded as the main source of interference between
tasks, the inclusion of cache effects in schedulability analysis is generally accomplished by
accounting for an upper bound on the CRPD in the response time of individual tasks. For
example, the RTA iterative equation for task τi has been extended to include cache effects
due to preemptions as follows:

wn+1
i = Ci +Bi +

∑
j∈hp(i)

⌈wni
Tj

⌉
× (Cj + γj) (1)

where wki refers to the time window under analysis, Ci and Bi are respectively the WCET
and maximum blocking time for the analyzed task, and the remaining term represents the
interference from higher priority tasks, which includes the induced CRPD γj [5].

The exact CRPD depends on both the preempted and the preempting tasks since it
captures the time required by the preempted task to reload cache blocks that have been
evicted by the preempting tasks and that will be reused when the preempted task resumes
execution.

Two basic concepts are useful to understand the bounds on cache interference between
tasks:
- Useful Cache Blocks (UCB): cache blocks that may be referenced again before they could

be evicted by other memory blocks, according to the cache replacement policy;
- Used Cache Blocks (UCB): cache blocks that may be accessed during the execution of

the preempting task.

E. Mezzetti, M. Panunzio, T. Vardanega 13

Earlier approaches [5, 6] that relied on UCB or UCB alone to compute the CRPD
bound were overly conservative as neither all UCB would be always evicted nor the UCB
would necessarily evict useful blocks. Less pessimistic approaches have been suggested in
[7, 13, 12], which account for both UCB and UCB to compute the CRPD bound. Moreover,
acknowledging the fact that a cache block may not be useful (or used) along every program
path, Negi et al. [9] introduce the more elaborate notions of Cache Utility Vector (CUV) and
Final Usage Vector (FUV) to capture all possible cache states along the different execution
paths of both the preempted and the preempting tasks. A refinement in UCB computation,
combined with WCET analysis, has been proposed in [1]. More recently, with respect to
LRU set-associative caches, the idea of resilience has been introduced [2] to exclude from the
CRPD computation those UCB that can be guaranteed to persist in the cache, thanks to
the specific replacement policy.

The term Bi in Equation 1 refers to an upper bound to the blocking time suffered by task
τi due to resource contention. As observed in [10], similarly to the interference from higher
priority tasks, the interference from lower priority tasks contending for shared resources
should be considered to predict cache behavior. The effects of blocking are similar to those
related to the CRPD since a lower priority task may evict some useful cache blocks of a
higher priority task, which thus incurs some CRBD.

The work in [10] extends previous work by the same authors on fully-preemptive and
non-preemptive task regions, to cope with shared resources under the Priority Inheritance
Protocol. They use a complex framework that exploits task phasing to account for both
CRPD and CRBD in the response time of a task. The computation of the CRBD (limited
to data cache) employs the same concepts as used to compute the CRPD. In contrast to [10],
in this paper we focus on computing an upper bound on the CRBD under different protocols,
rather than on its inclusion in the worst-case response time analysis.

3 Cache-Related Blocking Delay

Shared resources typically need to be accessed in mutual exclusion. When a high priority
task needs to access a resource that is already locked by a lower priority task, it cannot
proceed until the lower priority task completes execution inside the resource and relinquishes
its lock. Whenever a lower priority task prevents the execution of a higher priority task,
the system experiences potentially unbounded priority inversion. This phenomenon can
be bounded with the use of a resource access protocol. In this paper we focus on three
well-known protocols: the Priority Inheritance Protocol (PIP), the Priority Ceiling Protocol
(PCP) and the Immediate Ceiling Protocol (ICP).

In a fixed-priority preemptive system with shared resources equipped with a synchroniza-
tion protocol, three different kinds of blocking may arise [8]:
- Direct blocking occurs when a higher priority task requests a shared resource held by a

lower priority task; another form of direct blocking, transitive blocking1, occurs when
nested resources access is permitted, and a blocked task transitively suffers from the
blocking incurred by the blocking task itself.

