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—— Abstract

In this paper, we propose a modification to the Boykov-Kolmogorov maximum flow algorithm [2]
in order to make the algorithm preserve the topology of an initial interface. This algorithm is
being widely used in computer vision and image processing fields for its efficiency and speed when
dealing with problems such as graph cut based image segmentation. Using our modification we
are able to incorporate a topology prior into the algorithm allowing us to apply it in situations
in which the inherent topological flexibility of graph cuts is inconvenient (e.g., biomedical image
segmentation). Our approach exploits the simple point concept from digital geometry and is
simpler and more straightforward to implement than previously introduced methods [14]. Due to
the NP-completeness of the topology preserving problem our algorithm is only an approximation
and is initialization dependent. However, promising results are demonstrated on graph cut based
segmentation of both synthetic and real image data.
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1 Introduction

Modern approaches to image segmentation often formulate the problem in terms of minim-
ization of a suitable energy functional. Such methods have many benefits. Most notably,
mathematically well-founded algorithms can be used to solve the originally vaguely specified
task. Among the most popular energy minimization algorithms for image segmentation
belong the level set framework [11] and recently also the graph cut framework [1, 3] both
having their pros and cons depending on a particular situation. In this paper, we focus on
the latter one.

Graph cuts, originally developed as an elegant tool for interactive object cutout, quickly
emerged as a general technique for solving diverse computer vision problems such as image
restoration or stereo [3]. In some sense, they can be seen as a combinatorial counterpart
of the level set method [1]. Likewise level sets they are applicable to a wide range of
energy functions [9], directly extensible to N-dimensional space, topologically flexible and
with implicit boundary representation. Moreover, they offer integration of various types
of regional or geometric constraints and the ability to reach global optima in polynomial
time [2]. In this framework, the input image is converted to a weighted graph with the
energy function encoded in the edge weights. Subsequently, a minimum st—cut [5] is found,
effectively yielding a global minimum of the energy. Typically, maximum flow algorithms are
used to find a minimum cut in the graph based on the Ford-Fulkerson max-flow/min-cut
duality theorem [5].

? Ondrej Danék and'Martin Maéka;.

G licensed under Creative Commons License NC-ND
Sixth Doctoral Workshop on Math. and Eng. Methods in Computer Science (MEMICS’10)—Selected Papers.
Editors: L. Matyska, M. Kozubek, T. Vojnar, P. Zemcik, D. Antos; pp. 19-25

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/OASIcs.MEMICS.2010.19
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

20

A Simple Topology Preserving Max-Flow Algorithm

The aforementioned topological flexibility of graph cuts is not always desirable. There
are situations in which the number of objects in the image and their topology is known in
advance, e.g., in biomedical image segmentation only one object topologically equivalent
to a sphere should be segmented during brain extraction. Topology is also an important
prior for object tracking where objects are not allowed to split or join. The topology
preserving problem has been studied extensively in the context of level sets [7]. To the best
of our knowledge, the literature is not as rich in the graph cut universe with the work of
Zeng et al. [14] being the only relevant. In their work, the topology preservation is embedded
into the maximum flow computation. Unfortunately, the algorithm is rather complicated
with description missing many important details’. They also showed that the topology
preserving problem is NP-complete so the devised algorithm no longer guarantees to reach a
global minimum. A partially similar problem is addressed also in [12]. Another option of
enforcing the topology preservation is through integration of hard constraints into the energy
function itself. However, this may involve considerable amount of user interaction.

In this paper, we propose a new topology preserving maximum flow algorithm for graph
cut based image segmentation. Similarly to [14] our algorithm is a modification of the
Boykov-Kolmogorov algorithm [2] in a way that guarantees that the output of the algorithm
conforms (in the topological sense) to a given initial interface. It is achieved by making
sure that the topology of the initialization is preserved during label changes throughout
the computation. We borrow several ideas from [14], however, our method is simpler and
generally less error-prone implementation-wise. Nevertheless, it is still an approximation,
i.e., only locally optimal solution is produced. We demonstrate the potential of the proposed
method on graph cut based segmentation of both synthetic and real image data using the
Chan-Vese segmentation model [4, 13].

This paper is organized as follows. In Section 2 a brief review of the Boykov-Kolmogorov
maximum flow algorithm and simple point concept from digital geometry is given. The
proposed modifications, complexity guarantees and differences from [14] are described in
Section 3. Section 4 contains experimental results of the devised algorithm. We conclude the
paper in Section 5.

2 Preliminaries

2.1 The Boykov-Kolmogorov Algorithm

The maximum flow algorithm introduced by Boykov and Kolmogorov is one of the most
popular when dealing with graph cut based image processing [2].

» Definition 1. Let G = (V, £) denote a directed graph with two distinguished nodes s and
t, where every edge (u,v) € £ is assigned a non-negative real valued capacity c,,. A flow is
a mapping f : £ — R™T. It is called feasible if:

1. V(u,v) € € fur < cyw (capacity constraint)

2. Yu e V\{s,t}: 32, nee fuv = 2 (w,u)ee fwu (flow conservation rule)

The flow value |f] is defined as Z(S,U) ce fsv and the maximum flow problem is a problem of
finding a feasible flow of a maximum value.

