
A Reputation-Based Approach to Self-Adaptive
Service Selection
Jan Sudeikat1, Wolfgang Renz1, Ante Vilenica2, and Winfried
Lamersdorf2

1 Multimedia Systems Laboratory
Hamburg University of Applied Sciences
Berliner Tor 7, 20099 Hamburg, Germany
[jan.sudeikat;wolfgang.renz]@haw-hamburg.de

2 Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
[vilenica;lamersd]@informatik.uni-hamburg.de

Abstract
Service-orientation provides concepts and tools for flexible composition and management of large-
scale distributed software applications. The automated run-time management of such loosely cou-
pled software systems, however, poses still major challenges and is therefore an active research
area, including the use of novel computing paradigms. In this context, the dynamic and adaptive
selection of best possible service providers is an important task, which can be addressed by an
appropriate middleware layer that allows considering different service quality aspects when man-
aging the adaptive execution of distributed service workflows dynamically. In such an approach,
service consumers are enabled to delegate the adaptive selection of service providers at run-time
to the execution infrastructure. The selection criteria used are based on the cost of a service
provision and the continuous, dynamic evaluation of reputations of providers, i.e. maintained
track records of meeting the respective service commitments. This paper discusses the design
and operating principle of such an automatic service selection middleware extension. Its ability
to balance different quality criteria for service selection, such as service cost vs. the reliability of
provision, is empirically evaluated based on a multi-agent platform approach.

1998 ACM Subject Classification I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence — Multiagent systems; D.2.11 [Software]: Software Architectures — Service-oriented
architecture (SOA)

Keywords and phrases Service, Workflow, Multagent System, Self-Adaptivity

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.14

1 Introduction

Service-orientation is a successful paradigm for the construction of flexible, loosely coupled
distributed software systems. This loose coupling can be exploited to enable flexible com-
positions, orchestrations, and choreographies of such services and, thus, forms a technical
foundation for the construction of self-adaptive systems (e.g. see [10], p. 20). For such
systems, their respective adaptivity allows them to operate in dynamic execution contexts
without explicit human or explicitly pre-programmed intervention. Especially when the
availability of service providers and the demand for service invocations are (dynamically)
changing, the management of service executions, in particular their respective selection and
composition, has to be adapted according to changes in the environment (see Section 4).

© J. Sudeikat, W. Renz, A. Vilenica and W. Lamersdorf;
licensed under Creative Commons License NC-ND

17th GI/ITG Conference on Communication in Distributed Systems (KiVS’11).
Editors: Norbert Luttenberger, Hagen Peters; pp. 14–25

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.KiVS.2011.14
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

J. Sudeikat, W. Renz, A. Vilenica and W. Lamersdorf 15

The adaptive operation in dynamic execution contexts is also of economic interest when
service providers and consumers interact in open markets. In such cases, enterprises may
schedule the achievement of individual tasks, i.e. the execution of workflows and the selection
of services, based on economical as well as on technical criteria. An example for such an
application may be provided by a car manufacturer that requires well-specified parts for the
completion of a specific manufacturing process. Here, the automated selection of suppliers —
based on given criteria — could provide means for controlling lean production processes.

Enabling flexible executions of workflows in these markets of service providers requires
the adaptive selection of providers. Self-managing and self-organizing design techniques are
attractive for controlling service selections while taking into account different quality aspects
(see Section 4). Self-adaptive self-managing approaches introduce software components that
control adjustments of subordinate system elements (see e.g. [10]). Self-organizing approaches
realize system-level coordination in decentralized system architectures (see e.g. [11]), where
the coaction of system elements gives rise to adaptive system level features.

