
17th GI/ITG Conference
on Communication in
Distributed Systems
(KiVS’11)

17. GI/ITG Fachtagung Kommunikation in Verteilten Systemen,
March 8–11, 2011, Kiel, Germany

Edited by

Norbert Luttenberger

Hagen Peters

OASIcs – Vo l . 17 – KiVS’11 www.dagstuh l .de/oas i c s



Editors

Norbert Luttenberger, Hagen Peters
Institut für Informatik
Christian-Albrechts-Universität zu Kiel
{nl|hap}informatik.uni-kiel.de

ACM Classification 1998

C.2.4 Distributed Systems

ISBN 978-3-939897-27-9

Published online and open access by

Schloss Dagstuhl – Leibniz–Zentrum für Informatik gGmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Publication date

March, 2011.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
license: http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the author’s moral rights:

Attribution: The work must be attributed to its authors.

Noncommercial: The work may not be used for commercial purposes.

No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.KiVS.2011.i

ISBN 978-3-939897-27-9 ISSN 2190-6807 http://www.dagstuhl.de/oasics



iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Dorothea Wagner (Karlsruhe Institute of Technology)

ISSN 2190-6807

www.dagstuhl.de/oasics

KiVS’11





Preface

Our world is in its public and private spheres, and equally in its economic, political and cultural
domains more and more affected and influenced by the permanent availability of a huge variety
of different kinds of information. It seems natural that in this world communication itself,
communication in all its facets (i.e. from bearer networks over endsystems to information
syntax and semantics) is undergoing a fundamental process of change—a process of change
that, though being a constant, is only seldom of such fundamental depth as can be observed
today in the networking and communications arena.

Network providers around the world have started to consolidate their infrastructure into
All-IP networks. The well-beloved Plain Old Telephone System is going to vanish in the
next 10 to 15 years, and its successor is not the long believed-in global ATM network with
its controllable QoS, but it is . . . plain old IP! (Is POIP being the new abbreviation that
we have to teach to our students?) This process is as ambitious as chancy, but seems to be
inevitable when regarding the ever increasing data streams that cross the Internet.

Present-day mobile endsystems incorporate capabilities that until yesterday have been
reserved to devices that find themselves on desks, but not in pockets. Smart environments
hosting ubiquitous computing devices let people experience the world as both a real and a
virtual "thing" at the same time. And no doubt: It is the virtual side that today fascinates
most people! The emphatic acceptance of the new species of devices lets us easily speculate
on even faster, more powerful devices tomorrow.

Upper layers functions (Yes–the authors of these lines are strong followers of ISO’s OSI
reference model!), though never fully spelt out in the Internet world, are re-animated and
augmented in new shape, being called the Semantic Web Layer Cake, where the somewhat
disrespectful "cake" seems to reflect the wish for a less bureaucratic kind of architecture
definition, something more homebrew. Related efforts strive to bring "better" information to
people and even let machines do the information provisioning work. The goal is still very far,
but semantic technologies are available today that provide a sound base to build upon.

Only the ongoing security and privacy problems seem to be a permanent companion on
the path to a new communications world. He/she changes face, but we seem unable to get
rid of this nasty free rider . . .

KiVS’11 reflects several aspects of these world trends, and KiVS’11 does it on a high-
quality level. From 55 submissions, the program committee accepted 14 papers as full papers,
5 as short papers, and 4 as industry papers. This careful selection ensures that KiVS is going
to stay the most important conference on all kinds of communication-related matters in the
German-speaking countries.

Though KiVS’ focus is clearly on contributions from these countries, it takes another
step to becoming more international: The conference proceedings are published in Open
Access format for the first time, which makes them easily accessible via the Internet, and
English is the only accepted language for the proceedings.

KiVS’11 for the first time hosts an Industry Track. This is to show the close intertwining
between academic and industrial research. The publishers think that this track should also
enhance further KiVS conferences.

We thank all authors for their efforts in providing their input and hope that both scientific
and personal discussions during the conference are rewarding for all participants.
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The Scope of the IBGP Routing Anomaly Problem

Uli Bornhauser1, Peter Martini1, and Martin Horneffer2

1 University of Bonn – Institute of Computer Science 4

Roemerstr. 164 – D-53117 Bonn – Germany

{ub, martini}@cs.uni-bonn.de

2 Deutsche Telekom AG – Technical Engineering Center

Hammer Str. 216 – D-48153 Muenster – Germany

martin.horneffer@telekom.de

Abstract

Correctness problems in the iBGP routing, the de-facto standard to spread global routing informa-
tion in Autonomous Systems, are a well-known issue. Configurations may route cost-suboptimal,
inconsistent, or even behave non-convergent and -deterministic. However, even if a lot of studies
have shown many exemplary problematic configurations, the exact scope of the problem is largely
unknown: Up to now, it is not clear which problems may appear under which iBGP architectures.

The exact scope of the iBGP correctness problem is of high theoretical and practical interest.
Knowledge on the resistance of specific architecture schemes against certain anomaly classes and
the reasons may help to improve other iBGP schemes. Knowledge on the specific problems of the
different schemes helps to identify the right scheme for an AS and develop workarounds.

1998 ACM Subject Classification Computer-Communication Networks: Network Protocols –
Protocol verification, Routing protocols

Keywords and phrases Inter-domain Routing, Border Gateway Protocol, Routing Anomalies

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.2

1 Introduction

The Internet we know today is a system of independent, interconnected Autonomous Systems
(ASs). The Border Gateway Protocol (BGP) [12] is the de-facto standard used to exchange
global routing information between ASs. The process of spreading global routing information
within ASs is usually implemented via internal BGP (iBGP), a particular operational mode
of BGP. However, even if iBGP is widely used, it may come along with correctness problems.

1.1 Motivation and Objectives

While classical iBGP is based on a logical full-mesh, expected scalability problems led quickly
to the development of alternative information exchange schemes. Two of these schemes, BGP
Route Reflection [2] and AS Confederations [14], were finally standardized, implemented, and
frequently deployed. Today, it is well known that these schemes are prone to serious correctness
problems [6]. Various studies, cf. [6, 9], for example, have shown different classes of conflicts
with basic correctness properties; iBGP anomalies. However, even if the causes are known [5],
the scope of the problem is still unknown: Are iBGP anomalies a direct consequence of using
scalability techniques or may similar problems also appear if full-mesh iBGP is used? What
causes may appear under which iBGP information exchange schemes? Is – and how is – it
possible to address the causes with operational means, i.e. without any protocol modifications?
Adequate answers are of high theoretical and practical interest: They help protocol designers
to combine the advantages of different schemes and support operators addressing anomalies.
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licensed under Creative Commons License NC-ND
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Uli Bornhauser and Peter Martini and Martin Horneffer 3

1.2 Directly Related Work

In 2000, studies of Cisco Systems [6] and McPherson et al. [12] showed that the iBGP routing
is prone to consistency problems in general. Two years later, Griffin et al. [9] could show that
consistency problems are only the tip of the iceberg: They presented a series of simple and
largely realistic configurations revealing further correctness problems. In the same year, Basu
et al. [1] proved that at least verifying the consistency of an iBGP configuration is NP-hard.
Based on this insight, different concepts which try to alleviate or avoid the observed problems
were developed in the following years. However, since none of them can be used unconditional-
ly in production systems, iBGP anomalies are still an issue today. An interesting aspect of all
previous studies is that anomalies are usually understood as a side-effect of an information
reduction compared to fully meshed iBGP [10, 11]. Some studies even go that far to implicitly
assume full-mesh iBGP as inherently anomaly-free [7] – without any proof.

Even if the root causes for iBGP anomalies are well-known [5], the exact scope of the
problem was never studied. Today, it is known that scalability techniques facilitates effects
inducing anomalies. However, a complete, structured overview of the problem does not exist.
Problems in full-mesh iBGP are unknown so far. This is the starting point for our analyses.

1.3 Paper Outline

The rest of the paper is organized as follows. At first, in section 2, we summarize the most
important aspects of iBGP relevant in the context of this paper. In section 3, we introduce the
problems that may come along with iBGP and sketch their root causes. Knowing the different
anomaly classes, in section 4 we study the standardized iBGP schemes in terms of their vulner-
ability to the anomaly classes. In section 5, we give an outlook on possible workarounds and
solutions. Finally, we close with a short conclusion and aspects for future work in section 6.

2 The Border Gateway Protocol

The Border Gateway Protocol is a classical path vector protocol. In this section, we outline the
main aspects of BGP that are relevant in the context of the following analyses. Nevertheless,
readers of this paper should be familiar with internal BGP, BGP Route Reflection, and AS
Confederations. Details on iBGP and its exchange schemes may be found in [2, 12] and [14].

2.1 Basics on the Border Gateway Protocol

Today, BGP is the de-facto standard Exterior Gateway Protocol. BGP speakers forward traffic
via a unique best path. This path is determined by applying the BGP path selection function
on all known paths. Paths are known due to local configuration and advertisements of system-
external and -internal BGP peers. BGP peers only advertise their best path and only if this
path is not already known. To be able to focus on iBGP issues, we assume that the external
and local paths each speaker knows are time-invariant. Traffic forwarding via a path is realized
via the BGP next-hop it specifies. Under common edge conditions (as assumed in this paper),
it specifies the router where the path is externally learned or locally configured. Traffic that
reaches this router is correctly forwarded out of the AS. The forwarding to the BGP next-hop
is realized on a hop-by-hop basis via the shortest Interior Gateway Protocol (IGP) route.

A BGP path is defined by path attributes. The Local Preference, AS-path Length, Origin
Code, Multi Exit Discriminator (MED), and peer-AS are global path attributes. In contrast
to local attributes, they are equal on every router within an AS. They do not depend on the
topological position within the AS. Based on the path attributes, paths can be compared.

KiVS’11



4 The Scope of the IBGP Routing Anomaly Problem

2.2 The BGP Path Selection Process

Let π denote the paths known by a BGP speaker v for a certain destination. After removing
unresolvable paths from π, v’s best path is determined by the following selection process. If
π is empty, no best path for the destination exists on router v.

Step 0) Remove all paths from π that are not tied for having the lowest Local Preference.
Step 1) If any path is locally configured on v, remove all non-local paths from π.

Step a) Remove all paths from π that are not tied for having the shortest AS-path Length.
Step b) Remove all paths from π that are not tied for specifying the lowest Origin Code.
Step c) Remove all paths from π that do not have the best MED for their peer-AS group.
Step d) If paths are externally learned, remove all internally learned paths from π.

Step e) Remove all paths from π that are not tied for having the lowest IGP distance to
the specified BGP next-hop.

Step f) Remove all paths from π which are not tied for specifying the lowest BGP ID.

Step g) Choose and return the path from π that specifies the lowest Peer-address.

An important aspect of the selection process is the fact that MEDs can only be compared if
the paths specify the same peer-AS. The peer-AS specifies the source of a routing information.
It can be derived from the AS-path attribute, cf. [12]. As MEDs can only be compared within
a peer-AS group, path rankings may behave non-transitive: For arbitrary paths p, q, and r,
it may hold that p<q, q <r, and r<p, where < is the order defined by the selection process,
cf. figure 5.a). Details on the other BGP path attributes may be found in [12].

2.3 Terms and Identifiers

To establish a common language, a few terms and identifiers are introduced at first. A path,
i.e. the external or local BGP routing information a router knows, is denoted as BGP path. A
BGP path is propagated via signaling paths according to the applied iBGP scheme through
an AS. The tuple of BGP path and BGP next-hop specifies all forwarding information a
signaling path contains. It is denoted as delivery path. A signaling path resolvable at router
v that is propagated according to the applied iBGP scheme is called permitted at v ∈V . The
set V covers all routers within the AS. The set of paths permitted at v is written as Pv. The
selection process of BGP defined above is formalized by the selection function λ. λ is always
applied for the local view of a router v, written as λv, to a subset of its permitted paths. If λv

is applied up to and including step e) to all paths Pv permitted at v, the router’s cost-optimal
paths Ωv

c =λv(Pv) are calculated. They optimize the forwarding costs. The definition stresses
the fact that the BGP ID and Peer-address are only tie-breaker criteria. We label signaling
paths usually with the letters p or q. A signaling path p permitted at v is usually identified
as pv. The underlying delivery path is labeled as ṗv, the BGP path as p̄.

Once traffic reaches the BGP next-hop, it leaves the system by definition. The forwarding
to the BGP next-hop is realized via the AS’s IGP. The IGP forwarding route from v to the
BGP next-hop a delivery path ṗv specifies is labeled as fv→ṗv

. The route without the BGP
next-hop (the last physical hop on the IGP route) is written as f1

v→ṗv

.
In what follows, we study the BGP routing in an iBGP configuration. Such a configuration

is defined by the routers V , the physical network topology in the AS, the BGP paths available
at each v ∈V , and the AS’s iBGP peering structure. The routing decision v has made is defined
by the delivery path the selected best path represents. The tuple s=(ṗ1, ..., ṗn) |1≤ i≤n, i∈V
of delivery paths specifies the state a configuration has entered. Over time, the configuration
moves from state to state until a stable state is entered: The delivery paths the routers select
do not change any more. The set of all states the configuration may enter is written as S.
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3 IBGP Routing Anomalies and their Root Causes

Even if the specific demands on routing protocols and information exchange schemes generally
differ, correctness specifies a universally valid requirement. Details on this requirement and
the causes for the problems iBGP comes along with are discussed in what follows.

3.1 Correctness Properties and Routing Anomalies

The correctness of a routing protocol is determined by three basic properties: Expressiveness,
Global Consistency, and Robustness [5, 7, 8]. A protocol behaves correct, if these properties
are fulfilled in arbitrary configurations that match the protocol specification. A definition of
the three correctness properties is given in what follows. Details may be found in [5].

3.1.1 Expressiveness

Expressiveness is the first correctness property. It states that the routing implements traffic
forwarding according to the “natural forwarding costs”. This means that if a destination is
reachable via a policy-conform path, traffic forwarding is implemented via a cost-optimal path.
The cost-optimal paths are determined by the distance metric the protocol uses. As specified
for iBGP, cf. section 2.3, they remain after applying the cost-relevant steps of the protocol’s
path selection process to all available paths. Tie-breaker rules are cost-irrelevant. If a router
does not comply with expressiveness, it routes cost-suboptimal, cf. figure 1.a). Cost-suboptimal
routing decisions lead to unnecessary costs and may even foil traffic transition arrangements
like – in case of BGP – defined by the MED.

3.1.2 Global Consistency

Global consistency is an essential property for hop-by-hop based routing protocols. It states
that the local routing decisions routers make are free of conflicts: If traffic is forwarded by a
hop to another to reach a destination via a certain route, the next-hop has to continue the
intended route. If a next-hop on an intended route redirects traffic onto another route or to
another destination, inconsistency is present, cf. figure 1.b). Local policies may be overridden
and – in special circumstances [9] – forwarding loops may be induced.

3.1.3 Robustness

Robustness means that the local processes the protocol defines always lead to a stable state.
The routing must converge. The state the configuration finally enters must be predictable in
advance if the initial state and configuration are known. The routing processes must behave
deterministic. If the routing may not converge, it is vulnerable to divergence. If the final state
is not predictable, the routing is vulnerable to non-determinism, cf. figure 1.c). Divergence
and non-determinism may cause paket re-orderings, losses, and complicate routing analyses.




  

 

















 
















 




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Figure 1 Conceptual illustration of cost-suboptimal routing, inconsistency, and non-determinism.
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6 The Scope of the IBGP Routing Anomaly Problem

3.2 IBGP Anomalies and their Root Causes

Using the identifiers defined in section 2.3, anomalies in the iBGP routing can be traced back
to six root causes, cf. [5]. They are introduced in what follows. Note that in contrast to the
generic definitions given in section 3.1, the root causes are specific for the protocol.

