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Abstract
This paper presents an approach for ontology-based IT management based on a heavyweight
(formal) ontology using the Web Ontology Language (OWL). The ontology comprises a complete
OWL representation of the Common Information Model (CIM) and management rules defined in
the Semantic Web Rule Language (SWRL). The ontology not only models the managed system
types, but a runtime system dynamically updates model instances in the ontology that reflect
values of managed system entities. This allows the evalution of rules that take into account
both model and model instances. A reaction module uses the CIM interface of the managed
system to invoke CIM methods according to rule evaluation results, thus resulting in automated
management. In order to ensure the consistency of the ontology when changes are performed,
belief change theory is employed.
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1 Introduction

Knowledge bases grow in size and complexity in every domain. Regardless of the concrete
field, the number of data sources and formats that are used in each knowledge base increases
constantly. A common goal in this respect is to allow interoperability between different
knowledge bases and integration and aggregation of data, as well as the possibility to perform
automated reasoning. Established domain models can be used to create a unified view on
the knowledge base, but they often have major shortcomings to be able to be used for
comprehensive management of the knowledge base: They often have limited support for
knowledge interoperability and aggregation, as well as reasoning, and constraints that are
part of the models are often expressed using natural language, which renders them less useful
for automatic evaluation. Also, the models usually do not deal with instance data that is
acquired from the system which the model represents. Unless instance data is kept in a
uniform way together with the model, the definition of constraints or rules that affect both
model and model instances is not possible.

A formal ontology is a type of knowledge base that can help resolve these issues: While
a lightweight ontology defines a hierarchy of concepts and a hierarchy of relations, i.e. a
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description of the concepts and relationships that exist in a domain, a heavyweight ontology
or formal ontology (the terms are often used interchangeably [24]) can contain domain-
specific information models, behaviour rules, constraints and axioms, and can also contain
the corresponding model instances.

Management of an IT environment is one example of a domain for which management
using a formal ontology is desirable. Over time, a number of commercial and free systems
for comprehensive management of IT environments have been developed. Usually, the man-
agement system is not comprised of a single tool, but consists of a set of different tools. To
provide a unified view on the environment and to allow interoperability between multiple
management tools and managed elements, several integrated network management models
were developed. Notable examples are the OSI network management model (also known as
CMIP, the name of its protocol) and the still widely used Simple Network Management Pro-
tocol (SNMP). A more recent approach to specify a comprehensive IT management model is
the Common Information Model (CIM) which is described in more detail in section 2.1. This
widely recognized Distributed Management Task Force (DMTF) standard allows consistent
management of managed elements in an IT environment. CIM is actively used; for example,
the storage management standard SMI-S (Storage Management Initiative Specification) of
the SNIA (Storage Networking Industry Association, [19]) is based on CIM.

CIM can be used to create a unified view on the managed system, but suffers from the
shortcomings mentioned earlier: It is a semi-formal ontology [4, 18] that only has limited
abilities for knowledge interoperability, knowledge aggregation and reasoning [16]. To create
a formal IT management ontology, two parts are required; the first part being a compre-
hensive domain model in a suitable format. The second part is a runtime system that
administers the domain model and model instances that represent entities of the managed
environment. As the runtime system provides means to add and delete model instances to
reflect changes in the managed environment, it must take care that adding and deleting facts
may not render the knowledge base inconsistent.

In this paper we present an approach for building a formal ontology for IT management
based on CIM including a domain model, model instances and rules, a runtime system that
manages the ontology, interfaces with the managed system to add and delete model instances,
and an engine to evaluate management rules. For the domain model, a conversion of CIM
to the Web Ontology Language (OWL) is performed. In order to assure the consistency of
the knowledge base, belief change theory is employed. Section 2 gives an overview of CIM
and belief change theory as background, while section 3 describes related work. Section 4
explains the management approach and how the runtime system is constructed. In section 5,
implementation details and performance measurements of the approach are discussed. The
paper closes with a summary in section 6.