In this paper, we propose a flexible service selection mechanism and related middleware
extension for the management of service-based applications that can be used to equip
service-oriented software infrastructures with adaptive service selection strategies. This
framework provides a software layer that can be supplemented to service-oriented execution
infrastructures. It provides an architectonic bluprint for integrating both self-adaptive and
self-organizing dynamics in service-oriented execution infrastructures. The management of
individual processes, i.e. workflows of service invocations, is handled by software agents. These
agents do not manage the complete application but only those partitions that are influential
for the completion of a specific workflow. Therefore, this architecture allows for the self-
organization of concurrent, parallel workflows that are executed in an open (and dynamically
changing) market of service providers. In general, self-adaptivity and self-organization are
typically understood as opposing concepts for the creation of adaptive software systems
(e.g. see e.g. [10], p. 5). The relevance of both concepts for the development of complex
distributed systems and the respective need for comprehensive development concepts has
been identified before (e.g. see [2]). In this context, the architecture proposed here provides
an environment which allows to examine the interplay of managing entities.

We present both (1) the architecture of this middleware extension and (2) a design
approach for adaptive selection strategies. First, the corresponding software architecture
allows for integrating different quality criteria to be considered during the run-time selection
of services. A flexible, agent-based design allows for the integration of different selection
strategies. It provides a generic blueprint for integrating both self-adaptive and self-organizing
dynamics in service execution middlewares. Secondly, we discuss and exemplify the principled
design of distributed adaptation strategies. The conception of adaptive control algorithms,
based on integrating feedback loops in software systems, is an active research topic [2] and
we discuss the use of a visual modeling techniques. More specifically, a reputation-based
approach is proposed here in which past experiences can be used, in addition to the service
cost, for estimating the reliability of potential service providers. Balancing influences of
several of such aspects for dynamic service selections allows even more specific tuning of the
economic benefits. First experiences of such an approach in a case study are reported as well.

The following section introduces the agent-based selection-framework and illustrates the
operating principle of the reputation-based selection strategy. Then the paper presents
and discusses first simulation results (see Section 3) to evaluate the adaptive management.
Finally, related work on the self-management of service-based applications is outlined before
the paper concludes and gives prospects for future work.

KiVS’11

16 Self-Adaptive Service Compositions

2 An Adaptive Service Selection Middleware

The delegation of service selections to an additional middlware layer allows to separate the
adaptiveness of service invocations from the realizations of service providers and consumers.
In the middleware layer proposed here, agent technology is used as a connector between the
service-oriented application elements, which constitute the application infrastructure, and the
use of coordination means, e.g. utility-based service selections. In such an approach, software
agents interact with service-based workflow executions and provide services themselves. Since
the adaptations are delegated to supportive agents, adaptive system level aspects can be
supplemented to the service execution middleware. Using the example of reputation-based
service selections (see Section 2.2), the run-time invocations of services are observed by the
agent system in order to reason from the past experiences to the reliability of service providers.
The coordination of the involved agents is built on top of a coordination infrastructure for
the creation of self-organizing multi-agent systems (MAS) [14]. This infrastructure provides
a generic reference model for the integration of decentralized coordination processes in MAS.

Here, a generic model of the selection problem from [8] is adopted in which Service
Agents (SAs) are providers of services and Service Market Agents (SMAs) are responsible
to manage the execution of workflow instances. These workflows are distinguished between
Instantiated Workflow (IW) and Partial Instantiated Workflow. In an instantiated workflow,
service providers are associated to service invocations and when one or more services are not
associated the workflow is partially instantiated.

2.1 Architectural Concept: A Supportive Middleware Layer
The selection middleware automates the allocation of service providers. This supportive
system allows to automate and encapsulate the management of service-based software
systems. The system is built in different layers (see Figure 1) which separate the business
logic of the system elements from the accomplishment of adaptive features. The topmost
Application Layer contains the functional elements of the managed application. Here these
are providable service realizations and the service consumption that is controlled by a
Process Execution Engine. The underlying Connector layer contains software agents that
interact with these elements. The Jadex Processes1 framework is used to realize these
interactions. A process engine controls the execution of processes in the Business Process
Modelling Notation (BPMN). The identification of service providers is delegated to SMAs.
The provision of services is managed by SAs. As new SMA and SA (types) can be added at
runtime the architecture enables the dynamic provision of new service providers/consumers.
The selection mechanism (see Section 2.2) is embedded in an underlying Coordination Layer.
This layer follows the architectonic model from [14] and separates the participation of agents
in decentralized coordination processes from the agent models. This separation facilitates
the reconfigurability and changeability of processes.