3.2.1 Cost-suboptimal Routing

Obviously, it only makes sense to assess a routing decision as cost-suboptimal if the decision
is permanently. This is the case, if the configuration has entered a stable state s ∈ S. In this
state, every router v ∈ V selects its best path by applying the selection process to the known
paths. Consequently, cost-suboptimal routing is present in state s, if and only if

∃v ∈ V : λv(πv

s ) /∈ Ωv

c ,

where πv
s denotes the paths known in state s. Due to the design of BGP, this may have two

reasons: Obviously, a router cannot select a cost-optimal path as best one if no such path is
known. If such paths are known, they may be masked since no transitive ordering relation is
defined, cf. figure 5.a). Both root causes can formally be differed as

v ∈ V : (πv

s ∩ Ωv

c ) = ∅ (1) and v ∈ V : (πv

s ∩ Ωv

c ) &= ∅ ∧ λv(πv

s ) /∈ Ωv

c (2).

3.2.2 Inconsistency

Similar to cost-suboptimal routing, referring to inconsistency only makes sense if a configura-
tion has entered a stable state s ∈ S. By assumption, traffic is correctly delivered once it has
reached the BGP next-hop, cf. section 2.1. Inconsistent local views may thus only appear on
the IGP route to the BGP next-hop: A router may take away the traffic from the intended
route and redirects it to another BGP next-hop. Another delivery path is used. It holds that

∃v ∈ V, u ∈ f1
v→ṗv

\ {v} : ṗv &= ṗu,

where px = λx(πx
s ) denotes the best path of and πx

s the paths known by router x ∈ {v, u} in
state s. If inconsistency is not a side-effect of a cost-suboptimal routing, it is caused by dissent-
ing local views. Dissenting views of v and u may have two reasons: Firstly, they may appear
due to a simple lack of routing information required for consistent routing decisions. Provided
with adequate paths, u and v choose consistent delivery paths. The basic problem is illustrated
in a simplified manner in figure 2.a). Secondly, inconsistent views may be a result of dissenting
path rankings. The BGP paths are not equivalently preferred by v and u. Induced by cost-
relevant local path attributes that behave non-isotonicly [13] on a forwarding route, additional
routing information is not helpful, cf. figure 2.b). Both root causes can be formalized as

∀pv, qv ∈Pv, pu, qu ∈Pu | u∈f1
v→ṗv

:

λv({pv, qv})=pv ⇒λu({pu, qu})=pu

| ṗv = ṗu, q̄v = q̄u

(3) and

∃pv, qv ∈Pv, pu, qu ∈Pu | u∈f1
v→ṗv

:

λv({pv, qv})=pv &⇒λu({pu, qu})=pu

| ṗv = ṗu, q̄v = q̄u

(4).

3.2.3 Divergence and Non-determinism

In contrast to cost-suboptimal routing and inconsistency, robustness problems do not affect
single states. They refer to an unwanted behavior of transitions between states sx ∈ S. If a
configuration is vulnerable to divergence, a cycle may be traversed. Formally, it holds that

∃s0, sx, sy ∈ S : s0→̈sx→̈sy→̈sx | sx &= sy,
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 
   

   
   

   

 









Figure 2 Inconsistency is either a result of an information lack (b) or dissenting path rankings (b).

where s0 denotes an initial state of the configuration. If a configuration is vulnerable to non-
determinism, state transitions from an initial state to at least two different stable states exist.
If sx and sy denote stable states, it formally holds that

∃s0, sx, sy ∈ S : sx←̈s0→̈sy | sx &= sy.

Both, vulnerability to divergence and non-determinism can be traced back to a conceptual
defect of the state transition function. It holds that:

An iBGP extension or architecture scheme causes vulnerability to divergence, if and only if its
update process definition does not define a partial order on the possible states arbitrary iBGP
configuration may enter. [5] (5)

An iBGP extension or architecture scheme causes vulnerability to non-determinism, if and
only if the partial order does not define a least element on the states an arbitrary configuration
may enter. [5] (6)

The root causes for robustness problems are shown in figure 3.a) and .b). Figure 3.c) illustrates
the basic idea behind robust state transitions.

 












 





  

 






 

Figure 3 Divergent (a), non-deterministic (b), and robust (partial order, least state) (c) transitions.

4 Studies for Common IBGP Information Exchange Schemes

In literature, correctness problems in the iBGP routing are usually associated with information
reduction schemes, cf. section 1.2. Anomalies in fully meshed iBGP configurations were never
demonstrated. However, neither the correctness of full-mesh iBGP was ever entirely proven
nor systematically studied to which root causes the information reduction schemes are prone
to. Evaluating these aspects is tackled in what follows.

4.1 Full-meshed iBGP

Full-meshed iBGP, the original AS-internal BGP scheme specified in the protocol standard [12],
realizes a logical full-mesh for the information exchange. As shown in [3, 5], the state transition
process based on such a full-mesh can be mapped to a partial order relation with a least
element. This property excludes the root causes (5) and (6) for arbitrary configurations; full-
mesh iBGP always behave robust. Whether the remaining root causes can appear is unclear.

4.1.1 Cost-suboptimal Routing

As explained in section 3.2.1, cost-suboptimal routing decisions may have two different causes:
Either no cost-optimal path is known (1) or sub-optimal paths mask the cost-optimal ones

KiVS’11



8 The Scope of the IBGP Routing Anomaly Problem

(2). In a fully meshed configuration, the first root cause may never appear while the second
one may appear. Both properties are proven in what follows.

Firstly, we show that if a configuration is fully meshed, every router knows a cost-optimal
path. Let v ∈ V be a router of a configuration that has entered a stable state. By assumption,
it knows none of its cost-optimal paths. Furthermore, let p ∈ Ωv

c be an arbitrary cost-optimal
path of v. Let u ∈ V denote the BGP next-hop where the underlying BGP path p̄ is local or
external. It knows a signaling path p̄(u) corresponding to the same BGP path p̄. Both paths
p and p̄(u) specify equal global path attributes. As shown in figure 4, three cases are possible:
If v =u, cf. figure 4.a), it holds that p= p̄(u). A cost-optimal path is known. If v &=u, u may
have chosen path q ∈ Pu |q &= p̄(u) as its best path, cf. figure 4.b). Compared to p̄(u) and p,
this path specifies global attributes of equal preference. Otherwise, as it can be verified easily,
u would either not choose q as its best path or p would not be cost-optimal on v. Since p̄(u)
is local or external on u, q must be local or external on u, too. If this would not be the case,
u would not select q as its best path. Consequently, the signaling path q̄(u, v) permitted and
known at v representing q̄ specifies u as BGP next-hop. It comes along with the same IGP
distance like path p. All in all, q̄(u, v) and p specify cost-relevant path attributes of equal
preference. It holds that q̄(u, v) ∈ Ωv

c . As this path is known at v, v knows a cost-optimal
path. Finally, it may be that u &= v has selected p̄(u) as its best path. Due to the fact that a
full-mesh is applied, this path is expanded to v and thus known. In all three cases, at least
one cost-optimal path is known by v. This is a contradiction to the assumptions.
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Figure 4 Realizing iBGP via a full-mesh, each router v ∈V knows at least one cost-optimal path.

Path maskings, root cause (2), may appear since BGP does not define a transitive ordering
relation on arbitrary paths. The basic problem is shown in figure 5.a): Knowing three with
respect to the first four attributes equally preferred paths p, q, and r for two peer-AS groups
x and y, MEDs are evaluated in step c). For those paths q and r specifying the same peer-AS
group y, the MEDs are compared. If different MEDs are specified, the path with the worse
MED, here r, is discarded. If path q is now beaten by p in the remaining steps of the selection
process, knowledge on q may be essential for a cost-optimal routing decision: If q is unknown,
p may lose the decision process against r due to attributes evaluated after step c), the MED.
The cost-suboptimal path r can mask path p if q is unknown, even if p is cost-optimal.

As shown in figure 5.b), a situation where a cost-optimal path is masked may also appear
if an iBGP configuration is fully meshed. Router u knows all three available exit points. In
the decision process, q̄(u) beats r̄(v, u) in step c) (lower MED), and p̄(u) beats q̄(u) in step f)
(lower BGP ID). Consequently, v is not aware of q̄(u, v). The known cost-optimal path p̄(u, v)
is masked by r̄(v), cf. figure 5.a). For all that is known, this possibility was unknown so far.

4.1.2 Inconsistency

As explained in section 3.2.1, inconsistent routing decisions can have two different root causes:
Missing information on relevant paths (3) and dissenting path rankings (4). Using an iBGP
full-mesh, a lack of information that leads to inconsistent local views, root cause (3), cannot
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Figure 5 The BGP path selection process does not define a transitive ordering relation (a). This
may cause path maskings even in fully meshed iBGP configurations (b).

appear. As depicted in figure 6, the full-mesh structure ensures that v and u learn the same
delivery paths from all other routers w ∈ V \{v, u}. Since v forwards traffic system-internally,
its best path is internally learned. It does not advertise any path. Router u has either chosen
an internally learned path as best path and advertises no path or else has chosen a local or
external path which is advertised to v. All in all, the information basis v and u have only
differ in externally learned and locally configured non-best paths.

By assumption, we know that if we take only the common information basis into account, v
and u select a representation of the same BGP path. This is guaranteed by the edge condition
defined by equation (3). The routing is consistent. As local paths are preferred in step 1) of
the selection process, a router’s non-best local path certainly has a lower Local Preference than
its best path. Consequently, if such a path is known on v or u, it has no effect on the routers’
routing decisions. External paths are preferred in step d). Thus, if a non-best external path is
known, the best path specifies better global path attributes: A higher Local Preference (LP),
equal LP and shorter AS-path Length (ASpL), equal LP, ASpL, and lower Origin Code (OC),
or equal LP, ASpL, OC, and same peer-AS group with lower MED. Again, in all possible
cases externally learned paths have no effect on the routing decision. Consequently, even if
such paths are known, the same routing decision is made as if only the common information
base would be known. Root cause (3) can never occur if full-meshed iBGP is used.
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


Figure 6 Using a full-mesh, the routing information of v and u differ only by local and external
non-best paths (a). Despite of the full-mesh, inconsistency due to root cause (4) may appear (b, c).

Next, we check whether full-mesh iBGP is prone to root cause (4). For that purpose, we
analyze the decision process and try to identify paths satisfying the equation. For paths that
match the equation, we sketch an exemplary configuration. If equation 4 is satisfied, it holds
that ṗv = ṗ= ṗu, q̄v = q̄ = q̄u, and that router v prefers pv to qv. Based on these assumptions
and the fact that v forwards traffic to a BGP next-hop “behind” u, all possible preferences for
the representations permitted at v and u are shown in the RC4-tree, cf. figure 7. Equation (4)
is satisfied, if v prefers pv, while u prefers qu. Note that ṗv = ṗ= ṗu ⇒ p̄v = p̄= p̄u.

Local Preference If path pv is preferred to qv by v due to a higher Local Preference, path
pu is also preferred over qu by u. This is the case, since the Local Preference is a global path
attribute. It is the same for all representations of a BGP path. If both underlying BGP paths
specify the same Local Preference, the subsequent attributes define the path preferences of v
and u. Following steps of the decision process are of interest.
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
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



Figure 7 Possible path preferences under the assumptions given by root cause (4). Blue leaves
specifying preferences satisfying root cause (4) (RC4), green ones specify a conflict.

Local Paths If step 1) is relevant, neither v nor u prefers any of its paths yet. By assumption,
p̄ is neither local on v nor on u. Since v does not prefer qv, q̄ is not local on v, too. The cases
that q̄ is local on u (qu: local) and that it is not local on u (qu: not local) remain.
AS-path Length If q̄ is local on u, it specifies an AS-path Length of zero. As v prefers path
pv, the AS-path Length of p̄ must be zero, too. Following path attributes define the final
preferences. This is also the case if q̄ is not local on u, while both BGP paths specify the
same AS-path Length. If p̄ specifies a shorter AS-path, v prefers pv and u prefers pu.
Origin Code As pv is preferred by v, path p̄ specifies the same or a better Origin Code than
q̄. In the former case, independent of whether q̄ is local on u or not, v has no preference yet.
Following attributes are crucial. In the latter case, v prefers pu. If q̄ is not local on u, u also
prefers pu, equation (4) is not satisfied. If q̄ is locally configured on u, u prefers path qu. This
satisfies equation (4). An example that realizes this case is illustrated in figure 6.b).
MED Since pv is preferred by v, p̄ specifies either the same (or an incomparable) or a better
MED than q̄. In the former case, the following attributes are crucial, independent of whether
q̄ is local on u or not. In the latter case, pu is preferred on u if qu is not local on u. The root
cause is not matched. If qu is local on u, path qu is already preferred by u. Root cause (4) is
satisfied. However, this scenario seems unusual: Since both paths specify an empty AS-path,
both paths are locally configured in the AS. For local paths, the MED is usually not specified.
A default value is evaluated instead. Nevertheless, a conceivable example is shown figure 6.c).
External Paths According to local paths, no path is externally learned on v and q̄ may be
external on u. If q̄ is local on u, it cannot be external on u, too. If q̄ is not local on u, it may
be external on u or not. Three cases that may satisfy equation (4) remain, cf. figure 7.
IGP Distance As we assume that IGP distances increase strictly monotonically, the distance
from v to u is smaller than the distance to any BGP next-hop behind u. Consequently, if q̄
is local or external on u while the preceding attributes did not define a preference on v yet,
v prefers path qv. This is a contradiction to the assumptions. It remains the case that q̄ is
neither local nor external on u. If the BGP next-hop given by ṗ is closer to v than the one
given by q̇, this also holds for u. Equation (4) may only hold if both IGP distances are equal.
BGP ID In the remaining open case, pv and qv as well as pu and qu are equally preferred by
v and u, respectively. They are internally learned on v and u. Because every router advertises
only its best path and p̄ &= q̄, both pv and qv as well as pu and qu specify different BGP IDs.
As v prefers pv, pv specifies a lower BGP ID than qv. If path pu also specifies a lower BGP
ID than qu, consistent rankings are defined. If pu specifies a worse ID than qu, root cause (4)
is matched. However, in a full-mesh, this case cannot appear in practice: Since pv and pu as
well as qv and qu are advertised by the same router, pu specifies the same BGP ID like pu

and qu like qu. Consequently, pu has a lower BGP ID than qu.

All in all, full-meshed iBGP turned out to be prone to expressiveness and global consistency
problems. The correctness problems that may appear are summarized in table 1.
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Expressiveness Problems Global Consistency Problems Robustness Problems

No known Path Lack of relevant Inconsistent Cyclic state No least
optimal path (1) maskings (2) paths (3) path rankings (4) transitions (5) state exists (6)

impossible possible impossible possible impossible

Table 1 Possible root causes for iBGP anomalies in fully-meshed iBGP configurations.

4.2 BGP Route Reflection AS Confederations

Since Route Reflectors and routers within a member-AS are fully meshed, Route Reflection
and AS Confederations are prone to the same problems like full-mesh iBGP. However, as both
concepts realize an information reduction compared to a full-mesh, further causes may appear.

Anomalies caused by a lack of information (root cause (1) and (3)) as well as robustness
problems are well-known and well-studied phenomenas if Route Reflection or a Confederation
is applied. For that reason and due to the space limitation, we confine ourselves to sketch only
the conceptual problems for these problem classes.

A cost-suboptimal routing decision due to a lack of cost-optimal paths, root cause (1), is
very easy to induce. It appears if the Route Reflectors or the member-AS Border Routers do
not reflect a router’s cost-optimal paths. This behavior occurs if none of the relevant paths is
the best one from the reflectors’ points of view. A simple example for such a configuration is
shown in figure 8.a). An example for AS Confederations can be designed analogously. Root
cause (3), inconsistent routing decisions due to a lack of relevant information, can be induced
in a similar way. Inconsistent routing decisions are made, if router u on the IGP forwarding
route to the BGP next-hop knows a better path q̄ that is not reflected. Again, this is the case
if q̇ is not the best delivery path from the reflectors’ points of view. An example configuration
is depicted in figure 8.b). A comparable configuration can be designed for Confederations, too.
The fact that information reduction may cause cyclic state transitions and avoid that a least
state is defined, root cause (5) and (6), is thoroughly studied. Readers who are interested in
the details may be referred to [9], for example.