2 Background

2.1 DMTF CIM Overview

This section briefly describes the basic properties of the Common Information Model. CIM
defines how managed elements in an IT environment are represented as a set of objects
and relationships between them. The model is intended to allow a consistent management
of these managed elements, independent of their manufacturer or provider. Unlike SMI
(Structure of Management Information, the model underlying the popular SNMP protocol),
CIM is an object-oriented model. CIM consists of
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A basic information model called the meta schema. The meta schema is defined using
the Unified Modeling Language (UML, [13]).
A syntax for the description of management objects called the Managed Object Format
(MOF).
Two layers of generic management object classes called Core Model and Common Model.

Figure 1 shows the CIM meta schema definition in UML, as shown in the CIM specifica-
tion [6]. The meta schema specifies most of the elements that are common in object-oriented
modelling, namely

Classes, Properties and Methods. The class hierarchy supports single inheritance (gener-
alization) and overloading of methods. For methods, the CIM schema specifies only the
prototypes of methods, not the implementation.
References are a special kind of property that point to classes.
Qualifiers are used to set additional characteristics of Named Elements, e.g. possible
access rules for properties (READ, WRITE), marking a property as a key for instances
(using Key) or marking a class as one that can not be instantiated. Qualifiers can be
compared to Java annotations; some qualifiers also have parameters.
Associations are classes that are used to describe a relation between two classes. They
usually contain two references.
Triggers represent a state change (such as create, delete, update, or access) of a class
instance, and update or access of a property.
Indications are objects created as a result of a trigger. Instances of this class represent
concrete events.
Schemas group elements for administrative purposes (e.g. naming).

Figure 1 CIM Meta Schema

Properties, references, parameters and methods (method return values) have a data type.
Datatypes that are supported by CIM include {s,u}int{8,16,32,64} (e.g. uint8 or sint32),
real{32,64}, string, boolean, datetime and strongly typed references (<classname> ref).

In addition to the CIM schema, CIM specifies a protocol, based on XML over HTTP,
which is used by CIM-capable network managers to query classes, instances and invoke
methods against a so-called CIM object manager (CIMOM).
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76 IT Management Using a Heavyweight CIM Ontology

2.2 Belief change and ontology change
The process of changing beliefs to take into account a new piece of information about the
world is called belief change. Belief change studies the process an agent has to perform to
accommodate new or more reliable information that is possibly inconsistent with existing
beliefs. Usually, beliefs are represented as a set of sentences of a logical language. Most for-
mal studies on belief change are based on the work of Alchourrón, Gärdenfors and Makinson
(AGM) [2, 1], which is now commonly referred to as the AGM theory. The AGM theory dis-
tinguishes three types of belief change operations that can be made: contraction, expansion
and revision. Contraction is retracting a sentence from a belief set, expansion is adding a
sentence to a belief set regardless of whether the resulting belief set is consistent, and revi-
sion is incorporating a sentence into a belief set while maintaining consistency. The AGM
trio specified postulates for contraction and revision operators which they claim should be
satisfied by all rational belief change operators.

As an ontology can be considered a belief base in the sense of the belief change theory,
the problems described hold for the change of ontologies as well. In this context, the problem
is known as ontology change. Belief change theory can not be directly applied to description
logics (which are the theoretical foundation of OWL) because it is based on assumptions
that generally fail for description logics [15]. However, the authors in [7] show that all
logics admit a contraction operator that satisfies the AGM postulates except the recovery
postulate. In [17], the authors show that the theory can be applied if the recovery postulate
is slightly generalized and to achieve this, replace the recovery postulate with the relevance
postulate by Hansson [9].

Another approach to the problem of ontology update is taken in [11], which proposes
an ontology update framework where ontology update specifications describe certain change
patterns that can be performed. An agent (knowledge worker) “issues a change request by
providing a piece of knowledge to be added to or deleted from the ontology”. The change
request is only accepted when the given ontology update specification accounts for it. An
applicable update rule from the update specification is determined and similar to a database
trigger, “the change request is acted on accordingly by denying or accepting it but possibly
also by carrying out more ontology changes than explicitly requested.”