To find a maximum flow the Boykov-Kolmogorov algorithm (BKA) uses the augmenting
path strategy [5]. This strategy involves iterative searching of a non-saturated path from s

L The author provided implementation has stability issues and the source code seems to perform operations
not mentioned in the paper.
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Figure 1 Boykov-Kolmogorov maximum flow algorithm scheme with active, passive and free
nodes. An augmenting path (bold) is found when the two dynamic trees touch.

to t in the residual graph and pushing as much flow as possible along this path. A residual
graph is obtained from G by taking the residual capacity cf, = cu, — fus as the edge capacity
for all (u,v) € £. The popularity and efficiency of BKA stems from the way augmenting
paths are searched. It grows two dynamic trees from the terminal nodes s and ¢ and an
augmenting path is found when the two trees touch. This stage is called tree growth. In
the augmentation stage the flow is sent along this path. This step may break the trees into
forests (edges become saturated). Subsequently, adoption stage is performed to restore the

two trees and the whole process is repeated. A visualization of BKA is depicted in Fig. 1.

For a detailed description, please refer to [2].

Obtaining the requisite minimum cut is straightforward after the maximum flow has
been found. Due to the min-cut/max-flow duality [5] the minimum cut is determined by the
saturated edges (i.e., edges with zero residual capacity) and the cost of the cut is the same
as the maximum flow value. In Section 3 we explain how these principles are exploited in
image segmentation.

2.2 Digital Topology and Simple Point Concept

Digital topology is a subfield of digital geometry that deals with topological properties of
digital (binary) images/objects, i.e., spatial properties such as connectedness (or number of
objects and holes) that are invariant under certain kind of transformations (e.g., continuous
deformations involving stretching, etc.) [8]. In this context, a simple point refers to a
point whose switching from background to foreground or vice versa does not change the
topology of the digital image. It is one of the fundamental ideas allowing topology preserving
deformations of digital images. A fast characterization of simple points in 2D has been
introduced by Klette and Rosenfeld [8]. Their method considers the number of connected
background and foreground components in the 8-neighbourhood of the investigated point
and can be efficiently implemented using a look-up table. An extension to 3D employing a
breadth-first search in a small graph has been proposed in [10].

3 Topology Preserving Algorithm

In traditional graph cut based image segmentation a graph is created from the image where
each node in the graph corresponds to an image voxel (plus the two terminal nodes s and ¢
connected to all non-terminal nodes are added) and with the energy encoded in the edge
weights [1]. A maximum flow algorithm is then used to find the minimum st-cut effectively

21

MEMICS’10



22

A Simple Topology Preserving Max-Flow Algorithm

yielding a global minimum of the energy. The final node labels are determined by the
minimum cut partitioning. When using BKA this is equivalent to a so-called tree membership,
i.e., the node/pixel is implicitly labelled as background or foreground depending on whether
it lies in the s or t tree, respectively, after the computation has finished.

The described method does not impose any topology constraints on the result. In general,
the final segmentation may contain arbitrary number of objects, holes, etc. To avoid this (for
the reasons given in the introduction) we modify BKA to handle labels and topology changes
explicitly. The modifications to particular stages of BKA are presented in the following
subsections.

3.1 Initialization

Node labels are initialized using a user supplied mask (interface). The algorithm ensures
that the final segmentation conforms to this initialization in the topological sense, e.g., if the
initial mask contains one object with a hole there will be a single object with a hole on the
output. In object tracking the initial mask may typically correspond to the segmentation
from the previous time point.

The algorithm starts with a zero flow. Instead of two trees, four trees are maintained
during the computation. We will denote them Sg, Sp, Tr and Tg. Initially, Sr tree contains
nodes labelled as foreground and connected to s through an edge of non-zero residual capacity.
Similarly, Ts contains nodes labelled as background and connected to ¢ through an edge of
non-zero residual capacity. Analogously for S and Tr.

3.2 Tree Growth

The tree nodes are called active if they are on the border of the tree (the tree can grow
from them) otherwise they are passive. Nodes that do not belong to any of the trees are
free. See Fig. 1 for illustration. Initially, all tree nodes are active. In this stage the four
trees grow by acquiring new children for their active nodes. An active node p is chosen and
its neighbours connected through an edge of non-zero residual capacity are considered for
growth. Let I(p) denote the label of p and ¢(p) the associated tree. Following situations may
arise when considering neighbouring node g:
q is free: If I(p) = l(q) then ¢ is recruited as a child of p. If I(p) # I(¢) and ¢ is simple
then it is also recruited as a child of p and relabelled to I(p). If g is recruited it becomes
active. Nothing is done otherwise.
t(p) # t(q): An augmenting path has been found (irrespective of the node labels). The
algorithm continues with the augmentation stage.
t(p) = t(q) and I(p) # l(q): ¢ is recruited as a child of p if it is simple and its label is
associated to the opposite tree (recall that s is associated with the background and ¢
with the foreground), i.e., if either (1) ¢(¢) = ¢ and I(q) = b or (2) t(¢) = s and I(q) = f.
If ¢ is recruited it is relabelled to I(p) and becomes active.
As soon as all neighbours of p are explored the node becomes passive and a new active node
is picked. When there are no active nodes the computation ends.