 















 










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



















 

Figure 8 Classical examples for cost-suboptimal routing due to root cause (1) (a), inconsistency due
to root cause (3) (b), and dissenting rankings due to the BGP ID (c). Example (b) is taken from [9].

Finally, we take a quick look on inconsistency due to dissenting path rankings, root cause
(4), in ASs using Route Reflection and AS Confederations. An important difference between
full-mesh iBGP and schemes which reflect paths is that representations of the same delivery
path on different routers may specify different BGP IDs. As a result of this property, the third
possible path preference that matches root cause (4), cf. the RC4-tree in figure 7, may occur.
An example for such a configuration is shown in figure 8.c): Routers v and u both learn two
cost-optimal paths ṗ and q̇ from two different routers. Due to the BGP ID, u prefers q̇, while
v prefers ṗ. Note that this case is of high relevance in practice. Network Operators in large
ASs usually use several redundant reflectors per cluster to avoid single points of failure. A
similar configuration can also be designed for AS Confederations. The root causes for iBGP
anomalies that may appear if scalability techniques are used are summarized in table 2.
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Expressiveness Problems Global Consistency Problems Robustness Problems

No known Path Lack of relevant Inconsistent Cyclic state No least
optimal path (1) maskings (2) paths (3) path rankings (4) transitions (5) state exists (6)

trivial possible trivial possible possible

Table 2 Possible root causes for anomalies in ASs using Route Reflection or AS Confederations.

5 Workarounds and Solutions

Understanding the protocol and configuration properties that induce iBGP anomalies, possible
countermeasures can be discussed. We differ between solutions and workarounds: Solutions
correct conceptual defects but require protocol changes. Workarounds are quickly deployable
patches that avoid unwanted behavior in production systems. Due to the space limitation, we
only sketch the basic ideas.

Unknown cost-optimal paths, root cause (1), appear if a router’s local view is not matched
by any of its BGP peers’ best path selection. Information on the cost-optimal paths is not
forwarded. To avoid this problem, reflectors could advertise paths matching to the receivers’
point of view – independent of their own best path decision. A scheme realizing this concept
is the iBGP Route Server architecture, cf. [4]. Using common information reduction schemes,
problems are avoided if every cluster shares a common local view. To reach this, the distances
of the links must ensure that cluster-internal BGP next-hops are always closer than -external
ones. However, this workaround is a serious limitation for the IGP routing. Path maskings,
root cause (2), are avoided if the selection process defines a transitive ordering relation on
arbitrary paths. This can be reached if the MED is not evaluated at all or across all peer-AS,
cf. [11]. Alternatively, it can be ensured that every router knows an AS-cost-optimal path for
each peer-AS group [4]. However, this is not trivial in arbitrary configurations in general.

Consistency problems due to a lack of relevant routing information, root cause (3), are
avoided if routers on a future forwarding route have a comparable information basis for
their routing decisions. Improvements can be achieved here if additional cluster-internal
BGP sessions are kept. However, this workaround counteracts with the intended information
reduction and – which is the greater problem – can be the source of inconsistent routing,
cf. [9]. Dissenting rankings, root cause (4), are avoided if all routers on a future forwarding
route prefer the same delivery paths. However, to reach this, modifications on the selection
process are necessary. Using a full-mesh, operators can achieve consistent rankings by means
of a simple workaround, given by two design rules: Firstly, paths for a destination originated
within the own AS must specify the same Origin Code. Secondly, MEDs must not be used
for local paths. Controlled by the operator, both properties can be realized easily in ASs.

Robustness problems can be addressed in various different ways. Redesigning the protocol
and the information exchange scheme, it is possible to ensure that an optimal state always
exists and that this state is certainly entered, cf. [4]. Making use of common iBGP schemes,
cyclic dependencies between the cost-optimal paths of routers in different clusters can be
studiously avoided, cf. [11]. This can be reached by design rules comparable to those specified
above. However, also similar problems are induced. Other concepts are based on modified
path preferences [15], the exchange of additional information [16], and cycle detection [10].

6 Conclusion and Future Work

In this paper, we systematically analyzed the possibility of anomalies when using the standard-
ized iBGP routing information exchange schemes. The most interesting results were obtained
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for full-mesh iBGP: While we could prove that full-mesh iBGP is resistant to problems caused
by an information lack, we could also reveal that path maskings and inconsistent rankings
may appear. This observation clearly falsifies that iBGP anomalies are only a consequence of
an information reduction, a position many studies convey. For BGP Route Reflection and AS
Confederations, we could give a systematic overview on the for the great part known effects.

Understanding that and why full-mesh iBGP is clearly more resistant to anomalies seems
to be an important increase of knowledge. Drafts for new iBGP extensions come along with
similar conceptual defects like Route Reflection. Knowledge why certain iBGP schemes are
prone or resistant to different root causes could help to avoid that new correctness problems
are caused by the final standards. Besides this, the knowledge could also help to improve the
existing schemes in the long term. In addition to protocol designers, the results gained here
are also of interest for Network Operators. Knowing why certain root causes appear helps to
develop and deploy adequate workarounds like network design rules for the existing schemes.
Moreover, it becomes easier to evaluate iBGP scheme alternatives and identify the right one
for the own AS. Even if we sketched first ideas in section 5, addressing anomalies so that the
solution is usable in production systems is an important aspect for future research.
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Abstract

Service-orientation provides concepts and tools for flexible composition and management of large-
scale distributed software applications. The automated run-time management of such loosely cou-
pled software systems, however, poses still major challenges and is therefore an active research
area, including the use of novel computing paradigms. In this context, the dynamic and adaptive
selection of best possible service providers is an important task, which can be addressed by an
appropriate middleware layer that allows considering different service quality aspects when man-
aging the adaptive execution of distributed service workflows dynamically. In such an approach,
service consumers are enabled to delegate the adaptive selection of service providers at run-time
to the execution infrastructure. The selection criteria used are based on the cost of a service
provision and the continuous, dynamic evaluation of reputations of providers, i.e. maintained
track records of meeting the respective service commitments. This paper discusses the design
and operating principle of such an automatic service selection middleware extension. Its ability
to balance different quality criteria for service selection, such as service cost vs. the reliability of
provision, is empirically evaluated based on a multi-agent platform approach.
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1 Introduction

Service-orientation is a successful paradigm for the construction of flexible, loosely coupled
distributed software systems. This loose coupling can be exploited to enable flexible com-
positions, orchestrations, and choreographies of such services and, thus, forms a technical
foundation for the construction of self-adaptive systems (e.g. see [10], p. 20). For such
systems, their respective adaptivity allows them to operate in dynamic execution contexts
without explicit human or explicitly pre-programmed intervention. Especially when the
availability of service providers and the demand for service invocations are (dynamically)
changing, the management of service executions, in particular their respective selection and
composition, has to be adapted according to changes in the environment (see Section 4).
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The adaptive operation in dynamic execution contexts is also of economic interest when
service providers and consumers interact in open markets. In such cases, enterprises may
schedule the achievement of individual tasks, i.e. the execution of workflows and the selection
of services, based on economical as well as on technical criteria. An example for such an
application may be provided by a car manufacturer that requires well-specified parts for the
completion of a specific manufacturing process. Here, the automated selection of suppliers —
based on given criteria — could provide means for controlling lean production processes.

Enabling flexible executions of workflows in these markets of service providers requires
the adaptive selection of providers. Self-managing and self-organizing design techniques are
attractive for controlling service selections while taking into account different quality aspects
(see Section 4). Self-adaptive self-managing approaches introduce software components that
control adjustments of subordinate system elements (see e.g. [10]). Self-organizing approaches
realize system-level coordination in decentralized system architectures (see e.g. [11]), where
the coaction of system elements gives rise to adaptive system level features.

In this paper, we propose a flexible service selection mechanism and related middleware
extension for the management of service-based applications that can be used to equip
service-oriented software infrastructures with adaptive service selection strategies. This
framework provides a software layer that can be supplemented to service-oriented execution
infrastructures. It provides an architectonic bluprint for integrating both self-adaptive and
self-organizing dynamics in service-oriented execution infrastructures. The management of
individual processes, i.e. workflows of service invocations, is handled by software agents. These
agents do not manage the complete application but only those partitions that are influential
for the completion of a specific workflow. Therefore, this architecture allows for the self-
organization of concurrent, parallel workflows that are executed in an open (and dynamically
changing) market of service providers. In general, self-adaptivity and self-organization are
typically understood as opposing concepts for the creation of adaptive software systems
(e.g. see e.g. [10], p. 5). The relevance of both concepts for the development of complex
distributed systems and the respective need for comprehensive development concepts has
been identified before (e.g. see [2]). In this context, the architecture proposed here provides
an environment which allows to examine the interplay of managing entities.

We present both (1) the architecture of this middleware extension and (2) a design
approach for adaptive selection strategies. First, the corresponding software architecture
allows for integrating different quality criteria to be considered during the run-time selection
of services. A flexible, agent-based design allows for the integration of different selection
strategies. It provides a generic blueprint for integrating both self-adaptive and self-organizing
dynamics in service execution middlewares. Secondly, we discuss and exemplify the principled
design of distributed adaptation strategies. The conception of adaptive control algorithms,
based on integrating feedback loops in software systems, is an active research topic [2] and
we discuss the use of a visual modeling techniques. More specifically, a reputation-based
approach is proposed here in which past experiences can be used, in addition to the service
cost, for estimating the reliability of potential service providers. Balancing influences of
several of such aspects for dynamic service selections allows even more specific tuning of the
economic benefits. First experiences of such an approach in a case study are reported as well.

The following section introduces the agent-based selection-framework and illustrates the
operating principle of the reputation-based selection strategy. Then the paper presents
and discusses first simulation results (see Section 3) to evaluate the adaptive management.
Finally, related work on the self-management of service-based applications is outlined before
the paper concludes and gives prospects for future work.
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2 An Adaptive Service Selection Middleware

The delegation of service selections to an additional middlware layer allows to separate the
adaptiveness of service invocations from the realizations of service providers and consumers.
In the middleware layer proposed here, agent technology is used as a connector between the
service-oriented application elements, which constitute the application infrastructure, and the
use of coordination means, e.g. utility-based service selections. In such an approach, software
agents interact with service-based workflow executions and provide services themselves. Since
the adaptations are delegated to supportive agents, adaptive system level aspects can be
supplemented to the service execution middleware. Using the example of reputation-based
service selections (see Section 2.2), the run-time invocations of services are observed by the
agent system in order to reason from the past experiences to the reliability of service providers.
The coordination of the involved agents is built on top of a coordination infrastructure for
the creation of self-organizing multi-agent systems (MAS) [14]. This infrastructure provides
a generic reference model for the integration of decentralized coordination processes in MAS.

Here, a generic model of the selection problem from [8] is adopted in which Service
Agents (SAs) are providers of services and Service Market Agents (SMAs) are responsible
to manage the execution of workflow instances. These workflows are distinguished between
Instantiated Workflow (IW) and Partial Instantiated Workflow. In an instantiated workflow,
service providers are associated to service invocations and when one or more services are not
associated the workflow is partially instantiated.

2.1 Architectural Concept: A Supportive Middleware Layer

The selection middleware automates the allocation of service providers. This supportive
system allows to automate and encapsulate the management of service-based software
systems. The system is built in different layers (see Figure 1) which separate the business
logic of the system elements from the accomplishment of adaptive features. The topmost
Application Layer contains the functional elements of the managed application. Here these
are providable service realizations and the service consumption that is controlled by a
Process Execution Engine. The underlying Connector layer contains software agents that
interact with these elements. The Jadex Processes1 framework is used to realize these
interactions. A process engine controls the execution of processes in the Business Process
Modelling Notation (BPMN). The identification of service providers is delegated to SMAs.
The provision of services is managed by SAs. As new SMA and SA (types) can be added at
runtime the architecture enables the dynamic provision of new service providers/consumers.
The selection mechanism (see Section 2.2) is embedded in an underlying Coordination Layer.
This layer follows the architectonic model from [14] and separates the participation of agents
in decentralized coordination processes from the agent models. This separation facilitates
the reconfigurability and changeability of processes.

The constituent elements are the Endpoints and Media. Endpoints contain and control
the activities that are conceptually related to the coordination of agents. These are compu-
tational elements that are able to observe and influence the execution of software agents [17].
The media are infrastructure elements that connect endpoints. Media provide interaction
mechanisms for the coordination of agents that are based on communication infrastructures
[17] and/or shared agent spaces [21]. Using a generic publish/subscribe interface, these

1 http://jadex-processes.informatik.uni-hamburg.de/
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infrastructures are integrated as a distributed event-based system.

Figure 1 Service composition/selection architecture

Using this architecture, a reputation-based selection mechanism is realized (see the
following section). Endpoints control the enactment of the coordination. In this case they
control the selection and the update of the measured reputations of service providers. Two
media connect the endpoints. One medium handles the selection of an appropriate service
provider. Providers initially register at this medium and SMAs can inquire a service provider,
decided by a given utility function (see Section 2.2.1). A second medium handles the
reputations of service providers. This medium maintains the quality indicators of providers
that are increased/decreased by the successful/unsuccessful completions of service. The
configuration of the adaptive selections is be separated from the business logic, which is given
in BPMN-based workflow descriptions. Each service provider and workflow is managed by
an agent, e.g. to ensure that the commitments of individual providers do not overlap.

2.2 Adaptation Mechanism: The Dynamic Perspective

Within the Coordination layer (see Figure 1) adaptive, collaborative processes can be
integrated into distributed systems. Here, the integration is exemplified by a process that
allows to manage service invocations. We assume a setting where multiple providers are able
to achieve specific tasks. The quality attributes, e.g. cost, processing time, reliability, etc., of
the providers differ and thus the service consumers have to make economic selections. The
consideration of different providers is not handled on the application level but is delegated
to a supportive middleware.

For the description and configuration of decentralized processes, a dynamical modelling
level has been developed that supplements agent-oriented design techniques with descriptions
of dynamic aspects within MAS [18]. It makes use of System Dynamics [13] modelling
concepts. Particularity the Causal Loop Diagram (CLD), a formalism for the illustration of
system variables and their interdependencies, is extended for the description of the dynamics
and coaction within MAS. Using this modelling stance, adaptive system behaviours can be
pictured: Nodes in the graphs represent system variables, e.g. the number of agents that play
a specific role and connection between these nodes denote influences and interdependencies.
Influences describe additive or subtractive relations, e.g. when agents place or remove items
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in/from a stock. Interdependencies describe causal relations, e.g. an increase of service
requests in a SOA-based application consequently leads to an increase of service invocations.

2.2.1 Conception of the Dynamic System Behaviour

A pragmatic approach to the conception of a decentralized coordination processes is based on
the comparison of the system behavior as is with the intended, i.e. coordinated and adaptive,
behavior of the application [16]. The problematic, unintended behaviour is modeled first.
Based on this problematic dynamic, a corresponding solution dynamic, i.e. an additional
process fragment, is modelled, which improves the system behaviour.

The problem dynamic of the service allocation scenario is illustrated in Figure 2. A set
of service providers (SAs) have committed to provide services in the given time-frame(s).
Committed agents exhibit the role Allocated Service as they are locally aware of their
obligations. One agent instance can commit to the participation in several IW, if the intervals
of each service provision do not overlap. Before invocating allocated service instances,
service providers may decide to change their commitment. In Figure 2, two possible reasons
are denoted. First, agents may decide by themselves (autonomous reallocation) that a
simultaneous service commitment is more profitable. Secondly, internal failures in the
provider component (execution error) enforce that providers indicate their inability to satisfy
commitments. The impact of these influences is characterized by an interaction rate (leave
IW ). Increases in this rate reduce the overall number of allocations and increases the number
of agents that are falsely committed, i.e. agents that fail to achieve their commitments.
When agents are in this state, the associated IWs are not executable and the number of
executable IWs is reduced. The system exhibits a balancing feedback loop that limits the
number of allocations (α), due to the perturbations, which influence the rate of agents that
want to cancel their commitment (leave IW). The objective of the self-adaptive management
of workflows is to counteract this feedback, i.e. to re-establish stable system configurations
where all IWs are executable.