3 Related Work

The idea of applying semantic web technologies to the domain of IT management has been
examined in several publications, notably by De Vergara et al., e.g. [3, 8], where a semantic
management framework is presented which integrates different definitions of the managed
resources, taking into account the semantic aspects of those definitions. In later works
they favor the use of OWL for the definition of the management ontology. As a domain
model, CIM is often proposed, although the conversion of the native format in which CIM is
specified into an ontology is not trivial. In [5] the authors provide a possible mapping for a
subset of CIM to OWL and in [16] the authors compare possible conversions of CIM to RDFS
(Resource Description Framework Schema) and to OWL. They find that RDFS is unsuitable
to express CIM as it does not allow to express constructs such as cardinality restrictions
and some CIM qualifiers. Instead, they construct an OWL-based ontology for CIM by using
a previously defined mapping of UML. Most CIM concepts (e.g. CIM qualifiers) however,
have no mappings to either UML or OWL constructs, so the resulting ontology lacks a large
part of the information that is provided in the original model. The authors in [12] introduce
a meta-ontology to model CIM constructs that have no direct OWL correspondence, but



A. Textor and J. Stynes and R. Kroeger 77

they do not describe how this meta-ontology is constructed, and their approach does not
specify how several qualifiers and more complex elements, such as CIM methods, can be
converted. The approach presented in this paper thus relies on the translation of CIM to
OWL described in section 4.2, and in more detail in [20].

To be able to model a heavy-weight ontology for management purposes, several papers
examine how SWRL (Semantic Web Rule Language) can be employed. In [8], the authors
propose a formal definition of the different management behaviour specifications integrated
with the management information definitions. They try to include both behaviour definitions
included implicitly in the management information and explicitly in policy definitions in the
resulting management ontology. Other works, notably [23] and [22], define a configuration
management ontology and augment the ontology with behaviour definitions in SWRL and
service definitions in OWL-S (an OWL ontology for describing Web Services).

4 Approach

4.1 Architecture
The goal of the approach presented in this paper is the management of a system using
a suitable domain ontology and a runtime system that performs the actual management
using the ontology. Although the approach is not limited to IT management (as the domain
ontology and interfacing components can be replaced), in this paper it is applied to the
domain of IT management. The domain ontology is defined in OWL, as this format is the
de-facto standard ontology language and allows the description of ontologies using classes,
object properties, data properties, cardinalities etc. As described in section 3, the Common
Information Model (CIM) has been examined and found to be an appropriate model for an
IT management ontology, however the translation of CIM to OWL has to be performed first.

Figure 2 Architecture

Figure 2 shows an overview of the proposed architecture. The grey box at the top
represents the runtime system and its components, while the elements at the bottom of the
diagram show the parts the runtime system interacts with. The components of the runtime
system are described in detail in the following sections.
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4.2 Model Import

First of all, the runtime system has a component to import the domain ontology into the
runtime ontology (which is shown at the top of figure 2). The domain ontology is a static
model that describes the entities in the managed system in detail. This component is
responsible for the translation of CIM to OWL. As described in section 3, this translation
is not trivial if most or all CIM constructs are to be translated, including CIM qualifiers.
When CIM is translated into OWL, the result is named CIMOWL here.

Some elements from the CIM schema can be translated in a straightforward way, while
other elements, especially qualifiers, can not be directly translated. To solve this problem,
the translation approach used here consists of two parts: One part is a CIM meta-ontology,
which is statically modelled (i.e. manually) and which consists of super classes, properties
and annotations that meta-model CIM constructs which can not be directly translated to
OWL. The second part is the CIM schema ontology, which is modelled using OWL, RDFS
and CIM meta constructs, and which represents the actual CIM model. It is automatically
created by parsing and translating the MOF representation of the CIM schema. One par-
ticular part of the translation, the implementation of CIM properties in the OWL model, is
given here as an example.

Figure 3 Modelling of properties

To implement CIM properties in the OWL model, a structure as shown in figure 3 is
used. In the figure, rectangular boxes represent OWL classes, rounded boxes with one
connection represent datatype properties and rounded boxes with two connections represent
object properties. Each CIM property is modelled as a combination of an OWL object
property and an OWL class. This class inherits from the meta ontology class CIM_Value
that has two datatype properties, “value” and “valueMap”. To model the semantics from the
original ValueMap and Values qualifiers, the class is restricted using owl:oneOf to allow only
instances from a list of CIM_Value instances (one for each ValueMap-Values combination).