The constituent elements are the Endpoints and Media. Endpoints contain and control
the activities that are conceptually related to the coordination of agents. These are compu-
tational elements that are able to observe and influence the execution of software agents [17].
The media are infrastructure elements that connect endpoints. Media provide interaction
mechanisms for the coordination of agents that are based on communication infrastructures
[17] and/or shared agent spaces [21]. Using a generic publish/subscribe interface, these

1 http://jadex-processes.informatik.uni-hamburg.de/

J. Sudeikat, W. Renz, A. Vilenica and W. Lamersdorf 17

infrastructures are integrated as a distributed event-based system.

Figure 1 Service composition/selection architecture

Using this architecture, a reputation-based selection mechanism is realized (see the
following section). Endpoints control the enactment of the coordination. In this case they
control the selection and the update of the measured reputations of service providers. Two
media connect the endpoints. One medium handles the selection of an appropriate service
provider. Providers initially register at this medium and SMAs can inquire a service provider,
decided by a given utility function (see Section 2.2.1). A second medium handles the
reputations of service providers. This medium maintains the quality indicators of providers
that are increased/decreased by the successful/unsuccessful completions of service. The
configuration of the adaptive selections is be separated from the business logic, which is given
in BPMN-based workflow descriptions. Each service provider and workflow is managed by
an agent, e.g. to ensure that the commitments of individual providers do not overlap.

2.2 Adaptation Mechanism: The Dynamic Perspective

Within the Coordination layer (see Figure 1) adaptive, collaborative processes can be
integrated into distributed systems. Here, the integration is exemplified by a process that
allows to manage service invocations. We assume a setting where multiple providers are able
to achieve specific tasks. The quality attributes, e.g. cost, processing time, reliability, etc., of
the providers differ and thus the service consumers have to make economic selections. The
consideration of different providers is not handled on the application level but is delegated
to a supportive middleware.

For the description and configuration of decentralized processes, a dynamical modelling
level has been developed that supplements agent-oriented design techniques with descriptions
of dynamic aspects within MAS [18]. It makes use of System Dynamics [13] modelling
concepts. Particularity the Causal Loop Diagram (CLD), a formalism for the illustration of
system variables and their interdependencies, is extended for the description of the dynamics
and coaction within MAS. Using this modelling stance, adaptive system behaviours can be
pictured: Nodes in the graphs represent system variables, e.g. the number of agents that play
a specific role and connection between these nodes denote influences and interdependencies.
Influences describe additive or subtractive relations, e.g. when agents place or remove items

KiVS’11

18 Self-Adaptive Service Compositions

in/from a stock. Interdependencies describe causal relations, e.g. an increase of service
requests in a SOA-based application consequently leads to an increase of service invocations.

2.2.1 Conception of the Dynamic System Behaviour
A pragmatic approach to the conception of a decentralized coordination processes is based on
the comparison of the system behavior as is with the intended, i.e. coordinated and adaptive,
behavior of the application [16]. The problematic, unintended behaviour is modeled first.
Based on this problematic dynamic, a corresponding solution dynamic, i.e. an additional
process fragment, is modelled, which improves the system behaviour.

The problem dynamic of the service allocation scenario is illustrated in Figure 2. A set
of service providers (SAs) have committed to provide services in the given time-frame(s).
Committed agents exhibit the role Allocated Service as they are locally aware of their
obligations. One agent instance can commit to the participation in several IW, if the intervals
of each service provision do not overlap. Before invocating allocated service instances,
service providers may decide to change their commitment. In Figure 2, two possible reasons
are denoted. First, agents may decide by themselves (autonomous reallocation) that a
simultaneous service commitment is more profitable. Secondly, internal failures in the
provider component (execution error) enforce that providers indicate their inability to satisfy
commitments. The impact of these influences is characterized by an interaction rate (leave
IW). Increases in this rate reduce the overall number of allocations and increases the number
of agents that are falsely committed, i.e. agents that fail to achieve their commitments.
When agents are in this state, the associated IWs are not executable and the number of
executable IWs is reduced. The system exhibits a balancing feedback loop that limits the
number of allocations (α), due to the perturbations, which influence the rate of agents that
want to cancel their commitment (leave IW). The objective of the self-adaptive management
of workflows is to counteract this feedback, i.e. to re-establish stable system configurations
where all IWs are executable.

