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Abstract
A topological flexibility of implicit active contours is of great benefit, since it allows simultan-

eous detection of several objects without any a priori knowledge about their number and shapes.
However, in tracking applications it is often required to keep desired objects mutually separated
as well as allow each object to evolve itself, i.e., different objects cannot be merged together, but
each object can split into several regions that can be merged again later in time. The former
can be achieved by applying topology-preserving constraints exploiting either various repelling
forces or the simple point concept from digital geometry, which brings, however, an indispensable
increase in the execution time and also prevent the latter. In this paper, we propose more efficient
and more flexible topology-preserving constraint based on a region indication function, that can
be easily integrated into a fast level set-like algorithm [15] in order to obtain a fast and robust
algorithm for simultaneous tracking of multiple objects. The potential of the modified algorithm
is demonstrated on both synthetic and real image data.
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1 Introduction

Detection and tracking of object boundaries is an important task in many computer vision
applications such as video surveillance, monitoring, or robotics as well as in biomedical
studies aimed at understanding the mechanics of cellular processes such as proliferation,
differentiation, or migration. In general, desired objects can have arbitrary initial shapes
that can, in addition, undergo changes in time. Therefore, an optimal tracking algorithm
should be able to detect objects of complex boundaries and adapt easily to their changes.
Furthermore, it should also achieve real-time or at least near real-time performance in order
to be fruitfully applied in practice.

Implicit active contours [4, 5, 6, 23] have become popular namely due to their inherent
topological flexibility and ability to detect objects of complex shapes. Their solution is
usually carried out using the level set framework [19, 18], in which the contour is represented
implicitly as the zero level set (also called interface) of a scalar higher-dimensional function.
This representation has several advantages over the parametric one [10, 3]. In particular, it
avoids parameterization problems, the topology of the contour is handled inherently, and the
extension into higher dimensions is straightforward. On the other hand, a numerical solution
of associated partial differential equations brings a significant computational burden limiting
the use of this approach in real-time applications.

Many approximations, aimed at speeding up the basic level set framework, have been
proposed in last two decades. In the family of gradient-based implicit active contours [4, 5],
the narrow band [1], sparse-field [25], and fast marching method [20] have become popular.
Later, other interesting approaches based on the additive operator splitting scheme [8]
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or a pointwise scheduled propagation of the implicit contour [7, 17] have emerged. Shi
and Carl [22] proposed a fast algorithm that is able to track the gradient-based as well as
region-based [6, 23] implicit active contours, provided the speed function can be decomposed
into data-dependent and regularization terms. We also refer the reader to the work by Lie
et al. [12], Wang et al. [24], and Maška et al. [15] introducing other fast algorithms that
minimize popular Chan-Vese model [6].

The topological flexibility of implicit active contours is of great benefit, since it enables to
detect several objects simultaneously without any a priori knowledge about their number or
shapes. However, for tracking purposes such a flexibility is not always suitable. For instance,
when two initially isolated objects touch later in time it is often required to keep them
separated. This can be achieved by applying topology-preserving constraints based on either
various repelling forces [2, 11] or the simple point concept from digital geometry [9, 14], which
brings, however, an indispensable increase in the execution time caused by their evaluation
in a local neighbourhood of the interface. Furthermore, they also prevent each object from
being evolved at will, e.g., from splitting into several regions.

In this paper, we propose more flexible topology-preserving constraint that brings only
negligible increase in the execution time. It exploits a region indication function, has constant
time complexity, and can be easily integrated into our fast level set-like algorithm [15] in order
to obtain a fast and robust algorithm for simultaneous tracking of multiple objects based on
the minimization of the Chan-Vese model [6]. In comparison to the tracking algorithm by
Shi and Carl [21] that exploits the region indication function as well, the proposed algorithm
does not require the contours to be initially separated by the background nor evaluate relaxed
topological numbers. It also allows two different object contours to touch inherently, without
any additional tests.

The organization of the paper is as follows. In Section 2, the theoretical background of the
Chan-Vese model and the basic principle of our fast level set-like algorithm [15] intended for
its minimization are reviewed. Section 3 is devoted to the topology-preserving modification
of the original algorithm. Experimental results are demonstrated in Section 4. We conclude
the paper with a discussion and suggestions for future work in Section 5 and 6, respectively.