3.3 Augmentation and Adoption

These two stages remain the same as in the original algorithm. During augmentation nodes
behind saturated edges and all their descendants became orphans. During the adoption
stage new parents are searched for the orphans among their neighbouring nodes (in the same
subtree). If no admissible parent is found the node becomes free.
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3.4 Active Node Selection Rules

To ensure homogeneous propagation of the segmentation boundary (as in the level set
algorithms) active nodes closest to the frontier between the foreground and background
should be handled first in the tree growth stage. Various methods can be used to efficiently
extract nodes closest to the frontier. The bucket priority queue approach introduced in [14]
is not correct according to us and caused buffer underflows in both the original and our
implementation. Instead we store queues of active nodes with the same distance from the
separating boundary in an associative array. This approach has a logarithmic time complexity
(in the number of graph nodes), however, it is correct and in practice as efficient (in both
memory and time) as the constant-time method of [14]. To initialize the distance attribute of

each node an L1 metric distance transform is employed in the beginning of the computation.

Subsequently, this attribute is updated whenever a node label changes.

3.5 Complexity Guarantees and Discussion

The modified algorithm still runs in polynomial time. However, note that it is no longer
guaranteed to reach a global minimum of the corresponding energy functional. Similarly to
the level set based algorithms [7], only a locally optimal solution is obtained that may strongly
depend on the initialization. As proved in [14] minimizing the original energy with the
topology preserving constraint is an NP-complete problem. The output segmentation is given
by the explicit node labels handled in the algorithm (i.e., not by the final tree membership
of nodes). Because simple point check is always performed before node relabelling in the tree
growth stage the solution topology has to conform to the initial mask. Finally, the main
difference between our algorithm and [14] is the elimination of the overly complex inter- and
intra-label steps. We treat all augmenting paths equally irrespective of the labelling.

4 Experimental Results

In this section we present the results of the proposed algorithm at segmentation of both
real and synthetic image data. The Chan-Vese segmentation model [4, 13] is used as the
energy functional being minimized. This model aims for partitioning the input image
into two possibly disconnected regions (i.e., foreground and background) minimizing their
intensity variance and the length of the separating boundary. We compare the results of the
topology preserving algorithm with those obtained using the conventional Boykov-Kolmogorov
algorithm. Three images were used for the comparison as depicted in Fig. 2.

The first experiment consisted of brain MRI image segmentation. Undesirable results are
produced using the conventional topology-free algorithm where bright parts of the image are
segmented. On the other hand, a single object corresponding to the brain is extracted using
the topology preserving algorithm with the depicted initialization. Fluorescently stained cell
nuclei are segmented in the second experiment. Using the standard algorithm all three nuclei
merge into one object. This can be avoided using the topology preserving algorithm with
initialization containing exactly three seeds as illustrated on the second row in Fig. 2. In the
last experiment, topology preserving algorithm is used to keep the middle and ring fingers
separated in the final segmentation. On a side note, despite our algorithm is different, we
are also able to reproduce the results presented in [14].

Even though the results of the traditional and topology-preserving algorithms vary we have
also conducted a comparison of running times of both methods to illustrate the performance
penalty incurred by the additional simple point inspections. The test was performed on
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Figure 2 First column (from left): Input image. Second column: Segmentation using the
conventional topology-free graph cuts. Third column: Initial mask for the topology preserving
algorithm. White markers correspond to the foreground. Fourth column: Results of the topology
preserving algorithm.

a common laptop equipped with an Intel Core 2 Duo processor at 2.0 GHz and 4 GB of
RAM. As can be seen from the numbers listed in Table 1, the speed penalty is quite low
in 2D. However, according to our experiments the topology preserving algorithm may be
significantly slower in specific situations. Finally, we have not examined the performance of
the algorithm in 3D. In this case a larger performance hit is to be expected due to the more
complex simple point inspection routine.

5 Conclusion

A modification of the Boykov-Kolmogorov algorithm allowing topology preserving graph
cut based image segmentation has been introduced in this paper. This modification is
based on the simple point concept from digital geometry and is simpler than previously
proposed algorithms. Despite its relative simplicity, it is able to achieve the same results
and is ready for use in situations in which topology preserving is desirable. This was verified
on a series of segmentation experiments. In our future work we would like to investigate
the possibility of integration of topology preserving constraints also to other maximum
flow algorithms such as the Push-Relabel method [6] or even the dynamic maximum flow
algorithms. Implementation of the method described in this paper can be downloaded from
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Table 1 Comparison of running times of the original Boykov-Kolmogorov algorithm and the

proposed topology preserving modification.

Input image Size Boykov-Kolmogorov Topology-preserving
Brain 350 x 350 2.02's 2.89 s
Cell nuclei 280 x 361 0.49 s 0.51 s
Hand 228 x 275 0.10 s 0.13 s

our website http://cbia.fi.muni.cz/projects/graph-cut-library. html.
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