- Inheritance or push-through blocking occurs for a task τm that does not need any shared
resource, when a lower priority task τj blocks a task τi with priority π(τi) > π(τm) and
executes at a priority higher than π(τm) due to some priority inheritance rule.

1 Also referred to as chain blocking.

WCET 2010

14 Bounding the Effects of Resource Access Protocols on Cache Behavior

Figure 1 Example of CRBD.

- Avoidance blocking occurs when a task τi is denied access to an available resource to
prevent deadlock.

From the standpoint of caches, the execution of the blocking task inside a critical section
may cause the eviction of useful cache contents that would have later been reused by the
blocked task. A high priority task will thus incur a time penalty (or blocking delay) because
of the additional cache misses, regardless of the type of suffered blocking.

The scenario depicted in Figure 1 illustrates the different types of blocking under the
PIP and shows how lower priority tasks may affect the cache content of higher priority tasks.
In particular, task τ1 and τ3 suffer direct blocking, while task τ2 suffers inheritance blocking.
Assume that τ1 has loaded four cache blocks that would be shortly reused (i.e., the shaded
memory addresses in Figure 1) in a small direct mapped instruction cache. Unfortunately,
task τ1 is blocked when trying to access shared resource R currently held by τ3, which in
turns is blocked by τ4 on the shared resource S. While τ3 has no effect on the useful cache
content of τ1, the code executed by τ4 in its critical section accessing S maps exactly to the
same cache sets and evicts all the four useful blocks of τ1. When τ1 resumes, it will incur a
CRBD of four additional cache misses.

A subtler penalty is experienced by task τ2 due to the execution of τ3: whereas it does
not share any resource with other tasks, τ2 is blocked due to priority inheritance. In the
example, the useful cache content of τ2 is evicted during the execution of τ3 inside its critical
region. It is worth noting that τ2 would not have suffered any interference (CRPD) due to
the higher priority task τ1.

Hence, blocking does not only affect the response time of a task as a single worst-case
factor independent of the task itself, but it may also directly affect its execution time. This
is so because priority inversion, even if bounded, causes a cache-related delay akin to that
caused by preemption. Similarly to CRPD, the amount of delay potentially incurred by a
task on a single blocking event depends on both the cache content of the blocked task and
the execution of the blocking task.

The actual CRBD is thus a function of the UCB (cf. Section 2) of the blocked tasks and
the UCB of the blocking task. In contrast to CRPD, however, the UCB are not determined
by the whole execution of the blocking task since the induced delay can stem just from
the execution inside critical sections. Furthermore, in case of direct (and some forms of
avoidance) blocking, also the UCB of the blocked task are limited to those determined at
the beginning of the critical section at which the task is blocked.

Although we can expect the CRBD to be small for single critical sections, its relevance
increases as soon as a task may experience several and potentially different blocking events
during the same activation. The CRBD arising from such blocking events cannot be

E. Mezzetti, M. Panunzio, T. Vardanega 15

disregarded during schedulability analysis as its cumulative effect may invalidate the analysis
results.

We performed some initial experiments to gage by static analysis the impact of the CRBD
on the instruction cache performance of blocked tasks. We implemented a small test case
made up of three tasks: τ1 and τ3, reading and/or writing a shared resource, and a notionally
independent task τ2, taken from the Mälardalen benchmark2. We extended the Heptane
tool from IRISA/Rennes to compute the number of additional cache misses incurred by τ1
and τ2 owing to direct blocking and indirect blocking respectively. With a 4 KB, 32 B lines,
direct-mapped instruction cache, under PIP, task τ1, whose stand-alone cache performance
shows 30 misses over 1011 cache accesses, may suffer 8 additional cache misses from the
CRPD directly induced by τ3. Task τ2 may incur 3 further cache misses against a stand-alone
cache performance of 9 misses over 54 accesses, when the impact of inheritance blocking is
not considered3.