Figure 2 Macroscopic model: Dynamic service selections

The corresponding solution dynamic (see Figure 2, I) proposes the supplementation of
the application with an additional agent role and related agent-interdependencies to establish
additional feedback loops. Service Agents are enabled to communicate their intention to
cancel a commitment to the corresponding SMA. This agent then initiates a selection of a

J. Sudeikat, W. Renz, A. Vilenica and W. Lamersdorf 19

service provider to replace the missing commitments. When a replacement has been found
the false commitment is revoked. The revoking manifests a second balancing feedback loop
(β) that limits the number of agents that are falsely associated, i.e. that are deficient for the
provision of the allocated service. As the selections also reinforce the number of allocations,
a third, reinforcing feedback is manifested (γ) that reinforces allocations. This reinforcement
alleviates the effects of the problematic feedback (α). This reinforcing feedback itself is
controlled by the availability of falsely committed agents (β).

The establishment of the counterbalancing feedback γ is a requirement. The exhibited
system dynamics is expected to show this feedback and the model neglects how this feedback
is established. The approach followed here makes use of a utility function that takes into
consideration not only the cost of the service invocation but also the Reputation of providers,
i.e. the confidence that service providers can meet their commitments.2 These reputations,
called trust, are adjusted at run-time (see Figure 2, II). A set of agents (allocated service)
participates in the workflow and for each agent such a value is maintained (evaluation). The
corresponding values are increased when the service execution succeeds and are decreased
when service providers fail to meet their obligations. The current trust value is considered in
the service selection and thus influences the overall rate (adopt) of provider selection.

An alternative, decentralized design approach would be to equip Service Agents with
the ability to negotiate their replacement with other agents. The causal structure of
the application dynamics would not be affected by this adjustment, but the role of the
negotiation initiator ((re-)select allocation) would be played by the Service Agent, not the
Service Market Agent. An example for such a completely decentralized approach, embedded
within a Coordination Layer, is given in [19], where failing machines in a production line are
responsible to find replacements for their designated activities. In the following, the former
approach is examined in system simulations.

2.2.2 The Selection Dynamics
The dynamic model in Figure 2 describes the macroscopic dynamics of systems that are
equipped with the supportive middleware layer. This modelling level is particularly suited to
describe self-organizing dynamics (e.g. see [18, 16]), and is here used to denote the operation
of sets of self-adaptive managers (SMAs). For the explanation of concrete simulation
experiments (see the following section) a detailed model of the dynamics is needed that
does not only refer to macroscopic system variables, e.g. the overall numbers of agents that
show specific behaviour, but that describes the concrete influences in system variables. This
description level gives a more specific illustration of the relations of system variables and is
obtained by refining macroscopic models. A detailed discussion of the different modelling
levels for self-organizing systems can be found in [15].

The corresponding model (see Figure 3) describes how the computation of services’
utilities influences the overall profit generated by the process executions. The variable Profit
(Process) describes the economic benefit that results from the execution of workflows. The

2 Utility functions offer the possibility to specify preferences among (potentially conflicting) objectives
and can be mathematically expressed as

U(x) =
N∑

i=1

xi · wi

where wi expresses the weight of an objective xi [5].

KiVS’11

20 Self-Adaptive Service Compositions

major (additive) contributions are the profits, which are generated by the constituent service
invocations (Profit (Service)). The selection of the corresponding service providers is based on
the computation of the utility (Available Utility). This value estimates the most appropriate
service provider and thus the provider with the maximal utility value is selected. Several
factors influence this estimation and in Figure 3 two are exemplary denoted. These are the
current Reputation and Cost values of services. In addition, two disturbance variables, which
are externally set to fixed values in the system simulations, influence the generation of profit.
First, the failing of a service (Service failure) is associated with a penalty cost that subtracts
from the overall profit (β). Failures also minimize the trust values and therefore have an
indirect influence on the service selection. A second disturbance is the blackout of services
(Black out probability). When services are temporarily not available, e.g. due to internal
errors or unreliable network connections, this affects the current service selection and also
minimizes the current reputation value. The successful provisioning of services is recorded by
the corresponding medium and increases the reputation values that are associated to specific
providers. Therefore, the variables are steadily increased as denoted by positive (+), i.e.
reinforcing, feedback loop [13]. On the other hand, the external disturbances, i.e. failures
and blackouts, reduce the individual reputations.