Figure 2 Macroscopic model: Dynamic service selections

The corresponding solution dynamic (see Figure 2, I) proposes the supplementation of
the application with an additional agent role and related agent-interdependencies to establish
additional feedback loops. Service Agents are enabled to communicate their intention to
cancel a commitment to the corresponding SMA. This agent then initiates a selection of a
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service provider to replace the missing commitments. When a replacement has been found
the false commitment is revoked. The revoking manifests a second balancing feedback loop
(β) that limits the number of agents that are falsely associated, i.e. that are deficient for the
provision of the allocated service. As the selections also reinforce the number of allocations,
a third, reinforcing feedback is manifested (γ) that reinforces allocations. This reinforcement
alleviates the effects of the problematic feedback (α). This reinforcing feedback itself is
controlled by the availability of falsely committed agents (β).

The establishment of the counterbalancing feedback γ is a requirement. The exhibited
system dynamics is expected to show this feedback and the model neglects how this feedback
is established. The approach followed here makes use of a utility function that takes into
consideration not only the cost of the service invocation but also the Reputation of providers,
i.e. the confidence that service providers can meet their commitments.2 These reputations,
called trust, are adjusted at run-time (see Figure 2, II). A set of agents (allocated service)
participates in the workflow and for each agent such a value is maintained (evaluation). The
corresponding values are increased when the service execution succeeds and are decreased
when service providers fail to meet their obligations. The current trust value is considered in
the service selection and thus influences the overall rate (adopt) of provider selection.

An alternative, decentralized design approach would be to equip Service Agents with
the ability to negotiate their replacement with other agents. The causal structure of
the application dynamics would not be affected by this adjustment, but the role of the
negotiation initiator ((re-)select allocation) would be played by the Service Agent, not the
Service Market Agent. An example for such a completely decentralized approach, embedded
within a Coordination Layer, is given in [19], where failing machines in a production line are
responsible to find replacements for their designated activities. In the following, the former
approach is examined in system simulations.

2.2.2 The Selection Dynamics

The dynamic model in Figure 2 describes the macroscopic dynamics of systems that are
equipped with the supportive middleware layer. This modelling level is particularly suited to
describe self-organizing dynamics (e.g. see [18, 16]), and is here used to denote the operation
of sets of self-adaptive managers (SMAs). For the explanation of concrete simulation
experiments (see the following section) a detailed model of the dynamics is needed that
does not only refer to macroscopic system variables, e.g. the overall numbers of agents that
show specific behaviour, but that describes the concrete influences in system variables. This
description level gives a more specific illustration of the relations of system variables and is
obtained by refining macroscopic models. A detailed discussion of the different modelling
levels for self-organizing systems can be found in [15].

The corresponding model (see Figure 3) describes how the computation of services’
utilities influences the overall profit generated by the process executions. The variable Profit
(Process) describes the economic benefit that results from the execution of workflows. The

2 Utility functions offer the possibility to specify preferences among (potentially conflicting) objectives
and can be mathematically expressed as

U(x) =

N∑

i=1

xi · wi

where wi expresses the weight of an objective xi [5].
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major (additive) contributions are the profits, which are generated by the constituent service
invocations (Profit (Service)). The selection of the corresponding service providers is based on
the computation of the utility (Available Utility). This value estimates the most appropriate
service provider and thus the provider with the maximal utility value is selected. Several
factors influence this estimation and in Figure 3 two are exemplary denoted. These are the
current Reputation and Cost values of services. In addition, two disturbance variables, which
are externally set to fixed values in the system simulations, influence the generation of profit.
First, the failing of a service (Service failure) is associated with a penalty cost that subtracts
from the overall profit (β). Failures also minimize the trust values and therefore have an
indirect influence on the service selection. A second disturbance is the blackout of services
(Black out probability). When services are temporarily not available, e.g. due to internal
errors or unreliable network connections, this affects the current service selection and also
minimizes the current reputation value. The successful provisioning of services is recorded by
the corresponding medium and increases the reputation values that are associated to specific
providers. Therefore, the variables are steadily increased as denoted by positive (+), i.e.
reinforcing, feedback loop [13]. On the other hand, the external disturbances, i.e. failures
and blackouts, reduce the individual reputations.

Figure 3 The dynamics of process costs, as shown by the implemented simulation model (see the
following section)

3 System Evaluation

3.1 Operating Principle

That the system is self-adaptive, i.e. that services are adaptively selected, is validated by
system simulations. A sample simulation run, with a fixed reputation value3 is shown in
Figure 4. The measurements were obtained from a single SMA that repeatedly selects one
service. The SMA has three options: an expensive, a moderate and a low-cost service provider.
These agents can perform the same service type but differ in their cost and the probability
of a service failure, i.e. a blackout, which is detected by the infrastructure applying timeouts.
The three service providers were set up with following cost characteristics: expensive (1200),
moderate (1000), low-cost (800) and with an initial value of 30 for reputation. For the ease of
evaluation the SMAs service selection function, i.e. the utilitfy function, only considered the
costs and reputation of respective SAs. Quality of service parameters where not considered

3 set to: 0.4
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but could easily be integrated by extending the arguments of the service selection function
with additional parameters.

The history of service invocations shows that the invocations (I) and the recorded
reputation values (II) mutually influence each other. These influences validate a set of the
relations in the dynamic application model (see Figure 3). In phases where one service
type is invoked repeatedly and performs as expected, such as between the time steps 40 to
55,4 the corresponding reputation value is amplified. This is expressed as the reinforcing
feedback (α) in Figure 3. The systems quality also decides the likelihood that service
invocations will fail using following function to compute the time between two blackouts:
t = -log(1-x)*ServiceCharacteristic. Thereby, the three service providers had following
ServiceCharacteristics: expensive (0.1), moderate (0.5) and low-cost (0.999). Moreover,
service failures are drastic events that lead to sudden decrease in the reputations (negative
contribution to the Reputation node in Figure 3). Upon these failures the provider with the
highest utility is selected.
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Figure 4 Sample simulation run: Service invocations (I) and the corresponding reputations (II)

3.2 The Impact of Considering Reputations

The adjustment strategy proposed here makes use of past experiences. The weight of the
gained reputation is a static parameter that is set initially. In Figure 5 (I), it is shown how
this parameter affects the fractions of agents that participate in workflows. Simulations are
carried out for two minutes and the SMAs repeatedly select one service provider. For low
values (x axis) the historic reputation that services gain have limited impact on the selection.
Instead the service cost is the dominant factor and low-cost service providers are preferred.
When higher weight values are used, more reliable, i.e. more expensive, service providers are
used.

The performance of the workflow executions is indicated by two measurements that are
shown in Figure 5 (II). Simulations are carried out for a fixed duration and higher weights
for the reputation values lead to a slight increase of the total number of services that can be
completed in this time. This effect results from the increased utilization of more reliable,
and thus expensive, service providers. Due to their reliability these fail more seldom and
re-invocations of services are avoided.

4 measured in seconds, see Figure 3
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The weight of the reputation significantly affects the overall profit that is generated. For
small wights (< approx. 0.4), the selection is mainly influenced by the cost of invocations
and therefore the fraction of selected services that fail are comparatively high. Failures cost
penalties and enforce re-selections of providers. Thus the overall profit that can be generated
is limited. For high weights (> approx. 0.8), the selection is biased toward expensive services.
Due to their cost, it is not of economic interest to use these providers extensively and the
overall profit is reduced. A weight about approx. 0.6 maximizes the profit as the use of
expensive/low-cost service providers is balanced and the majority of invocations refer to
moderately priced providers. In the simulations, the cost of expensive providers and the
penalties of failures are set to values that only allow for a small net earnings area that is
reached by using mid-level reputation weights.

Qualitatively, the simulation results indicate that the selection process conforms to the
systemic model of the selection dynamics that are given in Figure 3. Service failures, an
external influence, affect the generated profit (β). Therefore, unreliable providers have to
be avoided. Since failures reduce the reputation, SMAs are repelled from service providers
that have shown to be unreliable. This explains that the use of reputation mechanisms can
increase the systems performance. On the other hand, the steady increase of reputations (α)
leads to a problematic use of expensive providers for high-level reputation weights. Their
cost limits the total profit. Thus the balancing of the former influence (external factors) and
the latter feedback is required. This balancing depends on the system parametrization and
for the simulation setting studied here, moderate weights of the reputation in the utility
function are appropriate.

In conclusion it can be stated that the simulation results prove the applicability of the
proposed framework to enable self-adaptive service compositions by using reputation as a
criterion (among others like costs) for selecting service partners. At the same time, it has to
be stated that using this framework for automated service selection requires simulation effort
in order to find appropriate settings for an environment that exhibits high dynamics. The
mathematical analysis of the dynamics for inferring appropriate parametrizations is left for
future work. Additionally, there is the need to provide more implementations of wide-spread
negotiation protocols in order to increase the utilization of this framework as well as to study
the impact of using reputation with these protocols. Nevertheless, this evaluation shows that
using reputation, i.e. upon to a certain factor, to measure the quality of service partners
increases the profit of service executions in contrast to settings that take only service costs
into consideration.

4 Related Work: Adaptive Service Selections

The fact that agent-orientation can be used as a valuable enrichment for service-oriented
architectures has been argued by several authors, e.g. in [12]. Here, an enhancement is
realized by a layered architectural model. Software agents represent the consumers and
providers of services and form the logical link between the application business logic and the
adaptivity-related coordination, i.e. the selection.

Consequently, the automation of the orchestration and composition of services has been
studied. Approaches for the adaptive management have to prepare for (possibly) large scale
of service-oriented systems and for the handling of dynamic execution contexts. Due to these
challenges, the use of novel computing paradigms, which focus on bringing about intended
application level dynamics, in this application domain have been proposed. Examples are
the use of self-adaptive architectures and self-organizing problem solving strategies. Self-



J. Sudeikat, W. Renz, A. Vilenica and W. Lamersdorf 23

 

Figure 5 Averaged cumulative invocations of service providers plotted over the fixed reputation
value (I), averaged, total sum of service invocations (II) and averaged profit generated plotted over
fixed reputation values (II).

organization allows for decentralized management strategies that are particularly suited for
large-scale application infrastructures. Examples include the transfer of nature inspired
phenomena e.g. the chemical reactions [3] and the differentiation of individuals as found in
biological systems [9].

Management of self-organization in service-based applications is discussed in [7] and a
corresponding reference architecture is proposed. A management overlay is constructed
by associating each element in the application with a managing software element. These
elements follow the Observer/Controller (O/C) architecture that is developed by the Organic
Computing research initiative (e.g. see [20]). The proposed architecture conforms to the
framework proposed here as each element is associated with a computational element that
control the local adaptations. However, O/C elements are comparatively complex entities
that contain among others data analysis, prediction, and simulation components in order
to estimate the system states that the system is approaching. The model presented here is
comprehensive as it does not only contain the decision making elements but also abstractions
of their interactions. Endpoints are comparatively lightweight as they only contain the logic
that is required to impose the participation in the collaborative process, which steers the
system operation. Simplification of the controlling system elements is enabled by the explicit
modelling of the process (see Section 2.2) [16].

Furthermore, there is existing work that targets either the provision of infrastructures for
the dynamic selection of services or the development of new negotiation/bidding strategies
in open marked-based scenarios. On the one hand, Borrisov et al. [1] propose a framework
that automates the generation of bids for the allocation of computing services in grid-based
systems. Similar to the approach presented in this work, [1] incorporate a technique, i.e.
machine learning, to deal with aspects related to reputation. At the same time the approach
focuses on the domain of grid-systems and gives therefore only partial solutions to general
problems related to adaptive service selections, e.g. the approach does not deal with blackout
of services. On the other hand, Lewis et al. [6] focus on developing a new negotiation strategy
that can cope with the challenges of dynamic, decentralized and service-based systems. This
strategy is encapsulated within so called "evolutionary markets agents" that act on behalf of
service providers and service consumers. Therefore, it would be of interest to extend the
framework used within this work with this new bidding strategy of Lewis et al. in order to
evaluate its advantages and disadvantages with respect to existing negotiation strategies.
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5 Conclusions

This paper proposes a generic management architecture for the adaptive management of
service-oriented applications based on multi-agent middleware. The corresponding framework
uses agent technology to enable the self-adaptive operation of services. It provides an addi-
tional middleware layer that can extend infrastructures in order to provide for decentralized
service selection management. The design of this framework is not biased towards specific
management strategies, but is, on the contrary, highly configurable. This paper approaches
the service selection problem via a reputation-based strategy, where past experience with
service provision is used as a(n additional) selection criterion for service providers. The
corresponding middleware layer is based on a programming approach for self-organizing
multiagent systems [14]. Accordingly, the work reported here does not only concern the
service infrastructures but also exemplifies how the decentralized, agent-based management
can be used to supplement conventional software infrastructures. In such an approach, the
corresponding MAS serves as a connector between application-level software artefacts and
the participation of such artefacts in managing distributed processes with adaptive system
properties.

Future work shall address the elaboration of management strategies and the validation of
the management framework in more realistic scenarios. This includes studying non-functional
aspects of the approach, e.g. scalability, and the mathematical analysis of the system
dynamics. The framework presented here and the underlying programming model first
demonstrate in principle the ability to supplement decentralized management processes into
software systems. This however, requires additional policies, guidelines as well as heuristics
that enable development teams to conceive the appropriate management approach for specific
application scenarios in order to decide between, e.g. centralized, managing software entities,
as addressed by autonomic computing systems (e.g. see [4]), and the use of decentralized
coordination processes [19].
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Abstract

The paradigm of service-orientation promises a significant ease of use in creating and managing
distributed software systems. A very important aspect here is that also application domain
experts and stakeholders, who are not necessarily skilled in computer programming, get a chance
to create, analyze, and adapt distributed applications. However, up to now, service-oriented
architectures have been mainly discussed in the context of complex business applications. In this
paper we will investigate how to transfer the benefits of a service-oriented architecture into the
field of embedded systems, so that this technology gets accessible to a much wider range of users.
As an example, we will demonstrate this scheme for sensor network applications. In order to
address the problem of limited device resources we will introduce a minimal operating system for
such devices. It organizes all pieces of code running on a sensor node in a service-oriented fashion
and also features the relocation of code to a different node at runtime. We will demonstrate that
it is possible to design a sensor network application from a set of already existing services in a
highly modular way by employing already existing technologies and standards.

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.26

1 Introduction

Pervasive computing can be found in a large variety of application scenarios. Hence, many
different kinds of pervasive systems are realized by different classes of devices. Wireless
sensor networks (WSN) represent one particular pervasive scenario, which is characterarized
by the usage of resource constraint devices. A lot of effort was put into technical and
algorithmical problems in WSN, yet implementing a WSN application is still a tedious task.
Many parameters have to be considered like network density, traffic patterns and mobility
models. Additionally, possible environmental influences must be preconceived. Therefore,
besides profound programming abilities a lot of expert knowledge and understanding is
needed to design a functioning and robust sensor network application. This holds especially if
we consider the fact that actual users of sensor network technology are not usually skilled in
the field of computer science. Application scenarios for WSNs can be found in many different
fields stretching from military, science, logistics to health care, where each application has
its specific requirements and characteristics.

As state of the art for WSN application development we observe a development cycle
that can be subsumed to the graph given in Figure 1. A potential user of WSN technology
describes the problems with requirements, e.g., monitoring phenomena or tracking objects.
The user drafts the requirements and presents them to a WSN expert. Based on the
requirements the WSN expert creates a model of the application scenario. The size and
density of the network is determined. Mobility models are designed and the data rates are
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estimated. With consideration of environmental influences the scenario is evaluated in a
simulator. Based on the results, the WSN expert chooses different protocols and algorithms
and finally implements the WSN application. After the successful deployment of the sensor
network, the user receives data from the network and draws conclusions which may bring up
new aspects that might affect the requirements to the WSN. Again the user presents his new
requirements to the WSN expert.