The CRBD potentially suffered from a task depends on the actual resource access protocol
in use, as it determines both the possible types of blocking incurred and the maximum
number of blocking events suffered for each activation.

In principle, the CRBD problem could be transformed into a CRPD problem by modeling
the critical sections as tasks that may preempt higher priority tasks, thus exploiting the
intrinsic similarities between the two phenomena. However, some specialization should still
be needed to capture the specificity of blocking as well as of the resource access protocol
in force, thus boosting the complexity of the analysis approach considerably. For example,
preemption points should be predefined to permit a sound computation of UCB in case of
direct blocking. Similarly, one may need to account for the transitivity of blocking depending
on the resource access protocols in use. In our approach, instead, we solely focus on the
computation of UCB and UCB and exploit sound theoretical bounds [11] on the number of
blocking events to provide an upper bound on the CRBD.

In the following we first provide a formal characterization of the CRBD potentially
incurred by a task; and then we exploit well-known bounds on the number of blocking events
suffered by a task, under different resource access protocols to observe that the way in which
the worst-case CRBD can affect the execution time of tasks is highly related to the choice of
protocol.

3.1 Bounding the Cache-Related Blocking Delay
We assume total ordering between tasks such that i < j if π(τi) > π(τj): hence τ0 is the
highest priority task. In our model a task τi self-suspends only at the end of every execution
of its jobs, and may access a shared resource R ∈ SRi, where SRi identifies the subset of
the system resources (SR) that get accessed by τi.

It is worth noting that from a finer-grained point of view, acquiring (respectively releasing)
a shared resource corresponds to entering (exiting) a critical section where the resource
is locked (unlocked). Since a task τi may access a shared resource R through different
critical sections, we define csRi to be the set of critical sections in τi accessing the resource
R ∈ SRi. Similarly, csRi,k identifies the kth critical section in τi accessing the resource
R ∈ SRi. In any case, we assume critical sections to be properly nested so that they
can never overlap. For every pair of critical sections csi,k, csi,z in τi either csi,k ⊂ csi,z,

2 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
3 Furthermore, in this case, no additional misses originate from preemption by τ1.

WCET 2010

16 Bounding the Effects of Resource Access Protocols on Cache Behavior

csi,k ⊃ csi,z or csi,k ∩ csi,z = ∅.
The determination of the CRBD incurred by a task exploits similar concepts as when

computing the CRPD, involving the computation of UCB and UCB for blocked and blocking
task respectively. First, we recall that the set of UCB and UCB for a task τi are dependent
on each specific node n in the Control-Flow Graph (CFG) of τi, where each node represents
a basic block. In fact, UCB and UCB can be safely computed at basic block level, as proved
in [6].

According to [7, 13, 12] the UCBni for a task τi at node n can be computed as the
intersection between the sets of ReachingBlocks (RB) and LiveBlocks (LB) at node n where
RB is the set of cache blocks potentially cached at node N , whereas LB is the set of blocks
that could potentially be reused in the successors of n. Intuitively, instead, UCBni can be
computed as RBi(n). Thus, UCBni = RBi(n)

⋂
LBi(n) and UCBni = RBi(n).

In case of blocking, we are interested in determining UCB and UCB for a task τi blocked
on a critical section csRi,k. For example, let us consider a simple case of direct blocking
between two tasks. Task τi is blocked when trying to access critical section csRi,k because a
lower-priority task τj is executing inside a critical section cs ∈ csRj accessing the same shared
resource R. In this case, the set of UCB for the blocked task τi is to be computed with
respect to the node nR trying to enter csRi,k.

UCBRi,k = RBi(nR) ∩ LBi(nR), where nR is the entry node of csRi,k

The set of UCB for the blocking task τj must be computed with respect to the critical
section csRj,h it is executing within, as only the RBs in csRj,h can affect the cache state of
τi. For this reason, we extend the notion of RB to address intervals of nodes in the CFG
instead of single nodes.