Figure 3 The dynamics of process costs, as shown by the implemented simulation model (see the
following section)

3 System Evaluation

3.1 Operating Principle
That the system is self-adaptive, i.e. that services are adaptively selected, is validated by
system simulations. A sample simulation run, with a fixed reputation value3 is shown in
Figure 4. The measurements were obtained from a single SMA that repeatedly selects one
service. The SMA has three options: an expensive, a moderate and a low-cost service provider.
These agents can perform the same service type but differ in their cost and the probability
of a service failure, i.e. a blackout, which is detected by the infrastructure applying timeouts.
The three service providers were set up with following cost characteristics: expensive (1200),
moderate (1000), low-cost (800) and with an initial value of 30 for reputation. For the ease of
evaluation the SMAs service selection function, i.e. the utilitfy function, only considered the
costs and reputation of respective SAs. Quality of service parameters where not considered

3 set to: 0.4

J. Sudeikat, W. Renz, A. Vilenica and W. Lamersdorf 21

but could easily be integrated by extending the arguments of the service selection function
with additional parameters.

The history of service invocations shows that the invocations (I) and the recorded
reputation values (II) mutually influence each other. These influences validate a set of the
relations in the dynamic application model (see Figure 3). In phases where one service
type is invoked repeatedly and performs as expected, such as between the time steps 40 to
55,4 the corresponding reputation value is amplified. This is expressed as the reinforcing
feedback (α) in Figure 3. The systems quality also decides the likelihood that service
invocations will fail using following function to compute the time between two blackouts:
t = -log(1-x)*ServiceCharacteristic. Thereby, the three service providers had following
ServiceCharacteristics: expensive (0.1), moderate (0.5) and low-cost (0.999). Moreover,
service failures are drastic events that lead to sudden decrease in the reputations (negative
contribution to the Reputation node in Figure 3). Upon these failures the provider with the
highest utility is selected.

expensive

moderate

low-cost

moderate

low-cost

expensive

time (sec.)

I: II:
re

pu
ta

tio
n

0 20 40 60 80 100

50

40

30

20

10

0
0 20 40 60 80 100 120

time (sec.)

blackout -
correct execution +

false execution

Figure 4 Sample simulation run: Service invocations (I) and the corresponding reputations (II)

3.2 The Impact of Considering Reputations
The adjustment strategy proposed here makes use of past experiences. The weight of the
gained reputation is a static parameter that is set initially. In Figure 5 (I), it is shown how
this parameter affects the fractions of agents that participate in workflows. Simulations are
carried out for two minutes and the SMAs repeatedly select one service provider. For low
values (x axis) the historic reputation that services gain have limited impact on the selection.
Instead the service cost is the dominant factor and low-cost service providers are preferred.
When higher weight values are used, more reliable, i.e. more expensive, service providers are
used.

The performance of the workflow executions is indicated by two measurements that are
shown in Figure 5 (II). Simulations are carried out for a fixed duration and higher weights
for the reputation values lead to a slight increase of the total number of services that can be
completed in this time. This effect results from the increased utilization of more reliable,
and thus expensive, service providers. Due to their reliability these fail more seldom and
re-invocations of services are avoided.

4 measured in seconds, see Figure 3

KiVS’11

22 Self-Adaptive Service Compositions

The weight of the reputation significantly affects the overall profit that is generated. For
small wights (< approx. 0.4), the selection is mainly influenced by the cost of invocations
and therefore the fraction of selected services that fail are comparatively high. Failures cost
penalties and enforce re-selections of providers. Thus the overall profit that can be generated
is limited. For high weights (> approx. 0.8), the selection is biased toward expensive services.
Due to their cost, it is not of economic interest to use these providers extensively and the
overall profit is reduced. A weight about approx. 0.6 maximizes the profit as the use of
expensive/low-cost service providers is balanced and the majority of invocations refer to
moderately priced providers. In the simulations, the cost of expensive providers and the
penalties of failures are set to values that only allow for a small net earnings area that is
reached by using mid-level reputation weights.