2 Fast Algorithm Minimizing the Chan-Vese Model

In order to obtain a mathematically easier minimization problem, Chan and Vese [6] in-
troduced a piecewise constant approximation to the well-known functional formulation of
image segmentation by Mumford and Shah [16]. Let Ω be an image domain and u0 : Ω→ R
be an input image defined over this domain. The basic idea of the Chan-Vese model is to
find a piecewise constant approximation of u0 being constant in two possibly disconnected
regions Ω1 and Ω2 of constant levels c1 and c2, respectively, separated by a closed segmenting
contour C (Ω = Ω1∪Ω2∪C) of minimal length. The Chan-Vese model can be formulated as

ECV (C, c1, c2) = µ|C|+ λ1

∫
Ω1

(u0(x)− c1)2 dx+ λ2

∫
Ω2

(u0(x)− c2)2 dx , (1)

where µ is nonnegative and λ1 and λ2 are positive constants. Embedding the contour C in
a scalar higher-dimensional function φ with C as its zero level set, the functional can be
minimized using the level set framework. The associated Euler-Lagrange equation has the
following form:

∂φ

∂t
+ δε(φ)

[
µ · div

(
∇φ
|∇φ|

)
− λ1(u0 − c1)2 + λ2(u0 − c2)2

]
= 0 , (2)
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where

c1 =
∫

Ω u0(x)(1−Hε(φ(x))) dx∫
Ω(1−Hε(φ(x))) dx

and c2 =
∫

Ω u0(x)Hε(φ(x)) dx∫
ΩHε(φ(x)) dx

. (3)

The symbols Hε and δε denote regularized versions of the Heaviside and Dirac delta functions.
Careful attention has to be paid to the regularization of these functions, since it affects
the model performance. Provided δε is nonzero in the whole domain, the Chan-Vese model
has the tendency to compute a global minimizer. On the contrary, the choice of δε with a
compact support results only in a local minimizer and, therefore, the dependence on the
initialization.

In our previous work [15], we introduced a fast level set-like algorithm that locally
minimizes the Chan-Vese model (a suitable choice of initial model, however, often leads to
finding a global minimum) and avoids a nontrivial and time-consuming numerical solution of
the associated Euler-Lagrange equation. Instead of evolving the whole implicit function in a
small time step, only the interface points stored in a list data structure are moved to the
exterior or interior depending on the sign of the speed function F in the normal direction
given as

F = µκ− λ1(u0 − c1)2 + λ2(u0 − c2)2 , (4)

where κ denotes the curvature of the interface. Simultaneously, their local neighbourhoods
(4-neighbourhoods in 2D and 6-neighbourhoods in 3D, respectively) are updated accordingly.
The local propagation of each interface point allows the values c1 and c2 to be updated incre-
mentally, since we know exactly which points move to the exterior and interior. Furthermore,
considering the level set function φ as a mapping of the set membership of each point (i.e.
the points of the interface are represented by the value 0, interior points by -1, and exterior
ones by 1), the curvature of the interface can be roughly approximated in an incremental
manner. These ideas result in a fast algorithm for tracking implicit contours driven by the
Chan-Vese model. We refer the reader to the original paper [15] for further details.

3 Topology-Preserving Modification

To ensure that different objects are kept mutually separated as well as allow each object
to evolve itself, we integrate our fast algorithm described in the previous section with a
region indication function ψ : Ω → {0, 1, 2, . . . } that is evolved simultaneously with the
simplified level set function φ. Remind that in each iteration the original algorithm propagates
each interface point locally depending on the sign of the speed function F . Therefore, a
modification of the local propagation of each interface point will result in a modification of
the original algorithm itself.

Let φ be determined by a possibly disconnected background region Ψ0 and M possibly
disconnected disjoint objects Ψ1,Ψ2, . . . ,ΨM (Ω =

⋃
0≤i≤M Ψi). Let p ∈ Ω be a point of

the interface of the object Ψi, 0 < i ≤M , that is being propagated. The behaviour of the
modified algorithm can be divided into two cases depending on the sign of F (p). First,
assume that F (p) < 0 (Fig. 1a). The original algorithm transfers p to the exterior and adds
all its interior neighbours to the interface. The modified algorithm behaves in the same way
as the original one. Clearly, only p is switched from the foreground to the background. It is
therefore sufficient to reset its region indicator to 0.

The second case, when F (p) > 0 (Fig. 1b), is more complicated than the first one. The
original algorithm transfers p to the interior and adds all its exterior neighbours (denote them

MEMICS’10
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Figure 1 Comparison of one iteration of the original algorithm (top row) and the modified one
(bottom row) in case of (a) F (p) < 0 and (b) F (p) > 0. The black points correspond to the interface,
the white ones to the exterior, and the gray ones to the interior. The arrows from p correspond to
the directions of possible propagations of the interface in this iteration. The numbers correspond to
the region indication function ψ.

by E(p)) to the interface. In this case, each point in E(p) is switched from the background
to the foreground. Therefore, the modified algorithm changes their region indicators to i. It
is important to note that one more test has to be performed in the modified algorithm in
order to preserve the interface connectedness of each object. Let N(p) be a set of neighbours
of p of different region indicators. Clearly, if |E(p)| < |N(p)|, p must be put back to the
interface, φ(p) = 0, in order to preserve the interface connectedness of the object Ψi, since p
has a neighbour q of the region indicator j, 0 < j ≤M , j 6= i, that belongs to the interface
of the object Ψj .