Given an interval [n1, n2] = I ∈ CFG(τi), we define RBi(I) as the contribution to
RB(n2) of all possible paths in CGF (τi) from node n1 to n2. Accordingly,

UCBj(csRj,h) = RBj(csRj,h) = RBj([first_node, last_node]csR
j,h

)

In the example, the execution of τj inside csRj,h may evict some useful cache blocks that τi
may have loaded in the cache before its attempt to enter csRi,k. The incurred CRBD can be
computed as a function of the UCBRi,k and UCBRj,h terms just defined:

CRBD = ⊗σ
(
UCBRi,k, UCBj(csRj,h)

)
×miss penalty (2)

where the ⊗σ operator accounts for the actual cache associativity and replacement policy
in combining the information on useful and used cache blocks, cf. [13, 1]. For example,
for direct-mapped caches, ⊗DM (UCB,UCB) will include those cache sets which at least
one cache block in both UCB and UCB is mapped to (set intersection). For LRU n-way
set-associative caches, instead, the ⊗LRU operator must account for the number of additional
cache misses for each cache set. In case of a non-empty UCB set, those misses are bounded
by the minimum between the cache associativity (n) and the number of UCB mapping to
that cache set [4].

In case τi and τj share more than one resource, we can generalize Equation 2 to determine
an upper bound on the delay suffered by τi, due to a single direct blocking by τj for any
critical section accessing any shared resource as follows:

CRBDi,j ≤ max
R∈SRi,k∈[1,|csR

i
|]

cs∈csR
j

{
⊗σ
(
UCBRi,k, UCBj(cs)

)}
×miss penalty (3)

E. Mezzetti, M. Panunzio, T. Vardanega 17

However, Equation 3 just holds in this simple case where neither transitive direct blocking
nor other types of blocking are taken into account. In terms of CRBD, determining the
effects of inheritance blocking is much more complex, as the computation of UCB for the
blocked task cannot make any simplifying assumption on when the task actually gets blocked.

A more comprehensive bound on the CRBD incurred by a task can be computed by
leveraging on the bounds that a specific resource access protocol places on blocking. An
upper bound on the worst-case number of blocking events incurred by a task is given in
[11, 3] for each protocol. That bound is then combined with the worst-case duration of each
critical section to derive a bound on the blocking time potentially suffered by a task. Those
bounds typically rely on the notion of potentially blocking critical sections to account for
any type of blocking that may occur under the protocol itself. To this end, βi,j is defined in
[11] as the set of critical sections of a lower-priority task τj which can block τi in any way.
The bounds on the number of blocking events and blocking time exploit the β∗i,j set which
identifies the set of outermost critical sections of τj that can block τi. More formally:

β∗i,j = {(csj,k|csj,k ∈ βi,j) ∧ (¬∃csj,m ∈ βi,j , csj,k ⊂ csj,m)}

We will exploit the same concepts, with the only difference that we are not interested in the
critical section that may incur the maximum blocking time since we focus on the CRBD,
which is independent of the duration of the critical section. Instead, we are interested in the
critical section csj,k ∈ β∗i,j which causes the eviction of the greatest number of useful blocks
for the blocked task, for all lower-priority tasks τj .

In the following, we will combine given bounds on the number of blocking events with
the same concepts as used in CRPD analysis to provide a safe upper bound on the CRBD
under different protocols.

3.2 CRBD under the Priority Inheritance Protocol
When access to shared resources is managed with PIP [11], whenever a task that holds the
lock of a resource blocks a higher-priority task, it inherits the priority of the highest-priority
task it is blocking4. When a task releases the lock of a resource, its priority is lowered to the
highest inherited priority value5 [15].

PIP is interesting as it does bound priority inversion and also does not require any
knowledge on the system’s tasks and their priorities, since the priority value to inherit is
determined dynamically. Unfortunately, PIP does not prevent deadlock (which may occur
in case of nested critical sections) and a task can be blocked multiple times during a single
activation. In fact, a task τi can be blocked for the duration of at most min(n,m) outermost
critical sections, where n is the number of lower-priority tasks that may block τi and m is
the number of semaphores6 that can be used to block τi. In the following we re-elaborate
both bounds from the standpoint of the CRBD.