Qualitatively, the simulation results indicate that the selection process conforms to the
systemic model of the selection dynamics that are given in Figure 3. Service failures, an
external influence, affect the generated profit (β). Therefore, unreliable providers have to
be avoided. Since failures reduce the reputation, SMAs are repelled from service providers
that have shown to be unreliable. This explains that the use of reputation mechanisms can
increase the systems performance. On the other hand, the steady increase of reputations (α)
leads to a problematic use of expensive providers for high-level reputation weights. Their
cost limits the total profit. Thus the balancing of the former influence (external factors) and
the latter feedback is required. This balancing depends on the system parametrization and
for the simulation setting studied here, moderate weights of the reputation in the utility
function are appropriate.

In conclusion it can be stated that the simulation results prove the applicability of the
proposed framework to enable self-adaptive service compositions by using reputation as a
criterion (among others like costs) for selecting service partners. At the same time, it has to
be stated that using this framework for automated service selection requires simulation effort
in order to find appropriate settings for an environment that exhibits high dynamics. The
mathematical analysis of the dynamics for inferring appropriate parametrizations is left for
future work. Additionally, there is the need to provide more implementations of wide-spread
negotiation protocols in order to increase the utilization of this framework as well as to study
the impact of using reputation with these protocols. Nevertheless, this evaluation shows that
using reputation, i.e. upon to a certain factor, to measure the quality of service partners
increases the profit of service executions in contrast to settings that take only service costs
into consideration.

4 Related Work: Adaptive Service Selections

The fact that agent-orientation can be used as a valuable enrichment for service-oriented
architectures has been argued by several authors, e.g. in [12]. Here, an enhancement is
realized by a layered architectural model. Software agents represent the consumers and
providers of services and form the logical link between the application business logic and the
adaptivity-related coordination, i.e. the selection.

Consequently, the automation of the orchestration and composition of services has been
studied. Approaches for the adaptive management have to prepare for (possibly) large scale
of service-oriented systems and for the handling of dynamic execution contexts. Due to these
challenges, the use of novel computing paradigms, which focus on bringing about intended
application level dynamics, in this application domain have been proposed. Examples are
the use of self-adaptive architectures and self-organizing problem solving strategies. Self-

J. Sudeikat, W. Renz, A. Vilenica and W. Lamersdorf 23

I: II:

Figure 5 Averaged cumulative invocations of service providers plotted over the fixed reputation
value (I), averaged, total sum of service invocations (II) and averaged profit generated plotted over
fixed reputation values (II).

organization allows for decentralized management strategies that are particularly suited for
large-scale application infrastructures. Examples include the transfer of nature inspired
phenomena e.g. the chemical reactions [3] and the differentiation of individuals as found in
biological systems [9].

Management of self-organization in service-based applications is discussed in [7] and a
corresponding reference architecture is proposed. A management overlay is constructed
by associating each element in the application with a managing software element. These
elements follow the Observer/Controller (O/C) architecture that is developed by the Organic
Computing research initiative (e.g. see [20]). The proposed architecture conforms to the
framework proposed here as each element is associated with a computational element that
control the local adaptations. However, O/C elements are comparatively complex entities
that contain among others data analysis, prediction, and simulation components in order
to estimate the system states that the system is approaching. The model presented here is
comprehensive as it does not only contain the decision making elements but also abstractions
of their interactions. Endpoints are comparatively lightweight as they only contain the logic
that is required to impose the participation in the collaborative process, which steers the
system operation. Simplification of the controlling system elements is enabled by the explicit
modelling of the process (see Section 2.2) [16].