WSN

User

WSN Expert

Requirements
e.g. monitoring
phenomena, 
object tracking, event
detection

Expertise
e.g. network density, data rates
traffic patterns, network models

Environment

Influences
e.g. radio
characteristics, 
topology
changes, node
context

Data & Conclusions
e.g. new aspects become
important

Figure 1 Current WSN application develop-

ment cycle

Observing this situation we see parallels
to the early days of software development
in the late 1950s. In these days, a lot of ex-
pertise was needed to deploy even programs
solving simple tasks. As a consequence the
usage of information technology was reserved
for the programmer himself. Since then a
lot of effort was put in the development of
new programming paradigms to enable ac-
tual target user groups to get access to new
information technologies. Up to now, the
main focus of sensor network research is on
mastering resource constraints and achieving
robustness in WSNs. Having overcome a lot
of technical barriers, we have the possibility

to make the wireless sensor network techology accessible for users. Our goal is to make the
development of a distributed sensor network application easier allowing non-WSN experts to
deploy a sensor network. With regard to the distributed nature of WSN applications and
the complexity of interactions between network topology and environmental influences, we
consider two aspects to be crucial for enabling users without WSN expertise to access WSN
technology: abstractions of application development and runtime modification of deployed
WSN applications.

An abstraction for application development makes the complexity of the sensor network
application more transparent to the user. It must enable the user to develop different
applications easily and in a minimum of time. Since a user with no WSN expertise cannot
predict the behavior of the WSN or the WSN application, there might be a lot of trial and
error during application development and deployment. Enabling the sensor nodes to change
their software during runtime can ease the process towards a successfull deployment and is
therefore inevitable.

In this work we introduce Surfer OS, a service-oriented minimal operating system for
embedded devices that allows an integration and replacement of services during runtime.
Additionally we present an infrastructure that offers a Service Repository and allows graph
based service composition and runtime adaptation of WSN applications for Surfer OS.

This work is structured as follows: The next section will give an overview over current
WSN operating systems, middlewares and frameworks with the focus on the development of
distributed WSN applications. In Section 3 we will present our basic idea for WSN application
design and introduce the interactions among the components of our infrastructure, namely
Surfer OS, the Service Repository and the Service Composition. Section 4 gives a detailed
description of Surfer OS and its implementation. Section 5 describes the Service Repository
and the data stored with each service. In Section 6 we give details about the application
development for Surfer OS with a graphical tool support. Furthermore, we show how the
process of Service Composition can be integrated into enterprise applications as well as
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business processes. In Section 7 we discuss the benefits and downsides of our presented
operating system and infrastructure. We conclude the paper with Section 8 summarizing our
contribution and giving an outlook on future work.

2 Related Work

The most widespread operating system used for sensor networks is TinyOS [6, 7]. Using a
component based programming model, TinyOS is more than an operating system. It is a
framework with a set of components that allows for building an application specific operating
system for embedded devices. Each component resembles a functionality and exposes one
or more interfaces. The fine grained component-based architecture allows the composition
of applications before the deployment of the sensor network. This makes the application
development for sensor networks more transparent.

An extension to TinyOS which allows modifications of the WSN application during runtime
is FlexCup [12]. FlexCup is able to dynamically exchange and link TinyOS components
on the sensor nodes for adapting applications to new needs. The five steps of the FlexCup
update process are storage of code and meta-data, symbol table merge, relocation table
replacement, reference patching, and installation and reboot of the application.

Dunkels et al. developed the Contiki [4] operating system for sensor nodes. With Contiki
it is possible to load and unload individual applications or services at runtime [3].

Mantis [1] is a WSN operating system that offers a comprehensive set of system application
programming interfaces (API) for I/O and system interaction. Providing this API Mantis
hides the complexity of scheduling and concurrent access to ressources claiming a shallow
learning curve for programmers with C knowledge. Mantis also allows binary code updates
on sensor nodes during the runtime of applications. Based on calls to a system call library
provided by the Mantis system kernel applications are updated and written to the EEPROM.
By resetting the node the software update process is completed and the new application is
executed.

Han et al. introduce SOS [5] a dynamic operating system for sensor nodes. SOS allows
the dynamic interaction of independent software modules. SOS uses position independent
code to achieve relocation and jump tables for application programs to access the operating
system kernel. Application programs can register function pointers at the operating system
for performing inter-process communication.

With Maté [8], a virtual machine is available for TinyOS. Maté abstracts from the
operating system allowing only a specific set of instructions. A module written with these
instructions can be easily integrated into a running application allowing a (re-)configuration
and adaptation of the application.

SensorWare [2] is a framework that uses Tcl scripts as abstraction for implementing
distributed applications. The scripts can be send into the WSN during runtime. They can
migrate within the network and replicate themselves.

The programming framework EnviroSuite [10] by Luo et al. proposes a new programming
paradigm called environmentally immersive programming. EinviroSuite offers languages
primitives that transparently map onto a library of algorithms for sensor networks allowing
the programmer to think diretcly in terms of environmental abstractions.

OASiS [11], a programming framework for service-oriented sensor networks, applies the
paradigm of service-orientation on top of TinyOS. In OASiS each activity is implemented as
seperate service. The goal is to simplify programming by providing an abstraction, where the
applications behavior is described as modular dataflow blocks between services in a specific
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service graph.

3 Operating System and Infrastructure

The related work shows that supporting the application development and providing an
intuitive network abstraction to the application developer is an important issue. We observe
that on different levels from the basal operating system to high level frameworks much work is
spent to make the application development easier. Each of these approaches has its strengths
but none fulfills our needs to enable users without expertise to create and deploy a WSN
application sufficiently.

On operating system level, a lot of understanding of the distributed nature of sensor
networks and their constraints is needed. The component based approach of TinyOS allows a
composition of the application, but still the right protocols and algorithms for the deployment
must be known upfront. Approaches which are based on loadable binary code modules
enable the user to change the application during runtime. But often these approaches
such as [12] and [4] exploit specific platform characteristics or necessitate a restart of the
reprogrammed nodes what can be critical for keeping a consistent network state and is an
additional aggravation of the development process. Overall, an operating system alone does
not provide a sufficient abstraction for the application developer.

Middlewares and frameworks offer a more intuitive abstraction for the programmer. Using
a virtual machine like Maté allows for a platform independent and smooth integration of
modules into a running application since no restart of the application is needed. But the
programmer is bounded to a fixed subset of instructions offered by the virtual machine.
Additionally the programmer has to learn the specific syntax for the virtual machine.
Furthermore, such approaches are always tailored to a specific type of application constraining
the user to a specifc scenario. Frameworks as well as middlewares already offer a specific set
of algorithms and protocols. The developer has no chance to modify or optimize this layer to
his needs.

3.1 Overview

Figure 2 Components of the infrastructure for

WSN application development

In our approach, we want to offer the applica-
tion developer as much flexibility as possible
by providing an easy to use application de-
velopment support at the same time. The
fundament is the service-oriented paradigm,
which is commonly used in the field of dis-
tributed applications. In contrast to other
service-oriented approaches for WSNs we
consider all functionalities on a node down to
the hardware interfaces as services. Where
hardware interfaces are always present on
the nodes (non-migratable), all other ser-
vices need to migrate into the WSN and
onto the nodes. We deploy the nodes solely
with the non-migrateable services. This im-
plies that neither application logic nor any
protocols are present on the node right after
deployment. On demand, services representing a routing protocol or a localization algorithm
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or part of the application logic migrate successively into the WSN composing themselves to
a WSN application.

In order to realize this migration of the services and support an intuitive development of
an application, the presented infrastructure consists of three components shown in Figure 2:
a minimal operating system called Surfer OS, a Service Repository and an interface for
Service Compositon.

The Service Composition interface allows for an abstraction for composing services and
initiates the migration. The services themselves are stored in the Service Repository from
where they migrate into the WSN. The operating system on the nodes integrates the services
into the running application. In the following we will describe the requirements for each
component.

3.2 Operating System

For a successful sensor network deployment, the usage of adequate protocols and algorithms
for a specific scenario is crucial. Being not able to predetermine radio characteristic and all
network parameters such as data traffic patterns, topology changes or node mobility, the
user of WSN technology must be able to exchange all protocols or functionality from the
application logic down to the communication layer. In terms of the service-oriented paradigm
all functionalities offered by protocols and algorithms are encapsuled into different services.
The operating system must provide the possibility to add, remove or exchange services on
the nodes during the runtime of the deployed sensor network. As a consequence, right after
the deployment the nodes basically offer only two kinds of functionalities: (1) access to the
available hardware resources on the node via service calls and (2) management of services.

The access to the hardware resources is realized as very basic service calls. The operating
system must publish the access point to the radio interface, the sensors and other hardware
resources as services, since such functionality demands for special hardware I/O like, e.g., the
reading and writing on special registers. Higher level services such as a radio stack are present
as services providing a predetermined interface to other services but the implementation on
the node does not offer any higher functionality yet. The service that encapsules the radio
stack for sending a packet via the radio is not yet providing any routing layer. This service
in its initial version on the node directly accesses the hardware interface sending the “plain”
packet.

Managing the services means allowing the integration, removal and replacement of services.
The operating system must react on special service packets which are directly processed.
When adding the services, the provided functionality must be published on the nodes by the
operating system. The functionality must be made accessible in an intuitive way, e.g., via a
service and a function name. Every service contains a service type and a version number.
The service type is a numerical representation of the functionality provided by the service,
e.g., “routing”. The version number distinguishes between different implementations of the
service. Based on the type of a service and the version the operating system determines
whether to add the provided service, to replace a present service or to ignore the received
service. If a service of a specific type is already present, it is replaced if a different version of
this service type is received. Additionally, dependencies among services must be preserved
by the operating system in case of replacement of services. To realize these demands, we
implemented the operating system Surfer OS which is described in Section 4.
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3.3 Service Repository

In order to compose WSN applications, the user of WSN technology needs a collection of
different services providing different functionalitites. Programmers with WSN expertise
develop a lot of different algorithms and protocols suited for different scenarios and appli-
cations. If these algorithms and protocols are implemented as services for Surfer OS, they
can be applied by a WSN user in his application. Therefore, we need a place where these
services can be uploaded, stored and accessed by a component which manages the service
migration. For this task we implemented a so called Service Repository. It acts as a container
for migrateable services where services can be up- and downloaded or managed by the service
programmers via an easy to use user interface.

In order to enable the service programmer as well as the service user to use the Service
Repository it must be accessable via an intuitive and easy to use user interface. This interface
has to provide the above mentioned functionalities namely: displaying all available services
including important service information, providing the possibility to insert new services and
upload the corresponding service code, and providing the possibility to change the service
information as well as the service code itself.

3.4 Service Composition

The third component of our approach addresses the process of Service Composition. This
component enables abstraction for the user of WSN technology for creating sensor network
applications by composing a set of services.

One important characteristic of a service-oriented approach for distributed applications
is its flexibility. Thus, the requirements to the design of the Service Composition component
are very versatile. If we consider how services can be composed, we identify two scenarios:
Services can be composed by a Human Composer or by a software performing the composition
to which we refer to as Automatic Composer.

The Human Composer is the developer of an application who is able to deploy a WSN
application even without expertise in this field. By selecting a set of services out of a
service repository, he can compose an application tailored to the demands of his individual
application scenario ad-hoc during runtime.

The composition of services can also be performed automatically by a software, the
Automatic Composer. Today sensor networks become more and more part of enterprise IT
systems or even flexible parts of business processes. Therefore, it must also be possible that
such systems can control the composition of services for the sensor network automatically.

The realization of the Service Composition component has to meet the requirements of
both scenarios: the Human Composer and the software based composition. Therefore, it
must provide an intuitive interface to the Human Composer and a standardized interface for
the composition of services by an external software.

4 Surfer OS

4.1 Concept and Architecture

As described in Section 3.2, the main task of our operating system Surfer OS is to provide
access to available hardware resources and to manage services, which compose the complete
WSN application including even lower layers such as the communication stack. The manage-
ment of services includes addition, removal and replacement of services. At the moment of
deployment of the sensor network, the nodes do not provide any further functionality.
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The central unit within Surfer OS that organizes the services is the ServiceManager. The
ServiceManager keeps a dynamic symbol table that maps a tuple consisting of a service type
and a function name onto a function pointer. This allows an intuitive usage of services by
accessing them via the service type and the function name. Initially, the ServiceManager
keeps the non-migratable services (dark-colored in Figure 3) representing the hardware
interfaces in the symbol table. This includes the access to the sensors, the radio, the
RS232, the memory, as well as scheduling as shown in Figure 3. Additionally, basal service
implementations representing the radio stack and the RS232 stack are provided using the
specific hardware interfaces.

ServiceManager

send

…

radio

…

memcpy

…

c_utils

add

…

radio_send

rs232_send

…

Function

task

hw_utils

ServiceType

RFModule

RFsend(…)
…

Scheduler

AddTask(…)
…

RadioStack

Send(…)
…

Beacon

Start(…)
Stop(…)
CleanUp(…)

RadioStack

Send(…)
…

non-migratable
services

migratable
services

Figure 3 The ServiceManager module with the

dynamic symbol table

Surfer OS identifies special service pack-
ets which are then processed by the Service-
Manager. With these packets a service can
migrate onto a node or the command for eras-
ing a service on a node can be transmitted.
If such a migratable service (light-colored
in Figure 3) is received, the ServiceManager
checks the service type and the version num-
ber. If a service of this type is not present,
the new service is included into the appli-
cation. The new functionalities are added
under the service type in the symbol table
of the ServiceManager such as the beacon
service in Figure 3. The ServiceManager
offers an interface where services themselves
can access other services and the hardware
via the services already registered in the symbol table. If a service of the same type but
with a different version number is already present, the present service is removed and the
new service is added. In this way even non-migratebale services can be replaced as shown in
Figure 3. In order to preserve dependencies such as registrations for callback, the registration
is provided by a subscription service. This service keeps a table with service type and callback
addresses. If a service is replaced, the previously registered callbacks for this service type
can be retrieved by the new service. This allows a seamless replacement of services that
are used by other services. Thus, we can even exchange, e.g., the services representing the
communication stack enabling us to exchange routing protocols during runtime.

4.2 Implementation

We implemented Surfer OS on the pacemate sensor node platform [9]. The pacemate platform
uses the Phillips LPC2136 microcontroller with 256 kbyte Flash memory and 32 kbyte
RAM. The microcontroller realizes a 32 Bit ARM architecture. The LPC2136 provides
in-application programming allowing for erasing and/or programming the Flash while the
application is running. The complete Flash or a single Flash sector can be erased in 400 ms.
Writing 256 bytes to the Flash takes 1 ms. Program code is executed from the Flash but can
also be executed directly in the RAM.

The Surfer OS is implemented in C. The ServiceManager keeps the addresses of functions
as function pointers. The services are compiled independently. For the migration of the
services onto a node we have to solve the problem of code relocation. We use a scheme that
provides a solution for the general problem of code relocation. This approach exploits the
partition of the ELF format into .TEXT, .DATA and .BSS segments that can be used on
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every hardware platform that uses the ELF file format. After a service is received completely
and its code is relocated successfully, the ServiceManager accesses the new service via a
predefined interface.

The services follow a specific service template. Every service implements at least four
functions: ServiceInit(...), ServiceStart(), ServiceStop() and ServiceCleanUp(). The Service-
Init(...)-function performs the registration process of the service. The ServiceStart() and
ServiceStop() start or stop the actions of the service. The ServiceCleanUp() is executed when
the service is removed. The programmer of a service has to make sure that all registrations
and callbacks are removed in this function.