3.2.1 Bound on Lower Priority Tasks
Under PIP, a high priority task τH can be blocked by a lower priority task τL for at most
the duration of one critical section of β∗H,L. Therefore, given a task τi for which there are

4 This occurs to transitively inherit priority in case of chain blocking.
5 The original protocol restores the priority to the value inherited before entering the critical section,

which is incorrect.
6 A semaphore corresponds to a shared resource since we assume each resource to be guarded by a binary

semaphore.

WCET 2010

18 Bounding the Effects of Resource Access Protocols on Cache Behavior

n lower priority tasks {τi+1, . . . , τi+n}, τi can be blocked for at most the duration of one
critical section in each β∗i,k, i+ 1 ≤ k ≤ i+ n [11].

If we assume that all shared resources and critical sections are statically known, we can
define a resource access graph and table, similar to that shown in Figure 2.

P Q R
τ0 csP0,1 csR0,1

τ1 csP1,1 csQ1,1

τ2 csQ2,1 csR2,1

csQ2,2

Figure 2 Resource graph and corresponding resource access table.

Note that the critical section cs1,1 of resource P performs a nested access to critical
section cs1,1 of resource Q. In this case, the βi,j sets derived from Table 2 are as follows:
β0,1 = {csP1,1, cs

Q
1,1} due to resource nesting, β1,2 = {csQ2,1, cs

Q
2,2, cs

R
2,1} (by inheritance

blocking), and β0,2 = {csR2,1, cs
Q
2,1, cs

Q
2,2} as τ2 could transitively block τ0 by blocking τ1.

The β∗i,j sets, instead, removes redundant innermost critical sections; thus, for example,
β∗0,1 = {csP1,1}.

As discussed in Section 3.1, computing the UCB of the blocked task τi in case of
inheritance blocking needs to consider any possible node in CFG(τi), similarly to task
preemption. To avoid the overestimation in considering all possible nodes, we will threat
inheritance blocking separately.

An upper bound on the CRBD in case of direct blocking of τi due to τj is the maximum
⊗σ applied to UCB and UCB for any resource accessed by τi, every critical section in τi
accessing that resource and every outermost critical section of τj potentially blocking τi.
Hence, it can be formalized as:

CRBDbase
i,j ≤ max

R∈SRi,k∈[1,|csR
i
|]

cs∈β∗
i,j

{
⊗σ
(
UCBRi,k, UCBj(cs)

)}
×miss penalty (4)

With regard to inheritance blocking, we need to account for the most penalizing blocking point
for τi (i.e., node in the CFG). To this end we define β̂i,j , a subset of β∗i,j including all critical
sections in τj which can block τi due to inheritance blocking. Thus, β̂i,j = {cs|cs ∈ β∗i,j ∧ cs
can block τi due to inheritance blocking}. We can now compute the maximum CRBD
incurred by τi due to inheritance blocking by τj as follows:

CRBDinherit
i,j ≤ max

cs∈β̂i,j
n∈CFG(τi)

{
⊗σ
(
UCBni , UCBj(cs)

)}
×miss penalty (5)

However, since a lower priority task τj can block τi because it is executing inside at most one
cs ∈ β∗i,j , each τj can induce solely one of either inheritance or "non-inheritance" blocking on
τi. Hence, we can safely account for the worst-case blocking (inheritance or not), that is:

CRBDi ≤
∑
j>i

max
(
CRBDbase

i,j , CRBDinherit
i,j

)
(6)

E. Mezzetti, M. Panunzio, T. Vardanega 19

3.2.2 Bound on Semaphores
A second upper bound on blocking, based on the number of semaphores potentially blocking
a task under PIP is given in [11]. Under PIP, if there are m semaphores which can block
task τi, then τi can be blocked at most m times, as it can be blocked at most by one critical
section for each potentially blocking semaphore. Since we assume that each semaphore
corresponds exactly to a shared resource, then τi can be blocked at most by one critical
section for each potentially blocking resource.