Furthermore, there is existing work that targets either the provision of infrastructures for
the dynamic selection of services or the development of new negotiation/bidding strategies
in open marked-based scenarios. On the one hand, Borrisov et al. [1] propose a framework
that automates the generation of bids for the allocation of computing services in grid-based
systems. Similar to the approach presented in this work, [1] incorporate a technique, i.e.
machine learning, to deal with aspects related to reputation. At the same time the approach
focuses on the domain of grid-systems and gives therefore only partial solutions to general
problems related to adaptive service selections, e.g. the approach does not deal with blackout
of services. On the other hand, Lewis et al. [6] focus on developing a new negotiation strategy
that can cope with the challenges of dynamic, decentralized and service-based systems. This
strategy is encapsulated within so called "evolutionary markets agents" that act on behalf of
service providers and service consumers. Therefore, it would be of interest to extend the
framework used within this work with this new bidding strategy of Lewis et al. in order to
evaluate its advantages and disadvantages with respect to existing negotiation strategies.

KiVS’11

24 Self-Adaptive Service Compositions

5 Conclusions

This paper proposes a generic management architecture for the adaptive management of
service-oriented applications based on multi-agent middleware. The corresponding framework
uses agent technology to enable the self-adaptive operation of services. It provides an addi-
tional middleware layer that can extend infrastructures in order to provide for decentralized
service selection management. The design of this framework is not biased towards specific
management strategies, but is, on the contrary, highly configurable. This paper approaches
the service selection problem via a reputation-based strategy, where past experience with
service provision is used as a(n additional) selection criterion for service providers. The
corresponding middleware layer is based on a programming approach for self-organizing
multiagent systems [14]. Accordingly, the work reported here does not only concern the
service infrastructures but also exemplifies how the decentralized, agent-based management
can be used to supplement conventional software infrastructures. In such an approach, the
corresponding MAS serves as a connector between application-level software artefacts and
the participation of such artefacts in managing distributed processes with adaptive system
properties.

Future work shall address the elaboration of management strategies and the validation of
the management framework in more realistic scenarios. This includes studying non-functional
aspects of the approach, e.g. scalability, and the mathematical analysis of the system
dynamics. The framework presented here and the underlying programming model first
demonstrate in principle the ability to supplement decentralized management processes into
software systems. This however, requires additional policies, guidelines as well as heuristics
that enable development teams to conceive the appropriate management approach for specific
application scenarios in order to decide between, e.g. centralized, managing software entities,
as addressed by autonomic computing systems (e.g. see [4]), and the use of decentralized
coordination processes [19].

Acknowledgements The authors would like to thank Deutsche Forschungsgemeinschaft
(DFG) for supporting this work through a joint research project on "Self-organization based
on decentralized co-ordination in distributed systems" (SodekoVS) and, in addition, Claudia
Di Napoli and Maurizio Giordano from C.N.R, Naples, Italy, for related discussions on service
selection problems.

References

1 Nikolay Borissov, Dirk Neumann, and Christof Weinhardt. Automated bidding in com-
putational markets: an application in market-based allocation of computing services. Au-
tonomous Agents and Multi-Agent Systems, 21:115–142, 2010.

2 Yuriy Brun, Giovanna Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle,
Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Software Engineering for Self-
Adaptive Systems, chapter Engineering Self-Adaptive Systems through Feedback Loops,
pages 48–70. Springer-Verlag, Berlin, Heidelberg, 2009.

3 Claudia Di Napoli, Maurizio Giordano, Zsolt Németh, and Nicola Tonellotto. Using chem-
ical reactions to model service composition. In SOAR ’10: Proceeding of the second inter-
national workshop on Self-organizing architectures, pages 43–50. ACM, 2010.

4 Rajarshi Das Jeffrey, O. Kephart, Charles Lefurgy, Gerald Tesauro, David W. Levine, and
Hoi Chan. Autonomic multi–agent management of power and performance in data centers.

J. Sudeikat, W. Renz, A. Vilenica and W. Lamersdorf 25

In Proc. of the 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008) – Industry and Applications Track, pages 107–114, 2008.

5 Henry M. Levin and Patrick C. McEwan. Cost-Effectiveness Analysis: Methods and Appli-
cations. Sage Publications, 2. edition, 2000.