The translation of CIM to OWL is described in more detail in [20]. Only constructs that
are valid in OWL DL are used; the resulting ontology has the expressiveness of OWL DL,
which allows for decidable reasoning.

The translation of the CIM schema has to be performed only once (and whenever the
ontology has to be updated, which can be necessary if a new version of the CIM schema is
released). CIM schema version 2.23.0 consists of about 1400 MOF files, containing roughly
the same amount of OWL classes, and is converted to about 70,000 OWL axioms. The
translation result is an OWL file which can be loaded by the runtime system on startup.
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4.3 Instance Import

The instance import component is the component of the runtime system reponsible for
acquiring up-to-date information from the managed system and incorporating it into the
runtime ontology. As such, it has three concerns: The first task is that of a CIM client. As
CIM is the domain model of choice, any CIMOM (CIM Object Manager) can be queried for
CIM instances. These instances represent concrete entities of the managed system, such as
hardware or software components. Queries are executed using the CIM protocol and result
in an XML document that describes a collection of instances.

The second task of the instance import component is the conversion of this CIM instance
data into the corresponding OWL instances. When performing this conversion, the resulting
OWL instances have to be compliant with the OWL representation of the CIM schema that
was created in the model import component and described in section 4.2. This means that
each CIM instance is mapped to a collection of OWL axioms (for class instances, object
properties and datatype properties, as necessary) that represent the same concept. Also,
primitive values must be converted accordingly: Each signed and unsigned number type is
translated to its XSD equivalent, e.g. uint8 becomes xsd:unsignedByte, sint32 becomes
xsd:int, real32 becomes xsd:float, and so on. Translation is mostly straightforward,
except for char16, which has to be translated into a string, and datetime, which has a
corresponding XSD data type but which specifies a different lexical representation for the
datetime string.

The third task for the import component is to act as a revision operator in the sense of
belief change theory (cp. section 2.2). When OWL axioms that are created when reading
CIM data from the managed system are to be added to the runtime ontology, they must
not render the ontology inconsistent. As the import component normally does not create
axioms that perform structural changes on the ontology when added, but only adds or
changes values, most of the problems that are studied in the field of ontology change can
be circumvented, i.e. a change that leads to an inconsistency does not happen easily. The
component must ensure however, that adding values that represent the current state of
some part of the managed system does not lead to ambiguities. When an instance for an
updated value is to be added, instances of the class the value belongs to have to be removed
accordingly. The import component has to make sure at this moment that the adding and
removing operations, once performed, result in a consistent state of the ontology, and in
unambiguous information.

4.4 Belief Revision Checker

The import component implements an interface for belief revision checks. AGM postulates,
updated for ontology change (see section 2.2), are implemented by the belief revision checker
component. As it is not possible to create a generic belief revision operator that works for any
knowledge base and any new fact, the belief revision checker implements the checks necessary
for a given revision operator to verify that it keeps the ontology consistent. Because these
checks have a comparably high computational complexity for reasoning, which can slow down
the runtime system considerably, the belief revision checker can be switched on and off as
necessary. When a new revision operator is installed in the system, the system is run with
the revision checker switched on, using representative data, to verify that the operator works
as intended (i.e., testing every case of axioms the revision operator adds or updates in the
ontology). For production use, the revision checker is then switched off, which reduces the
overhead to a minimum (the complexity for adding or removing instances in the ontology).
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Listing 1 Sample SWRL rule
CIM_DataFile (?f),
CIM_DataFile (? reffile ),
CIM_LogicalFile__LastAccessed (?f, ? lastaccvalue ),
CIM_LogicalFile__LastAccessed (? reffile , ? reflastaccvalue ),
CIM_LogicalFile__Name (?f, ? filenamevalue ),
CIM_LogicalFile__Name (? reffile , ? reffilenamevalue ),
CIM_LogicalFile__FileSize (?f, ? filesizevalue ),
value (? reffilenamevalue , ? reffilename ),
endsWith (? reffilename , "/ var/ reffile "),
value (? filesizevalue , ?size),
value (? lastaccvalue , ? lastacc ),
value (? reflastaccvalue , ? reflastacc ),
greaterThan (?size , 150000) ,
lessThan (? reflastacc , ? lastacc ) ->
LargeOldFile (? filenamevalue )

The instance import component can now continue its work, as its functionality has been
verified.