Similarly to the previous case, [11] defines ξi,j,k as the set of critical sections of a lower-
priority task τj guarded by a semaphore Sk and which can block τi (due to any type of
blocking). Subsequently, ξ∗i,j,k identifies the set of all potentially blocking outermost critical
sections guarded by Sk, that is ξ∗i,j,k = {csSkj,m|cs

Sk
j,m ∈ β∗i,j}.

For example, recalling Table 2, ξ∗0,1,P = {csP1,1}, ξ∗0,1,Q = {csQ1,1}, ξ∗0,2,R = {csR2,1} and
ξ∗1,·,R = {csR2,1} (inheritance). Similarly to the first bound, we define ξ̂i,j,k, a subset of
ξ∗i,j,k including all critical sections in ξ∗i,j,k guarded by the semaphore Sk which can block τi
through inheritance blocking. Thus, ξ̂i,j,k = {cs|cs ∈ ξ∗i,j,k∧cs can block τi due to inheritance
blocking} can be used to separately account for the direct and inheritance cases. First we
provide a means to compute the maximum CRBD for each resource that accounts for any
lower priority task and any cs in those tasks that may incur both forms of blocking.

CRBDbase
i,R ≤ max

j>i,k∈[1,|csR
i
|]

cs∈ξ∗
i,j,R

{
⊗σ
(
UCBRi,k, UCBj(cs)

)}
×miss penalty (7)

CRBDinherit
i,R ≤ max

n∈CGF (τi)
j>i

cs∈ξ̂i,j,R

{
⊗σ
(
UCBni , UCBj(cs)

)}
×miss penalty (8)

Again, since task τi can be blocked at most once for each semaphore (resource), we can
compute a safe upper bound on the blocking delay by summing the |S| worst-case penalties
over the S ⊂ SR semaphores (resources) potentially blocking τi:

CRBDi ≤
∑
R∈S

max
(
CRBDbase

i,R , CRBDinherit
i,R

)
(9)

The actual bound on the CRBD under PIP is then determined by the minimum between the
bounds on lower priority tasks and semaphores (i.e., Equations 6 and 9).

3.3 CRBD under the Priority Ceiling Protocol
With PCP [11], each resource is assigned a ceiling priority which is set to at least the priority
value of the highest-priority task that uses that resource. Since ceiling priorities are assigned
statically, all the tasks of the system and their priority must be known statically. For a task
τi to be able to access the critical section of a resource, its current priority must be higher
than the ceiling priority of any currently locked resource (i.e. semaphore). Otherwise, the
task that blocks τi inherits the ceiling priority of the resource it is locking.

PCP introduces avoidance blocking: a task, when trying to access a resource that is
currently available, is blocked if its current priority is not higher than the highest ceiling
of all semaphores currently locked by other tasks. This protocol rule is used to warrant
the absence of deadlock. Furthermore, transitive blocking is not possible, a task τi can be
blocked at most once per activation, and the duration of the priority inversion is minimized.

WCET 2010

20 Bounding the Effects of Resource Access Protocols on Cache Behavior

Similarly to PIP, a bound on the delay incurred by the effects of blocking on the cache
state must account for inheritance blocking separately from direct and avoidance blocking as
only the latter ones are triggered when a task attempts to access a resource. Provided that
the computation of the β∗i,j set includes all critical sections of τj that may block7 τi due to
direct, inheritance or avoidance blocking, an upper bound for the CRPD can be computed in
a similar way to the first bound on PIP. The CRBD suffered by a task τi can be bounded by
the following equation:

CRBDi ≤ max
j>i

{
max

(
CRBDbase

i,j , CRBDinherit
i,j

)}
(10)

where CRBDbase
i,j and CRBDinherit

i,j are exactly as defined in the PIP case (Eq. 4 and 5
respectively). As opposed to the PIP case, we are interested just in the most penalizing
critical section among all critical sections and all lower-priority tasks, due to Theorem 12 in
[11].