The ServiceInit(...)-function is invoked by the ServiceManager after the service is received.
The linker file ensures that this function is located at the very beginning of the programm code
in the .TEXT segment enabling the ServiceManager to find the entry point to this function.
A predefined signature allows the ServiceManager to pass arguments into the ServiceInit(...)-
function. In this way the function pointers to the interfaces of the ServiceManager are given
to the service. The service uses these interfaces to retrieve available functionality from other
services and register its own provided functions. If the registration of functions is completed,
the ServiceInit(...) returns the status to the ServiceManager. If the registration was successful,
the process is completed. The ServiceManager executes the ServiceStart()-function that is
now available in the symbol table. If the registration of functions failed, the ServiceManager
would remove the service from the symbol table and would free the allocated memory erasing
the service.

Since received services are written to the Flash memory, they are persistent even if the
node is turned off. If the node is rebooted, the present services can be integrated and
restarted. In this way, the software configuration of a node can be preserved, reused and
even analyzed in case of failures.

5 Service Repository

In Section 3.3 we introduced the Service Repository as a collection of services which are
provided by service programmers with WSN expertise and can be applied by the WSN
user. To meet the described requirements, we identify three main modules that compose the
Service Repository: a graphical User Interface, a Repository Service and a Machine Code
Modification Service.

The User Interface lists available services and visualizes complete information of services
such as service type, version, size and author. For the service programmer, it provides input
masks to upload implemented services. The user interface additionally offers the possibility
to change the service information in the database as well as in the stored service code. Using
the migration scheme described in Section 4.2 the services themselves are stored as machine
code for the target sensor node platform which is in our case the pacemate platform. We
realized the user interface as Web-based application.

The connection to the database is established by the Repository Service. This service
– realized as Web Service – encapsulates the upload of services into the database and makes
the stored data available. More precisely, it offers interfaces to store, delete, update and
display the content of the database.

The functionality to allow modifications of the machine code in order to update service type
and version is provided by the Machine Code Modification Service. If the user changes this
information via the input mask provided by the user interface, this modification service writes
the new information back into the machine code. This avoids unnecessary recompilations of
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the service code and guarantees consistency between the database entry and the according
service code.

6 Service Composition

The aim of our contribution is to make WSN technology available for users without any
WSN expertise. In Section 3.4 we described the requirements for the Service Composition
component. We identified two scenarios: either the Human Composer or the Automatic
Composer is controlling the composition process. We demanded that the composition
component of our presented infrastructure has to meet the requirements of both scenarios.
In order to fulfill these requirements, we have to divide the composition component into
two modules which are designed following the service-oriented architecture programming
paradigm. We need one module which controls the actual migration process (Migration
Control). As second module, we need the Migration Infrastructure consisting of the Repository
Service and the Migration Service (see Figure 4).














 

Figure 4 Architecture of the implementa-

tion of the Service Composition component

The Migration Infrastructure is the basis of
the Service Composition component. While the
Repository Service (cf. Section 5) enables the ac-
cess to a set of Surfer OS services, the Migration
Service realizes the interface to the sensor net-
work. The controlling module of the migration
process retrieves services from the Repository
Service. Calling the Migration Service pushes
the services into the WSN and completes the
migration process outside the sensor network.
Analog to the functionality of pushing Surfer OS
services into the sensor network, the Migration
Service provides the removal of services from sen-
sor nodes. As the pushing process, the removal process is controlled by controlling modules
as well.

The Migration Control manages the migration process and offers the abstraction for
the user for the WSN application development. As part of our infrastructure we provide
a graphical user interface application allowing the Human Composer to select services of
a repository and to transfer them into the sensor network. In order to embed the service
migration process into enterprise IT systems using the Automatic Composer, such systems
have to provide the capability of controlling the migration. Based on the Repository Service
and the Migration Service and the fact that we use Web Services as communication backbone,
we are able to build other high level services on top using classical programming languages
like Java or C++ as well as business process modeling languages such as BPEL (Business
Process Execution Language, [13]). Especially embedding the migration process into business
processes, which are designed with a graphical tool support, enables non IT personnel to
easily compose Surfer OS services.

7 Discussion

7.1 Benefits

Having implemented all three components, the Surfer OS, the Service Repository and the
interface for Service Composition, we now have an infrastructure for quick and easy WSN
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application development. Opposed the development cycle for WSN applications previously
shown in Figure 1, our approach realizes an application development process shown in
Figure 5.

The service-oriented approach and thus the loosely coupled services provide an abstraction
that is commonly used for distributed applications.
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Requirements
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Figure 5 Realized WSN application devel-

opment process

A user of WSN technology can design
and adapt a sensor network application with
Surfer OS independently. Successively the user
migrates services representing application logic
as well as different protocols into the WSN and
onto the nodes composing his own application
for his specific requirements. The ability to add,
remove and replace services during runtime gives
the user a high degree of flexibility and indepen-
dence. Especially in contrast to approaches using
multi-hop over the air flashing and replacing the
whole software image on a sensor node, the ser-
vice based approach of Surfer OS produces less
network traffic if changes to an application be-

come necessary. The services themselves, especially those that demand for special WSN
knowledge, are provided by WSN experts who have the expertise in the challenges of dis-
tributed ad-hoc systems. Services can also be implemented by the user following the service
template. In order to compose a WSN application, the user can utilize the provided graphical
user interface for manually transfer needed services onto the nodes. Our presented infras-
tructure also allows for using even professional application design and integration tools such
as BPEL, which represent the WSN application as business processes. Using such tools eases
the integration of the sensor network into an existing IT infrastructure.

The services provided in the Service Repository can also implement selforganizing func-
tionality causing other services or data to migrate or replicate themselves automatically.
Even a stateful migration of services is possible by migrating the according .DATA segment
from the RAM and the dynamically allocated memory as well. Services providing self
organizing functionalities can be realized with Surfer OS. They enable the network to react
independently on topology changes or depleting energy or memory ressources extending the
lifetime of the sensor network application. Furthermore, such approaches again hide network
complexity from the user.

Additionally, there is no need for predicting and modeling radio characteristics in order
to specify a routing protocol or other topology dependent algorithms. The service-oriented
approach in Surfer OS that encapsules every functionality as a service allows the replacement
even of the radio stack including the replacement of routing protocols. Thus, the right
protocols can be chosen during the deployment till satisfactory results are achieved. In the
same manner the RS232 stack can be replaced if changed IT infrastructure demands for a
new data format.

During the development of different services we realized that the service-oriented approach
for applications respectively protocols offers even more benefits than just the composition of
applications. When implementing protocols, e.g, for routing or localization, we found out
that often some basic functionalities are many protocols in common. E.g., a lot of protocols
have to be aware of their current neighborhood size or even of the node ids. Therefore all
these protocols send so called hello beacons. In this way the nodes in the direct neighborhood
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are aware of the presence of this neighboring node. When using more than one of these
protocols within one application, each protocol performs its own beaconing. This results in a
waste of radio bandwidth. Additionally, when the node has already transmitted data packets,
there is no need for additional beacons, since the neighbors are already aware of the presence
of the node. We realized that even protocols can be subdivided into several services where
each service can focus on performing as efficiently as possible. In this way we can reduce the
needed resources. Memory can be saved since different services may use the functionality of
one service instead of providing their own functionality. In the same way, the communication
costs can be reduced since a needed action like a beacon is only performed once.

7.2 Downsides

Adding functionality to the network after deployment has its price. Tightly coupled systems
such as TinyOS can be optimized for a special application. Unneeded code modules can
be ommitted during the linking process of the application before deployment resulting in
a minimal code size. In order to support future application modifications by addition or
removal of services, Surfer OS must provide all basic functionalities of the sensor node.
Surfer OS must offer software interfaces to all hardware components on the node which
might be used by services that migrate onto the node during deployment even if a hardware
component stays unused during the deployment. This implies that the code size of the
Surfer OS itself cannot be optimized for special applications.

The integration of services and thus the relocation of code itself demands for some
additional information and program logic. Each service must provide relocation information
in order to make the code executable on the target node. Additionally, Surfer OS must
keep a dynamic symbol table and offer interfaces to the ServiceManager. For the reloca-
tion information of the integrated services and for the code for the ServiceManager and
symbol table additional memory is needed on the nodes. Due to this, a loosely coupled
Surfer OS application offers less potiential for optimization of code sizes than a tightly
coupled application.

Tightly coupled monolithic sensor network applications are usually flashed onto the nodes
before deployment with special programming tools that might include special programming
hardware. Right before deployment the batteries of the nodes can be fully charged. A
Surfer OS application is adapted after the nodes are already deployed. The Surfer OS
infrastructure can be connected to any arbitrary node within the network, allowing the
addition or removal of services in the whole network. This flexibility implies that services
have to be distributed throughout the network. Thus the modification of an application is
naturally accompanied by additional network traffic.

8 Conclusion and Future Work

As state of the art, it is a very tedious task to design and deploy a sensor network application.
Special skills in distributed application design and WSN expertise are inevitable. In this
work we presented a service-oriented minimal sensor node operating system called Surfer OS
and an application development infrastructure which allows an application design from a set
of existing services making wireless sensor networks accessible for a wider range of users.

In contrast to current monilithically designed applications the highly modular architecture
of the Surfer OS provides a high degree of flexibility allowing the user to constantly adapt
an application to his individual needs. The possibility to migrate stateful services allows for
new strategies to efficiently use the resources provide by the network. The presented solution
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can be transferred into other areas of pervasive computing, where flexible applications on
resource constrained devices are needed. With our work we aim to ease the development
process of pervasive technology in various fields of application.
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Abstract

We study distributed adaptive beamforming in networks of wireless nodes. In particular, we
observe that for the synchronisation of carrier phases, distinct algorithmic configurations are
optimal in various environmental settings and propose a protocol that utilises organic computing
principles to find optimum parameters. Furthermore, we study the impact of different modulation
schemes on the bit error rate of a signal sequence transmitted collaboratively by distributed
devices via adaptive beamforming.
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1 Introduction

Beamforming is the approach to combine transmission signals from distinct transmit antennas
simultaneously in order to create a superimposed signal with improved channel characteristics
at a remote location [18]. A necessary condition for beamforming is that the signal streams
that are placed onto the transmit antennas are tightly synchronised. One period of a signal
transmitted at 2.4 GHz, for instance, lasts only for 0.0004µs. With inaccurate synchronisation
among signal streams, the relative phase allocation is therefore likely random. While this
very tight synchronisation is achied for centralised beamforming [4], where all antennas are
located on one device and the signal streams are controlled by a single controller on this
device, it poses a major challenge for distributed beamforming where antennas of distributed
devices are utilised for signal transmission [7, 8, 2].

Several open-loop and closed-loop carrier synchronisation approaches have been proposed
that enable sufficient synchronisation among carrier signals. These classic approaches are,
however, computationally very complex so that an application in wireless sensor networks is
not suggestive.

A computationally cheaper but more time consuming randomised interactive closed-loop
carrier synchronisation was proposed in [10]. It was analysed for its computational complexity
in [9, 15, 16] and several algorithmic improvements have been proposed in [5, 14, 13, 3].

This approach is feasible to be applied in wireless sensor networks due to its low com-
putational complexity for individual nodes. However, despite the numerous studies on this
approach, only carrier synchronisation but no actual data transmission was yet studied with
this transmission protocol.
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In our work we present a protocol for this iterative distributed adaptive beamforming
scheme and demonstrate the accuracy of data transmission for several modulation schemes
in mathematical simulations. Furthermore, we show that the performance of the protocol is
impacted by environmental impacts such as the noise figure, movement or activity on the
wireless channel but that by adapting several parameters of the transmission protocol, an
optimum performance can be achieved for each distinct environment.

We introduce some related work on distributed adaptive beamforming in wireless sensor
networks in section 2. In section 3 we show that the synchronisation performance is
impacted by environmental settings and introduce a protocol for distributed adaptive transmit
beamforming that utilises organic computing principles. In section 4 we study the impact of
various modulation schemes on the performance of distributed adaptive transmit beamforming
in networks of wireless devices. Finally, in section 5 we draw our conclusion.

2 Distributed beamforming in wireless sensor networks

Algorithms for distributed adaptive beamforming can be distinguished by closed-loop phase
synchronisation and open-loop phase synchronisation techniques. Closed-loop carrier syn-
chronisation can be achieved by a master-slave approach as detailed in [17]. The central
idea is that nodes transmit a synchronisation sequence simultaneously on code-divisioned
channels to a destination node. The destination calculates the relative phase offset of the
received signals and broadcasts this information to all transmitters which adapt their carrier
signals accordingly.

Due to the high computational complexity burden for the source node to derive the
relative phase offset of all received signals and for all nodes due to the utilisation of code
division techniques, this implementation is not suggestive in some applications.

Alternatively, a Master-slave-open-loop synchronisation can be applied [6]. In this
approach, the relative phase offset among nodes is determined by the transmit nodes with
a method similar to [17] but only among transmit nodes. The receiver then broadcasts a
carrier signal once so that the transmit nodes are able to correct their frequency offsets. In
this method, however, the generally high complexity for the nodes is only shifted from the
receiver node to one of the transmit nodes. Therefore, this approach is also hardly feasible
in wireless sensor networks.

A simpler and less resource demanding beamforming scheme to synchronise carrier singal
components for distributed beamforming is the one-bit feedback based closed-loop approach
considered in [17, 8]. The central optimisation procedure of this iterative process consists in
n devices i ∈ [1, . . . , n] randomly altering the phases γi of their carrier signal

"
(

m(t)ej(2π(fc+fi)t+γi)
)

(1)

In this signal representation, m(t) denotes the transmit message and fi the frequency offset
of device i to a common carrier frequency fc. Initially, i.i.d. phase offsets γi of carrier
signals are assumed. When a transmission from the devices is requested, carrier phases are
synchronised in the following iterative process.
1. Each transmitter i randomly alters its carrier phase offset γi and frequency offset fi.
2. Devices transmit as a distributed beamformer.
3. A receiver estimates the amount of synchronisation among carrier phases (for instance by

the Signal-to-Noise ratio (SNR) of the received sum signal).
4. This information is broadcast to the transmit devices that interpret it and adapt their

carrier phase accordingly.
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These four steps are iterated repeatedly until sufficient synchronisation is achieved [9, 11, 12].
Observe that in each of these iterations, a reduction of the SNR is not accepted. A new
configuration of phase offsets for transmit carrier components is accepted only when the
SNR was increased. Since the search space for the algorithm is weak multimodal [15], this
means that the method converges to the optimum with probability 1 [9]. This result achieved
in [9] considered an idealised environment without noise and interference. In a realistic
environment, the impact of the noise figure determines the accuracy that can be achieved by
this approach.

The distinct approaches proposed for this transmission scheme differ in the implementation
of the first and the fourth step specified above. In [11, 3] devices alter their carrier phase
offset γi according to a normal distribution with small variance. In [12] a uniform distribution
with a small probability to alter the phase offset of one individual device is utilised instead.

In [9] it was determined that the expected optimisation time of this approach for a network
of n transmit nodes is O(log n) when in each iteration the optimum probability distribution
is chosen. For a fixed uniform distribution over the whole optimisation process, we were able
to derive a sharp asymptotic bound of Θ(n · k · log n) for the expected optimisation time [15].
Here, k denotes the maximum number of distinct phase offsets a physical transmitter can
generate.

When we assume a reasonable number of signal periods for one iteration, this means that,
although this synchronisation time is greatly higher than the time required for synchronisation
with the classical methods, it is still in the order of milliseconds for reasonable network sizes.

The strength of feedback based closed-loop distributed adaptive beamforming in wireless
sensor networks is its simplicity and low processing requirements that make it feasible for
the application in networks of tiny sized, low power and computationally restricted devices.
However, the impact of environmental settings as well as the bit error rate (BER) achieved
by several devices transmitting collaboratively has not yet been considered.

In the following we present a transmission protocol that utilises this synchronisation
scheme and that is in addition responsive to environmental impacts.