4 Experimental Results

In this section, we present several results and comparisons on both synthetic and real image
data to demonstrate the potential of the proposed algorithm. The experiments have been
performed on a common workstation (Intel Core2 Duo 2.0GHz, 2GBRAM, Windows XP
Professional). For comparison purposes, we integrated the original algorithm [15] with the
simple point concept from digital geometry to obtain a fast topology-preserving alternative
to the modified algorithm described in the previous section. We denote these algorithms as
SP (simple point) and RI (region indicator), respectively, depending on the concept used for
preserving the contour topology.

We start with a synthetic binary image of size 200 × 200 pixels containing two circles
(Fig. 2). In case of the SP algorithm, the contour cannot change its topology and, therefore,
only one 8-connected component is obtained as a result. On the other hand, the RI algorithm
allows the contour to split into several parts and each circle is detected separately. The
execution time was less than 0.01 seconds in both cases.

The second experiment is aimed at separation of two touching objects in a noisy synthetic
image of size 350× 170 pixels (Fig. 3). Both algorithms output two 8-connected components.
However, in case of the SP algorithm they are separated by often undesired 4-connected
background path. The computation took 0.014 and 0.013 seconds, respectively.

We conclude this section with an application of the SP and RI algorithms for tracking of
AIF-transfected living cells of the MCF-7 cell line (Fig. 4 and 5, respectively). The time-lapse
series acquired using a fluorescence microscope has 25 frames of size 648× 515 pixels. The
execution time was about 0.111 and 0.107 seconds, respectively, in average per frame.
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Figure 2 Segmentation of a synthetic image with two circles (µ = 0.5, λ1 = λ2 = 1). Top row:
Evolution of the SP contour. Bottom row: Evolution of the RI contour.

Figure 3 Segmentation of touching objects (µ = 0.5, λ1 = λ2 = 1). Left: Input image overlaid
with two initial contours. Centre: Segmentation result of the SP algorithm. Right: Segmentation
result of the RI algorithm.

5 Discussion

The final evaluation of the modified algorithm is introduced in this section. We discuss,
namely, the experimental results presented in Sect. 4 in detail.

The topology-preserving constraint exploiting the region indication function is very simple
and has constant time complexity. There is no need to evaluate any complex condition
in a local neighbourhood of a considered point. In comparison to the original algorithm,
the increase in the execution time of the modified algorithm is negligible, from about 2
up to 4 percent in both 2D as well as 3D. Compared with the SP algorithm, it is about 4
percent faster in 2D and even about 9 percent faster in 3D, where the breadth-first search
algorithm [13] has been used for the simple point detection. On the other hand, the RI
algorithm consumes slightly more memory than the others, since it requires additional space
for storing region indicators. However, the increase is less than 5 percent.

The experiments illustrated in Fig. 2–5 showed the main advantages of the RI algorithm
over the SP one for simultaneous tracking of multiple objects. Considering the simplest
tracking scheme in which the final contour from the previous frame is used as a seed in the
next one, the RI algorithm adapts easily to splitting of a connected object in one frame into
several regions in the next one. Furthermore, it also allows us to find boundaries of touching
objects without any background gap between them. It is important to note that considered
tracking scheme might have problems in situations involving large movements of the objects
or when the final contour of one object from the previous frame overlaps with another object
in the next frame. This will be addressed in future work.

MEMICS’10
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Figure 4 Tracking of AIF-transfected living cells using the SP algorithm (µ = 0.3, λ1 = 1,
λ2 = 2). The frames number 1, 3, 7, 10, 13, 14, 15, and 22 are shown. Top rows: Original image
data overlaid with final contours. Bottom rows: Segmentation results of the SP algorithm.

6 Conclusion

We have addressed the problem of imposing topology-preserving constraints on evolving
implicit contours. We have proposed a topology-preserving constraint exploiting a region
indication function, that is more flexible than the ones based on either various repelling forces
or the simple point concept from digital geometry, has constant time complexity, and can be
easily integrated into our fast level set-like algorithm minimizing the Chan-Vese model. The
experiments verified topology-preserving properties of the modified algorithm and showed its
speed and better usability for simultaneous tracking of multiple objects in comparison to the
one exploiting the simple point concept.
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Czech Republic (Projects No. MSM-0021622419, No. LC535 and No. 2B06052). The authors
would also like to thank Dr. Miroslav Vařecha for providing the time-lapse series of MCF-7
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Figure 5 Tracking of AIF-transfected living cells using the RI algorithm (µ = 0.3, λ1 = 1, λ2 = 2).
The frames number 1, 3, 7, 10, 13, 14, 15, and 22 are shown. Top rows: Original image data overlaid
with final contours. Bottom rows: Segmentation results of the RI algorithm.
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