3.4 CRBD under the Immediate Ceiling Priority Protocol
The Immediate Ceiling Priority Protocol (ICPP) (direct derivative of Baker’s stack resource
policy [3]) is similar to PCP, as ceiling priorities are assigned to resources with the same
rules. Under ICPP however, a task that enters in a critical section always inherits the ceiling
priority, while under PCP only when it is blocking a higher-priority task; therefore all tasks
with a priority lower than or equal to the ceiling priority cannot be scheduled until the
resource has been released. ICPP retains the advantages of PCP: absence of deadlock, tasks
can block at most once during each activation and the blocking duration is minimized.

The maximum blocking time for a task τi is bounded by the longest outermost critical
section executed by a lower-priority task τj using a resource with a ceiling priority greater
than or equal to the priority of τi.

More importantly from the CRBD standpoint, the rules of ICPP prevent any disturbing
effects on the cache state of the blocked task. In fact, if blocking occurs, it is always before
the affected job begins execution; this implies that cache analysis does not need to account
for any effect and can continue to assume the worst-case initial cache state (empty or chaos
state, depending on the analysis approach). More formally: CRBDi = 0, ∀τi.

3.5 Including the CRBD in Response Time Analysis
A safe bound βi on the CRBD suffered from each task can be straightforwardly included in
the iterative equation of response time analysis. In contrast to CRPD, the delay incurred by
blocking does not need to propagate to lower priority tasks since it is separately considered
for each task:

wn+1
i = Ci +Bi + βi +

∑
j∈hp(i)

⌈wni
Tj

⌉
× (Cj + γj) (11)

where both Bi and βi depend on the resource access protocol of choice. It is worth noting
that the worst-case blocking time and CRBD are not guaranteed to occur altogether. In
principle, it could be possible to tighten the computation by accounting for the maximum
co-occurrence of Bi and βi.

7 Note that the ceiling priority of the resource must be considered when determining potentially blocking
critical sections.

E. Mezzetti, M. Panunzio, T. Vardanega 21

As seed for reflection, we note that when it comes to more complex analysis approaches,
like e.g., resilience analysis for set-associative caches [2], computing the βi and γj terms
separately may invalidate the CRPD analysis result, as blocking may incur additional accesses
to a cache set.

The comparison of the bounds obtained for the protocols addressed in this paper, though
limitedly to their bounds on lower priority tasks8, shows that ICP is by far preferable with
respect to interference on cache as it does not incur any CRBD. The CRBD bounds we
provided are pessimistic. Tighter bounds could be computed by straightforwardly extending
our approach to a more precise representation for UCB and UCB like in [9] or by taking
advantage, for example, of task phasing.

4 Conclusion

In this paper we contended that the cache effects caused by the use of synchronization
protocols to arbitrate the access to shared resources cannot be dismissed as negligible. Cache
contents that are useful to a task of interest may in fact be evicted by lower-priority tasks
when the task is blocked. Moreover, different protocols may incur different effects on the
task state of the blocked task.

We provided a (pessimistic) bound on the cache-related blocking delay for two well-known
protocols: the Priority Inheritance Protocol and the Priority Ceiling Protocol. We also
showed that the use of the Immediate Ceiling Protocol does not induce any CRBD, as tasks
can be blocked only once per activation and prior to their execution after release.

Although the quantitative effect of the CRBD is not likely to compare with the CRPD, it
should not be dismissed as irrelevant: it is arguably important to include it in schedulability
analysis that aims to accuracy. We also contend that the cache-related impact should also
be contemplated as a distinct evaluation criterion for the selection of the resource access
protocol to adopt in a real-time system.

In future work, we plan to define the integer linear problems required for the calculation
of the CRBD bounds provided herein, and perform a quantitative estimation of the impact
of the CRBD on a representative application case.