3 Adaptive distributed beamforming protocol

In one-bit feedback based distributed adaptive transmit beamforming, devices combine their
carrier signals to collaboratively reach a remote receiver. In recent studies we have already
observed some hints that the phase synchronisation performance might be dependent on
environmental parameters. These parameters are, for instance, the probability to alter phases
of transmit carriers, the noise figure, the distance between transmit devices and a remote
receiver or the count of devices participating in the synchronisation [14, 13, 16]. Figure 1
exemplary shows the impact of the network size on the synchronisation process. We observe
that the best phase alteration probability to achieve an optimum BER for collaborative
transmission differs among various network sizes. Consequently, optimum parameters have
to be derived individually for each concrete scenario.

Therefore, we propose a protocol for distributed adaptive beamforming that incorporates
self-adaptation and self-optimisation features. The protocol adapts the parameters of
the iterative synchronisation to a given environment so that an optimum synchronisation
performance is achieved.

All devices utilise the iterative distributed carrier synchronisation detailed in [10, 6].
In order to adapt to different environments, devices maintain and adapt the following
parameters.
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Figure 1 Impact of the network size on the BER at distinct phase alteration probabilities for
one bit feedback based distributed phase synchronisation and adaptive transmit beamforming

Pmut,i Probability to alter the phase offset of an individual device i (Pmut,i ∈ [0, 1])

Pdist,i Probability distribution for the random process of device i (Pdist,i ∈ {normal, uniform})

vari Variance for the random process (vari ∈ [0, π])

The transmission protocol consists of the following steps that are executed in order.

1. An individual device broadcasts a data sequence sd to devices in its proximity.

2. Devices decide whether to participate in the transmission. Possible decision parameters
are, for instance, the energy level, a required count of participating devices or current
computational load.

3. Closed-loop one bit feedback based carrier synchronisation is achieved (cf. section 2).
Devices utilise Pmut,i, Pdist,i, vari.

4. Upon sufficient synchronisation the receiver broadcasts an acknowledgement.

5. Optimisation parameters Pmut,i, Pdist,i and vari are adapted.

6. Devices collaboratively transmit sd.

For a given environment, a set of devices can with this protocol improve their synchroni-
sation performance after several transmissions.

The protocol is self-adaptive to a given environment and self-healing as it automati-
cally adapts the optimisation parameters to changing numbers of participating devices or
communication topologies.

We evaluate this protocol in mathematical simulations in a network of 100 devices. The
scenario of distributed adaptive beamforming in an environment of distributed devices was
implemented in Matlab. In the simulation, we calculate the phase offset of the dominant
signal component from each transmit device at the remote receiver based on the transmission
distance between the nodes in a direct line of sight (LOS) scenario. Path loss was calculated

by the Friis free space formula (Ptx

(

λ
2πd

)2
GtxGrx) with antenna gain for the transmitter

and the receiver as Grx = Gtx = 0dB. Signals are transmitted at 2.4GHz with transmit
power Ptx = 1mW .
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Table 1 Configuration of the simulations. Prx is the the received signal power, d is the distance
between transmitter and receiver and λ is the wavelength of the signal

Property Value
Node distribution area 30m × 30m
Location of the receiver (15m, 15m, 30m)
Mobility stationary devices
Base band frequency fbase = 2.4 GHz
Transmission power of devices Ptx = 1mW
Gain of the transmit antenna Gtx = 0 dB
Gain of the receive antenna Grx = 0 dB
Iterations per simulations 6000
Identical simulation runs 10
Random noise power [1] −103 dBm
Pathloss calculation (Prx) Ptx

(

λ
2πd

)2

GtxGrx

All received signal components calculated in this manner are then summed up in order to
achieve the superimposed sum signal

ζsum(t) =
∑

i

(

"
(

m(t)ej(2π(fc+fi)t+γi)
))

(2)

Finally, a noise signal ζnoise(t) is added on to ζsum(t) to calculate the signal at the receiver.
We utilise ambient white Gaussian noise (AWGN) with −103dBm as proposed in [1].

Short of multipath propagation the simulation therefore captures all relevant aspects of
the radio channel in our scenario. In particular, the channel is not modelled by a statistical
distribution but calculated on a LOS basis.

Devices are distributed uniformly at random on a 30m × 30m square area with a receiver
located up to 200m above the centre of this area. All devices are stationary and frequency
and phase stability are considered perfect (cf. Table 1).

Each simulation lasts for 6000 iterations and one iteration consists of the devices trans-
mitting, feedback computation, feedback transmission and feedback interpretation. It is
possible to perform these steps within few singal periods so that the time consumed for
a synchronisation of 6000 iterations is in the order of milliseconds for a base band signal
frequency of 2.4 GHz.

Signal quality of a signal during the synchronisation phase is measured by the Root of
the Mean Square Error (RMSE) of the received signal ζsum to an expected optimum signal
ζopt:

RMSE =

√

√

√

√

τ
∑

t=0

(

ζsum(t) + ζnoise(t) − ζopt(t)
)2

n
(3)

In equation (3), τ is chosen to cover several signal periods.
The optimum signal is calculated as a perfectly aligned and properly phase shifted received

sum signal from all transmit sources. For the optimum signal, noise is disregarded.
We utilise an optimisation approach that implements a uniform distribution to alter the

phase offset of distributed carrier signals. Consequently, only the mutation probability Pmut,i

of devices i ∈ [1..n] is altered. After each 10 successful synchronisations, the mean achieved
RMSE is compared to recently achieved RMSE values and the phase alteration probability is
adapted accordingly. As all nodes receive identical feedback from the receiver device, this
adaptation process is identical among devices.

We implement the search for the optimum mutation probability as a divide and conquer
approach. Nodes start with a mutation probability of 0.5 and then subsequently approximate
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Figure 2 Schematic of the optimisation process of the proposed protocol. RMSE values depicted
denote the mean RMSE after 10 synchronisations with identical Pmut,i

the optimum mutation probability by testing those parts of the search space with lower
and higher probability. The process always follows the phase alteration probability with
the best achieved RMSE after 10 synchronisations. Figure 2 schematically illustrates this
optimisation process in a network of 100 devices that are located approximately 30 meters
from a remote receiver.

All devices first complete synchronisations with Pmut,i = 0.5 and then derive the mean
RMSE values for Pmut,i = 0.25 and Pmut,i = 0.75. Since the latter probability achieves a
better RMSE in this simulation, the lower half of the probability space (Pmut,i ∈ [0, 0.5]) is
disregarded in the synchronisation process. With 0.875 a probability is reached for which
no further improvement is found. In order to derive an optimum value, the algorithm tests
additional three probability values in the proximity of the best value reached so far and then
exits with the optimum derived mutation probability of Pmut,i = 0.875 in this case.

Figure 3 depicts the relative phase offset of all carrier signal components during the
course of the synchronisation for Pmut,i = 0.5 and Pmut,i = 0.875. We observe that the
synchronisation in the latter case is better since the variance in the phase offsets achieved
for all nodes is lower.

We can see this also from the sequence of RMSE values observed by the remote receiver
as depicted in figure 4. The synchronisation with Pmut,i = 0.875 is faster and achieves an
improved RMSE during the synchronisation.

In general, the algorithm searches the probability space in a binary search fashion in order
to bound the optimum mutation probability. Figure 5 depicts the RMSE values achieved
in this process in an environment where the receiver is located 50 meters apart from the
transmit devices.

4 Modulation and data transmission

When carrier signal components are sufficiently synchronised, transmit devices simultaneously
start transmitting their message m(t). The distinct signal components are then superimposed
at the remote receiver. Naturally, as synchronisation is not perfect, we expect a considerable
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(b) Distributed carrier phase synchronisation with
Pmut,i = 0.875

Figure 3 Relative phase offset achieved during distributed carrier phase synchronisation processes
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Figure 4 Median RMSE values achieved in the course of the synchronisation

Figure 5 Mean RMSE values after each 10 synchronisations for various phase alteration proba-
bilities Pmut,i
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Figure 6 Modulation and demodulation of a simple symbol sequence

bit error rate for this transmission. We study the bit error rate achieved by distributed
beamforming devices for various transmission distances and modulation schemes. We again
utilise the simulation environment introduced in section 3.

After each complete synchronisation (6000 iterations) all 100 devices transmit an identical
signal sequence m(t). We utilise a simple amplitude modulation scheme. At the receiver the
BER of the received and demodulated signal is calculated.

After synchronisation is achieved, a message signal m(t) is modulated on the transmit
carrier and simultaneously transmitted by all devices. Figure 6 illustrates the process of
modulation, transmission and demodulation.

In this modulation scheme, two bits are modulated for one transmitted symbol. We
modulated a simple periodical symbol sequence on the transmit carrier of each single node.
In the figure, we observe a considerable carrier phase offset of the two nodes depicted. For
this environmental setting we observe that the received superimposed signal is improved in
its signal strength compared to a single transmit signal. Also, the symbol sequence is clearly
visible from the received superimposed signal. Consequently, the bit error rate (BER) for
this configuration is low. Figure 7 depicts the BER for three amplitude modulation schemes
and for various transmission distances.

In all simulations, 100 transmit devices are utilised to superimpose their carrier signals. In
the other two modulation schemes, three and one bits are represented by one transmit symbol,
respectively. As expected, we observe that the BER is higher with the higher modulation
scheme and with increasing distance. While it is neglectable for the weaker modulation
scheme at a distance of 30 meters, the BER becomes significant with increasing distance for
all modulation schemes.
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Figure 7 Bit error rate for three amplitude modulation schemes

5 Conclusion

We have introduced an adaptive divide and conquer protocol for data transmission among
distributed adaptive beamforming devices that adapts to environmental settings in order to
achieve optimum synchronisation between beamforming devices. The protocol builds on a
recently proposed computationally cheap randomised iterative beamforming algorithm. We
extend the current work by demonstrating the bit error rate for actual data transmission
with several modulation schemes.

In mathematical simulations of networks of 100 beamforming devices we have demon-
strated that the synchronisation quality is actually improved by the proposed protocol in the
long term. The parameters of the synchronisation protocol are then adapted to environmental
conditions to achieve the best accuracy under these conditions.

Additionally, we studied various amplitude modulation schemes for beamforming trans-
missions. We could observe that a collaborative data transmission is possible also at distances
of about 200 meters when strong bit guarding schemes are utilised. At shorter distances of
about 30 meters the BER observed was neglectable for lower order modulation schemes.

Our studies confirm the feasibility of randomised iterative feedback based carrier syn-
chronisation for beamforming of distributed computation and transmission power restricted
devices.
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Abstract

Generating synthetic loads which are sufficiently close to reality represents an important and
challenging task in performance and quality-of-service (QoS) evaluations of computer networks
and distributed systems. Here, the load to be generated represents sequences of requests at a
well-defined service interface within a network node. The paper presents a tool (UniLoG.HTTP)
which can be used in a flexible manner to generate realistic and representative server and network
loads, in terms of access requests to Web servers as well as creation of typical Web traffic within a
communication network. The paper describes the architecture of this load generator, the critical
design decisions and solution approaches which allowed us to obtain the desired flexibility.
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1 Introduction

Generating load for computer and communication networks in a sufficiently realistic manner
represents an important and challenging task. Realistic load generation typically is an
indispensable prerequisite to the analysis and prediction of network performance and of
quality-of-service (QoS). Moreover, load generation may support functionality testing of
network components (on various levels of component utilization) or the testing of the
effectiveness of security mechanisms.

Load generation can be required at very different interfaces within a computer network,
such as user-/application-oriented interfaces at which sequences of requests have to be
generated like requests to a Web server, files to be transferred, sequences of video frames or
of digitized voice data to be transmitted, etc. On the other hand, it might also be necessary
to generate load for a lower-layer interface within a protocol hierarchy, such as creation of IP
packets or of Ethernet frames to be transmitted.

An interesting approach for load generating, from our point of view, is the provisioning
of a unified tool which allows one to generate load (i.e. sequences of requests) at an interface
which can be chosen by an experimenter dependent on the kind of study he/she is carrying
out. This approach has been followed by the authors during the development of the unified
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load generator UniLoG [1]. The basic principle underlying the design and elaboration of
UniLoG has been to start with a formal description of an abstract load model and thereafter
to use an interface-dependent adapter to map the abstract requests to the concrete requests
as they are “understood” by the service providing component at the real interface in question.
Our earlier research covers the provisioning of adapters for TCP and UDP [2] as well as IP
[1] interfaces. Because of the pre-eminent importance of the World Wide Web (WWW) a
strong desire emerged to embed the capability into UniLoG of generating realistic Web traffic
and realistic Web server loads, too.

The following strongly different modeling approaches (MA) are possible and may be
useful for various kinds of studies when characterizing HTTP loads and the resulting Web
traffic induced by this load:

(MA1) Realistic description of sequences of requests as they are passed to the HTTP
interface IFc(HTTP ) within the Web client. Generating a (realistic) sequence of requests
at interface IFc(HTTP ) allows one, with only little expenditure, on the one hand to
generate some specific load for a Web server (in terms of client requests of varying
complexity) and on the other hand to generate some specific load for the network (in
terms of Web traffic of different structure and intensity) [3, 4].

(MA2) Realistic description of sequences of requests as they are passed, both, in the web client
C (as client requests) and in the Web server S (as server responses) to the corresponding
HTTP interfaces IFc(HTTP ) and IFs(HTTP ). As server responses are generated as
a consequence of client requests, precise modeling here requires coordination of load
generation at both interfaces – and this is a tedious task. The concurrent generation of
sequences of requests at interfaces IFc(HTTP ) and IFs(HTTP ) replaces the Web server
being used in MA1 by a load generator [5, 6]. Therefore, generation of load here gets much
more complicated because a sufficiently realistic model for the Web server is required
and load generation in the client and the server have to be coordinated. Moreover, this
approach does no longer allow the dedicated loading of a Web server with client requests.

(MA3) Realistic description of the sequence of IP packets (as observed at the IP interface
IFs(IP ) in the Web server) or requests at the TCP service interface (IFs(TCP ) in the
server) as they are induced by single or an overlay of client requests to the server. The
IP packets or TCP requests result from the transmission of the corresponding server
responses. This modeling approach fundamentally differs from MA1 and MA2 as it
assumes a completely different interface for load description/generation (IP instead of
HTTP interface). The approach is useful in cases, when, e.g., streams of IP packets
have to be injected into a network in a manner as they would have been induced by
single or an overlay of Web server accesses. Most of the currently existing literature on
characterization/generation of HTTP loads [7, 8] follows this modeling approach, though,
in order to be precise, one would have to consider it as a characterization/generation of
IP packet streams. Here also, the dedicated loading of a Web server with client requests
is impossible using this approach.

MA1 is the approach followed by us and presented in this paper, because we want to
generate load for the server, too, and not only for the network (which is impossible when
using approaches MA2 or MA3). Moreover, we want to inject the load directly at the HTTP
interface and therefore MA3 is again not an alternative to the MA1 approach.

A survey on the literature related with this work follows in Sec. 2. The application of
our unified approach to Web workload generation is illustrated in Sec. 3. In Sec. 4, the
architecture of the corresponding HTTP adapter along with an algorithm for the allocation
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of real requests from a pool of Web sites are explained. The estimation of the relevant
workload/traffic characteristics and the construction of a sufficiently large, representative
and stable pool of Web sites for load generation are presented in Sec. 5 and Sec. 6. A short
summary and an outlook on future work conclude this paper.

2 Related Work

Web workload generators are software tools based either on traces reflecting real Web user
sessions or on workload models that are designed and implemented to generate HTTP
requests. Floyd and Paxson demonstrated in their study [9] how difficult it is to generate
representative Web requests, especially when some particular characteristics in a dynamic
Web site should be modeled, and how these characteristics impact on the behaviour of the
Web clients.

One of the first studies trying to identify the common characteristics in Web server
workloads is the work done by Arlitt and Williamson [10], which used logs of Web server
accesses at six different sites (three from university environments, two from scientific research
organizations, and one from a commercial Internet service provider). The observed workload
characteristics were used to identify the possible strategies for the design of a caching system
to improve Web server performance.