6 Peter R. Lewis, Paul Marrow, and Xin Yao. Resource allocation in decentralised com-
putational systems: an evolutionary market-based approach. Autonomous Agents and
Multi-Agent Systems, 21(2):143–171, 2010.

7 Lei Liu, Stefan Thanheiser, and Hartmut Schmeck. A reference architecture for self-
organizing service-oriented computing. In ARCS, volume 4934 of LNCS, pages 205–219.
Springer, 2008.

8 Claudia Di Napoli. Software Agents to Enable Service Composition through Negotiation,
chapter 12, pages 275–296. Studies in Computational Intelligence. Springer, 2009.

9 F. Saffre, J. Halloy, M. Shackleton, and J. L. Deneubourg. Self-organized service orchestra-
tion through collective differentiation. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 36(6):1237–1246, Dec. 2006.

10 Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst., 4(2):1–42, 2009.

11 G. D. M. Serugendo, M. P. Gleizes, and A. Karageorgos. Self-organisation and emergence
in MAS: An overview. In Informatica, volume 30, pages 45–54, 2006.

12 Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing: Semantics, Pro-
cesses, Agents. John Wiley & Sons Ltd, 2005.

13 John D. Sterman. Business Dynamics - Systems Thinking and Modeling for a Complex
World. McGraw–Hill, 2000.

14 Jan Sudeikat, Lars Braubach, Alexander Pokahr, Wolfgang Renz, and Winfried Lamersdorf.
Systematically engineering self-organizing systems: The SodekoVS approach. Electronic
Communications of the EASST, 17, 2009.

15 Jan Sudeikat and Wolfgang Renz. Applications of Complex Adaptive Systems, chapter
Building Complex Adaptive Systems: On Engineering Self–Organizing Multi–Agent Sys-
tems, pages 229–256. IGI Global, 2008.

16 Jan Sudeikat and Wolfgang Renz. On the modeling, refinement and integration of de-
centralized agent coordination – a case study on dissemination processes in networks. In
Self-Organizing Architectures, volume 6090/2010 of LNCS, pages 251–274. Springer, 2010.

17 Jan Sudeikat and Wolfgang Renz. Separating agent-logic and inter-agent coordination
by activated modules: The decomas architecture. Electronic Proceedings in Theoretical
Computer Science, 27:17–31, 2010. (Proceedings of the Workshop DCDP 2010).

18 Jan Sudeikat and Wolfgang Renz. Qualitative modeling of mas dynamics - using systemic
modeling to examine the intended and unintended consequences of agent coaction. In
Michael Luck and Jorge J. Gomez-Sanz, editors, Agent-Oriented Software Engineering X.
Springer, 2011. (to be published).

19 Jan Sudeikat, Jan-Philipp Steghöfer, Hella Seebach, Wolfgang Renz, Thomas Preisler, Pe-
ter Salchow, and Wolfgang Reif. Design and simulation of a wave-like self-organization
strategy for resource-flow systems. In Proceedings of The Multi-Agent Logics, Languages,
and Organisations Federated Workshops (MALLOW 2010), volume 627, 2010.

20 Stefan Thanheiser, Lei Liu, and Hartmut Schmeck. Towards collaborative coping with it
complexity by combining service–oriented architectures and organic computing. System
and Information Science Notes, 2(1):82–87, 2007.

21 Ante Vilenica, Jan Sudeikat, Winfried Lamersdorf, Wolfgang Renz, Lars Braubach, and
Alexander Pokahr. Coordination in multi-agent systems: A declarative approach using
coordination spaces. In Proc. of EMCSR 2010 - Int. Work. From Agent Theory to Agent
Implementation (AT2AI-7), pages 441–446. Austrian Society for Cybernetic Studies, 2010.

KiVS’11

	Introduction
	An Adaptive Service Selection Middleware
	Architectural Concept: A Supportive Middleware Layer
	Adaptation Mechanism: The Dynamic Perspective
	Conception of the Dynamic System Behaviour
	The Selection Dynamics

	System Evaluation
	Operating Principle
	The Impact of Considering Reputations

	Related Work: Adaptive Service Selections
	Conclusions