Acknowledgements The authors wish to acknowledge the advice of the anonymous review-
ers, which helped improve the initial version of this paper, and the support by Damien Hardy
at IRISA/Rennes on the Heptane tool.

8 The bounds that PIP places on semaphores is not straightforwardly comparable with the bound on
PCP.

WCET 2010

22 Bounding the Effects of Resource Access Protocols on Cache Behavior

References
1 S. Altmeyer and C. Burguiere. A new notion of useful cache block to improve the bounds of

cache-related preemption delay. In Proc. of the 21st Euromicro Conference on Real-Time
Systems (ECRTS), 2009.

2 Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience analysis: Tightening the
crpd bound for set-associative caches. In LCTES ’10: Proceedings of the ACM SIG-
PLAN/SIGBED 2010 conference on Languages, compilers, and tools for embedded systems,
pages 153–162. ACM, 2010.

3 T. P. Baker. Stack-based Scheduling for Realtime Processes. Real-Time Systems, 3(1):67–
99, 1991.

4 Claire Burguière, Jan Reineke, and Sebastian Altmeyer. Cache-related preemption delay
computation for set-associative caches - pitfalls and solutions. In Proc. of the 9th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis, 2009.

5 J.V. Busquets-Mataix and A. Wellings. Adding Instruction Cache Effect to Schedulability
Analysis of Preemptive Real-Time Systems. In Proc. of the 2nd Real-time Technology and
Application Symposium, 1996.

6 C. Lee, J. Hahn, Y. Seo, S.L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S. Kim.
Analysis of cache-related preemption delay in fixed-priority preemptive scheduling. IEEE
Transactions on Computers, 47(6):700–713, 1998.

7 C. G. Lee, K. Lee, J. Hahn, Y. Seo, S. L. Min, R. Ha, S. Hong, C. Park, M. Lee, and C. S.
Kim. Bounding cache-related preemption delay for real-time systems. IEEE Transaction
on Software Engineering, 27(9):805–826, 2001.

8 Jane W. S. Liu. Real-Time Systems. Prentice Hall PTR, 2000.
9 Hemendra Singh Negi, Tulika Mitra, and Abhik Roychoudhury. Accurate estimation of

cache-related preemption delay. In CODES+ISSS ’03: Proceedings of the 1st IEEE/ACM/I-
FIP international conference on Hardware/software codesign and system synthesis, pages
201–206. ACM, 2003.

10 H. Ramaprasad and F. Mueller. Bounding worst-case response time for tasks under PIP.
In Proc. of the Real-Time and Embedded Technology and Applications Symposium, 2009.

11 Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority Inheritance Protocols:
An Approach to Real-Time Synchronization. IEEE Trans. Computers, 39(9):1175–1185,
1990.

12 J. Staschulat and R. Ernst. Scalable precision cache analysis for preemptive scheduling. In
Proc. of the 2005 ACM SIGPLAN/SIGBED conference on Languages, 2005.

13 Y. Tan and V. Mooney. Integrated intra- and inter-task cache analysis for preemptive
multi-tasking real-time systems. In Proc. of the 8th International Workshop on Software
and Compilers for Embedded Systems (SCOPES), 2004.

14 R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G.Bernat,
C. Ferdinand, R.Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, G. Staschulat, and
P. Stenströem. The worst-case execution time problem: overview of methods and survey
of tools. Trans. on Embedded Computing Systems, 7(3):1–53, 2008.

15 V. Yodaiken. Against Priority Inheritance. Technical report, Finite State Machine Labs,
2004.

	Introduction
	Related Work
	Cache-Related Blocking Delay
	Bounding the Cache-Related Blocking Delay
	CRBD under the Priority Inheritance Protocol
	Bound on Lower Priority Tasks
	Bound on Semaphores

	CRBD under the Priority Ceiling Protocol
	CRBD under the Immediate Ceiling Priority Protocol
	Including the CRBD in Response Time Analysis

	Conclusion