4.5 Specification and Import of Rules
While the model import component provides the static domain model in the ontology, and
the instance import component dynamically adds and removes model instances to reflect
changes in the managed system, the rule import component loads rules from external OWL
files into the runtime ontology. Rules are defined using the Semantic Web Rule Language
(SWRL) which can be embedded in an OWL ontology and can take into account both the
statically loaded CIM model and the dynamically added model instances. Therefore it is
possible to define rules that are triggered depending on the current state of the managed
system.

Each set of rules for a certain check or task is accompanied by the definition of classes
that are used in the context of these rules to denote the result of the triggered rule. Listing 1
shows a sample SWRL rule, which checks for files that surpass a certain file size (150,000
bytes in this case) and are older than a reference file (/var/reffile). As CIM does not
natively support the definition of rules, no standard ruleset exists that could be used for
testing the system. The sample rule given here was thus devised for this purpose.

CIM_DataFile(?f) identifies an instance f as belonging to the CIM_DataFile class,
while CIM_LogicalFile__FileSize(?f, *) match for the FileSize and Name properties
of the file, respectively. CIM_LogicalFile__LastAccessed matches for the dateTime value
at which the file was last accessed. The expression value(?filesizevalue, ?size) ex-
tracts the numerical value from the CIM_Value datatype property that is attached to the
file size object property. Using the SWRL builtin swrlb:lessThan on the values of the
LastAccessed fields, it can be determined if the file in question is older than the reference
file.

While the classes that start with CIM_* are defined in the CIM ontology, the class
LargeOldFile is defined to accompany the rule. All instances of CIM_DataFile that have
a CIM_LogicalFile__FileSize attribute with a value greater or equal 150,000 and were
last accessed before the reference file are defined to also belong to the class LargeOldFile.
The rule can be extended and used in a use case where large files that are older than a



A. Textor and J. Stynes and R. Kroeger 81

certain date on a filesystem should be compressed or archived. This example shows the
basic approach for the definition of rules. CIM models not only the file system but other
aspects of an IT environment as well, so rules covering other areas can be defined similarly.

4.6 Reasoner and Reaction

A reasoner is called to evaluate rules on the runtime ontology. For the example from sec-
tion 4.5, after the reasoning takes place, the reasoner can be queried for instances that
belong to the LargeOldFile class to receive the results from that rule. After these results
have been retrieved, axioms added by the reasoner during rule evaluation are removed from
the ontology to reset the state.

A custom module can be installed in the reaction component for a rule or a set of rules,
which is configured to watch a certain set of classes (e.g. in the sample case, LargeOldFile)
and decides how to react when instances of theses classes are found. Reactions can include
logging and reporting (e.g. sending SNMP traps to external network managers). More
importantly, the reaction module can make use of the CIM interface of the managed system.
By invoking CIM methods on the target machine, management decisions can be executed
using the existing interface.

5 Implementation and Performance

The translator from CIM to OWL and the runtime system were prototypically implemented
in Scala [21], a programming language that integrates object-oriented and functional features
and that compiles to Java Byte Code. Java libraries can be used in Scala programs, and
OWLAPI 2.2.0 was used for the creation of the ontology. As a reasoner, Pellet 2.2.1 was
employed. The CIM client component was custom built.

The conversion of the CIM schema to OWL takes about 35 seconds on an Intel Core 2 Duo
with 2 GHz and 2 GB RAM and results in a 12 MB OWL file. Loading the ontology using
OWLAPI takes approximately 10 seconds and uses 130 MB RAM on the same computer.

(a) Up to 13,000 instances (b) More than 30,000 instances

Figure 4 Reasoning Performance
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Figure 4 shows the performance of the runtime system and the time required for reason-
ing. For this diagram, the computer described above was used and the ontology used for
reasoning consisted of two parts: The first part is the CIMOWL ontology with 70,000 ax-
ioms, the second part was a varying amount of OWL instances representing CIM_DataFiles
of a server file system. Each CIM_DataFile is represented as a set of 27 OWL instances,
which include the instance for the file and one instance for each of the file attributes (file
size, modification time, etc.). SWRL rules to categorize files by size (as demonstrated in
listing 1) were loaded into the ontology. The test ran on JDK 1.6.0_20. CIM queries were
executed on an OpenPegasus ([14]) installation running locally, including a custom built
file system instance provider. As the CIM queries take a few milliseconds, their impact on
overall performance can be neglected.

In figure 4a the range from 0 to 13,000 instances is shown, which equates to 0 to 500
files. For 2,000 instances and less, the reasoning takes always at least 9 seconds. The graphs
show a nearly linear increase in time needed for more instances. Figure 4b shows the limit
of the tested system at 130,000 OWL instances, or around 5,000 files. After that, the graph
shows a steep rise due to swapping.

The performance results show that the system in its current configuration is not suited
for rules that need to be evaluated with a short reaction time (i.e., less than a few seconds).
However, a reasonable number of instances for real world applications can be handled.
Several changes of the configuration to increase reasoning performances are possible: The
reasoning time can be greatly reduced, if only the closure of axioms the rules and instances
depend on are loaded into the reasoner. Finding such a closure is not trivial because the
corresponding subclass relations and associations have to be taken into account. Another
possibility to reduce reasoning time is to reduce the instance count by adding only those file
attribute instances relevant to the reasoning result to the ontology.

6 Summary and Future Work

In this paper we presented an approach for management of an IT system, based on the
Common Information Model and a heavyweight ontology. Construction of a heavyweight
ontology serves multiple purposes: It contains a complete domain model (defined as com-
prehensively as possible) in a format which is suitable for integration of the managed system
with adjacent domains. For example, if processes in an ontology for semantic business pro-
cess management (see e.g. [10]) refer to physical or logical IT systems, such references can
be directly and unambiguously expressed. More importantly, the heavyweight ontology con-
tains model instances that represent the current state of the real world managed system.
This allows the definition of behaviour rules that are part of the ontology and reference both
model and model instances.

As domain ontology, CIM was chosen, as it is a comprehensive and actively used domain
model. As ontology language OWL was applied, as it is the de-facto standard for ontology
modelling, and was shown to be the best choice for a translation of CIM. An overview to
the approach for the translation of CIM into OWL was given.

A runtime system was presented which is capable of converting the CIM schema into
the OWL format and can load the model ontology and statically defined rules in the SWRL
format. Moreover, the runtime system acts as a CIM client to gather information about the
current state of the managed system and converts this data into corresponding CIM OWL
instances. A reasoner that is part of the runtime system is then used to evalute the rules
using the model and the current instance data. Reasoning results are used in a reaction



A. Textor and J. Stynes and R. Kroeger 83

module that can perform arbitrary reactions based each specific rule, in particular issuing
CIM requests for calling CIM methods.

By implementing a belief revision operator according to the postulates from belief change
theory and adjusted to ontology change, the runtime system component that adds and
updates instance data in the ontology makes sure that the ontology stays consistent.

The CIM model is the basis for other standards, such as the storage standard SMI-S
(Storage Management Initiative Specification) of the SNIA (Storage Networking Industry
Association, [19]), and SMASH (Systems Management Architecture for Server Hardware),
a DMTF standard for the unification of the management of data centers. This makes it
possible to apply the presented approach directly to ontology-based storage management,
where management rules can be specified in SWRL, and ontology-based virtual machine
management (for example, VMware server provides a SMASH API). Especially in storage
management, usually a large number of rules exist, which can be defined in a coherent man-
ner with the model using the presented approach. As all necessary parts are implemented,
application to storage and virtual machine management is investigated in the next step.
This investigation will lead to a broader and more detailed evaluation scenario.

Future work also includes the performance optimizations discussed in section 5, especially
automatically finding a closure of axioms required for rule evaluation and thus reducing the
total OWL instance count. In the long term, the application of the approach to another
domain is investigated, Ambient Assisted Living (AAL), where devices and services are
combined to provide support for daily life of assisted persons.
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