Barford and Crovella [4] applied a number of observations of Web server usage to create
a realistic Web workload generation tool, called SURGE (Scalable URL Reference Generator)
which mimics a set of real users accessing a server and generates URL references matching
empirical measurements of request and server file size distribution, relative file popularity,
embedded file references, temporal locality of reference, and idle periods of individual users.
The relevance of these Web workload characteristics as well as their concrete values were
identified based on single (nonrecurring) measurements, so that later revisiting done by
Williams et al. [11] was required due to emerging Web technologies and a 30-fold increase in
overall traffic volume in 2005.

Rolland et al. [8] proposed the open-loop packet-level traffic generator LiTGen, which
statistically models IP traffic (resulting from Web requests) on a per user and application
basis and, in contrary to the recommendations of Paxon and Floyd [9], does not consider such
important network and protocol characteristics like RTT, link capacities or TCP dynamics.

ParaSynTG [6] is a synthetic trace generator for source-level representation of Web traffic
with different characteristics such as document size and type, popularity (in terms of frequency
of reference) as well as temporal locality of requests. The tool was designed for the generation
of workload traces only (which can be used, e.g., in simulation experiments) and, in the
opposite to the design objectives of our Web workload generator UniLoG, provides no facilities
to generate and to inject real HTTP requests into the network.

PackMime-NS [5] is an example for a source-level and Swing [7] is an example for a
packet-level traffic generation tool, respectively, with a lot of effort spent by the authors on
the ability to take into account the network and protocol characteristics (e.g., RTT, link
capacities and error rates, dynamic TCP interactions between Web clients and servers). As a
consequence, there are not only the Web clients and Web servers that have to be modeled by
these solutions, but also the other components of the network under study. Hence, the field
of application of these solutions is restricted to network simulation experiments (whereas our
solution is targeting performance evaluation studies for real networks and Web servers, too).

A further survey of traffic generation tools (including the solutions for other interfaces,
e.g., Ethernet, IP, TCP/UDP) can be found in [12].
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3 Application of the UniLoG Approach to Web Traffic Generation

The characteristic behaviour of a user navigating Web sites by means of a browser is presented
in Fig. 1 (left). A typical Web site consists of a base object and multiple embedded objects.
With the first HTTP request the browser retrieves the base object of the site, parses it and
issues subsequent HTTP requests to fetch all embedded objects.
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Figure 1 Retrieval of multiple pages and embedded objects from the server WS (left) and the
corresponding UBA (right).

According to the unified load generation approach presented in [1], a set of HTTP service
users which are relevant for the particular modeling task at the interface IF = IFc(HTTP )
in the Web client is considered as an environment E while layers of the protocol stack below
the HTTP interface in the Web client, the Web server, and the communication network
are considered as being part of the service system S. The workload L = L(E, S, IF, T ) is
furthermore represented by a sequence of requests (ti, ri), ti ∈ T, i = 1, 2, ..., n (ti ∈ R: arrival
time of request ri at IF , ti ≤ tj for i < j, n ∈ N) passed by the environment E to the service
system S at the interface IF = IFc(HTTP ) during a time interval T .

Each request ri is characterized by the corresponding abstract request type which is
chosen from a set RT = {RT1, RT2, . . . , RTm}, m ∈ N, of abstract request types supplied
by the experimenter. There is nearly a dozen of different request methods provided by the
HTTP/1.1 protocol specification (cf. RFC 2616) for the interaction with the Web server.
For the specification of an HTTP workload model, the experimenter can decide to provide
different abstract request types for each HTTP request method but he/she would often prefer
to define only one single abstract request type (e.g., HttpRequest, cf. Fig. 1) addressing
HTTP requests in general, and to concentrate on the identification of request parameters
which have a significant impact on the workload induced in the server and network. The
analysis of the workload characteristics used in a series of studies on Web workload modeling
(e.g., [3, 4, 5, 11]) drove the choice of the following request parameters to be provided with
our solution by default.
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serverName contains either the fully qualified domain name (FQDN) or the IP address of
the target Web server and has a direct influence on the generated network traffic matrix.
In case the experimenter plans to test a particular Web server or a specific function of a
Web service deployed onto it, the exact location of the object to be demanded can be
supplied by this parameter (e.g., by means of a URL including a full path and search
part, if needed).

replySize is the total amount of response data from the server including the size of all
embedded objects. This attribute is not part of the HTTP/1.1 message but it has a
significant impact on the load induced by HTTP request.

numberOfEmbeddedObjects specifies the number of embedded objects (e.g. images, links,
script objects) in the requested page. HTTP/1.1 allows a single TCP connection to be
used for multiple object requests.

complexity is provided to characterize the structural complexity of the page in general and
can be specified by means of a complexity class derived from the values of page complexity
characteristics numberOfEmbeddedObjects and replySize which do not consider the
induced server load directly.

requestSize is the total amount of data transferred from the client to the Web server, which
is affected by the number and the size of requests for the embedded objects in the page.
Some of HTTP request headers (e.g. Accept, User-Agent) may also influence the size of
HTTP messages [13].

inducedServerLoad characterizes the amount of time required for the server to respond to
the client request and can be specified by means of a server delay class derived from values
of particular server delays (d1 − d5, cf. Fig. 1) induced by requests to the main page
and its embedded objects. Client requests may induce further searching, authentication
or database retrieval activities on the server side and usually differ significantly in this
factor.

The set RT of abstract request types is constructed by including the relevant request
parameters from the list above into the corresponding request types RTr = Id(RTr) ∪
{a1, a2, . . . , ap}, RTr ∈ RT, r ∈ N, 1 ≤ r ≤ m, as abstract request attributes ak, k ∈ N, 1 ≤
k ≤ p, where p ∈ N, p = p(r) is the number of attributes in RTr and Id(RTr) is its unique
name. In this way, the experimenter can define abstract request types with different level of
abstraction dependent on the kind of study being carried out. For example, the experimenter
can decide to include only one single attribute inducedServerLoad into the abstract request
type HttpRequest in order to analyse the utilization level of some known Web server. In
case he/she plans to test a specific function of a Web service/application deployed to that
server, the attribute serverName containing the full URL of the referenced object is most
likely to be added to HttpRequest. In order to produce various background loads for the
network in terms of Web traffic of different structure and intensity, further attributes like
numberOfEmbeddedObjects or replySize can be included into HttpRequest.

For the specification of the possible sequences of requests, the set of relevant HTTP service
users is represented by a user behaviour automaton (UBA, cf. Fig. 1). A UBA is an extended
finite automaton U = {φ, Tφ} consisting of the set of macro states φ = {φi, φa, φb, φt} which
describe the four typical types of user activity (initialization in φi, generation of requests
in the active macro state φa, waiting for system reactions in the blocked macro state φb,
termination in φt) and the set Tφ of transitions between these macro states. The macro
states are further refined by means of (R)equest-, (D)elay- and (S)ystem-states, which are
introduced to model the generation of requests of a particular abstract request type, the
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delay times between successive requests and/or system events, and waiting for a certain type
of system event to occur, correspondingly (cf. [1]).

Consider a simple UBA for an HTTP user as presented in Fig. 1. The user starts in the
S-state Si of the initialization macro state φi of the UBA and, after the Internet browser is
started completely, becomes active by changing its macro state to φa. To model the retrieval
of Web pages by the user, requests of abstract request type HttpRequest(serverName,
requestSize, replySize, numberOfEmbeddedObjects, inducedServerLoad, complexity)
are generated in the R-state RHttpRequest of φa. The values of request attributes can be
specified by the experimenter by means of constant values, traces of real measurements or
various distribution functions. We note that these requests are initially abstract, i.e. they
contain attributes (e.g., replySize, inducedServerLoad) which differ from the attributes
of real HTTP messages significantly or do even not exist in HTTP messages at all. Moreover,
one HttpRequest usually induces more than one real HTTP request to retrieve images, links
and script objects embedded in the page as well as objects linked from other servers (e.g.,
advertisement pop-ups and Web bugs). For example, during the execution of the UBA,
an abstract HttpRequest(WS, -1, 32000, 2, -1, -1) represents an instruction at our load
generator to invoke a Web page on the server WS which contains 2 embedded objects resulting
in the total reply size of 32000 byte (a value of -1 means that the corresponding parameter is
not used in this request). So, the UniLoG.HTTP adapter must issue the corresponding real
HTTP requests for the main object and for each of the two embedded objects of the page (cf.
Fig. 1).

In the simple UBA presented here, the user resides in the S-state SBlocked of the blocked
macro state φb until the page is retrieved completely (i.e. until the last embedded object
is fetched successfully or an error/status code is returned). There are, in general, other
possibilities to model this behaviour (e.g., to leave SBlocked immediately after the main object
of the page is loaded). After a user-dependent delay time (“think time”), modeled in the
D-state DOF F , the next page is accessed by the user (by following a link on the current page
or by entering a URL in the address line of the browser directly) and the corresponding
HttpRequest is generated in RHttpRequest. The UBA is executed until the S-state St of the
termination macro state φt is reached or the upper limit of the time interval T specified by
the experimenter for load generation is exceeded.

It should be noted, that the experimenter can specify advanced Web workload character-
istics by means of a UBA, which are not explicitly provided by the set of abstract request
parameters. For example, the user think time (which is an important property of Web traffic
to capture its bursty nature [4]) can be specified in D-states as interarrival time between
subsequent requests HttpRequest. Page popularity (defined as relative number of requests
made to individual pages on the server) can be specified, e.g., by means of a frequency or
Zipf-like distribution for the serverName parameter (in this case, containing the full URL of
the page to be referenced) of HttpRequest. Temporal locality of page requests (referring the
likelihood that, once a page has been requested, it will be requested again in the near future)
can be characterized by means of a distribution of stack distances [6] for the serverName

parameter (again, containing the full URL of the page to be referenced) of HttpRequest in
the request sequence to be generated by our load generator.

4 Allocation of Real HTTP Requests

The Unified Load Generator UniLoG, as presented in [1], incorporates a formal automata-
based load specification technique and exhibits a distributed architecture to provide a high
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degree of flexibility in generating traffic mixes of various structure and intensity for different
scenarios. The experimenter can define workload models in form of a UBA, and distribute
the parameterized UBA (PUBA) to the load generating nodes (load agents) involved in
the experiment, which can be controlled by the experimenter from one central point in the
network (management station, cf. Fig. 2). In each load agent, the generator component
(GAR) for the PUBA execution and one or many adapters (e.g. UniLoG.HTTP) for the
allocation of the corresponding real requests are installed.
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Figure 2 UniLoG architecture and the main components of the UniLoG.HTTP adapter (left).

The key components of the UniLoG.HTTP adapter are presented in the left part of Fig. 2.
The main adapter thread consumes abstract requests (ti, ri) which are generated by the
generator thread (GAR) in R-states of the current PUBA and inserted into the request queue
RQ. For each abstract request the adapter invokes the request mapper which is responsible for
the allocation of the correspondent real HTTP request from the pool. Each HTTP request in
the pool is represented by a tuple ei = (vi,1, vi,2, . . . , vi,p, v∗

i,1, v∗

i,2, . . . , v∗

i,r), i ∈ N, 1 ≤ i ≤ N .
In such a tuple, v∗

i,1, . . . , v∗

i,r denote the values of r real request attributes required to
build a request which is conform to HTTP/1.1 (like HTTP request method requestMethod,
server name serverName and port serverPort, object name objectName, and the optional
data optData of length optLength sent with POST requests). vi,1, . . . , vi,p denote the
corresponding values of p abstract request parameters (defined in Sec. 3), which can be
measured manually by the experimenter or estimated by the adapter automatically (see
Sec. 5) and used to query the pool for real requests which match as good as possible the
current abstract request. Finally, N denotes the pool size, i.e. the number of its elements.

To allocate the best matching real request (ti, r∗

i ), the request mapper starts with the
abstract parameter a1 of the highest priority (the priority of the abstract request parameters
can be specified by the experimenter in PUBA) and creates a candidates list consisting of
requests from the pool which exhibit the minimal distance between a1 and vi,1, 1 ≤ i ≤ N .
In the next step, the abstract parameter a2 with the second highest priority is selected and
only the requests with the minimal distance between a2 and vi,2, 1 ≤ i ≤ N are kept on the
candidates list. In case of string parameters, especially for serverName, an exact match in
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place of the minimal distance candidates is required. This procedure is repeated until only
one candidate is left or all of the p abstract request parameters are processed. In case there
are more than one real requests left on the candidates list after the last step, one of them is
selected randomly.

The request allocation algorithm is flexible in the number and types of abstract request
parameters used for the pool query. Its complexity is determined by the number v of required
comparisons which yields to v = N · p for the worst case when all N real requests from the
pool match each of the p parameters of the current abstract request.

The allocated real request (ti, r∗

i ) is prepared for execution by creating a new request
thread and establishing the connection to the Web server, if needed. Thereafter, the adapter
thread waits until the specified request injection time ti is reached and resumes the request
thread for execution. HTTP status codes returned by the request thread represent the system
messages which are inserted by the adapter thread into the event queue EQ.

As a proof of the presented concept, the first prototype of the UniLoG.HTTP adapter for
Windows was developed in [14]. Meanwhile, this prototype has been significantly improved to
imitate the behaviour of a real browser more closely and, finally, it has been integrated in the
UniLoG load generator. UniLoG.HTTP makes use of the WinInet library for the management
of Web server connections as well as for the formation and injection of HTTP requests into
the network. The choice of WinInet is motivated by the fact that it is internally used by the
Internet Explorer (IE) browser itself and thus enables the adapter to imitate the behaviour
of this browser in a very realistic manner.

For this reason, we applied the same values for the User-Agent and Accept request header
fields as they are used by the IE 7.0 1 during our HttpOpenRequest calls for the formation
and injection of HTTP requests in the adapter. Furthermore, similar to [13], a series of
INTERNET_FLAGs (NO_CACHE_WRITE, RELOAD, PRAGMA_NO_CACHE, KEEP_CONNECTION) has been
specified in HttpOpenRequest calls in order to instruct the adapter to retrieve the requested
objects from the original server and not from the local cache or proxy, using, if possible, a
keep-alive connection. These measure should help to ensure that the adapter induces Web
traffic with characteristics as specified by the values of abstract request parameters in the
pool entries.

5 Estimation of Values for Abstract Request Parameters

It becomes apparent, that a sufficiently large pool of Web requests with properly estimated
values of their abstract parameters is required to take UniLoG.HTTP in operation. Furthermore,
the pool should be kept up-to-date to ensure that the characteristics of the Web traffic
induced by UniLoG.HTTP correspond to the values of abstract parameters specified in the
pool entries.

In the measurement approach applied in [15], a series of Firefox browser sessions were
traced with tcpdump and analyzed to extract various characteristics of worldwide top 500
popular web sites. In this way, all components of the requested page are considered, providing
very realistic Web server workload and traffic characteristics. However, this method leads
to a sufficient programming effort for combining a series of external tools to fully automate
the measurements, whereas the required measurement points can be accessed by us in the
UniLoG.HTTP source code directly. Furthermore, UniLoG.HTTP is aimed at imitating the

1 These values were extracted from the registry key HKLM/Software/Microsoft/Windows/
CurrentVersion/InternetSettings
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behaviour of the real browser to some extent and is not able yet to interpret all existing
types of embedded objects (e.g. JavaScript or CSS objects are loaded but not interpreted).
Therefore, we decided to integrate the parameter estimation function for our pool immediately
into the adapter and allowed it to be turned on and off by the experimenter. The values of
abstract parameters for each pool entry are estimated during the retrieval of the correspondent
Web page and its embedded objects from the server according to the following rules.

numberOfEmbeddedObjects (o) the adapter retrieves the main object of the requested page
specified by the concatenation of abstract serverName and real objectName parameters
and parses its content to recognize the embedded images, links, and script objects to
retrieve them by means of consequent requests from the same server. Objects linked from
other servers are not loaded and hence not considered in o at this moment.

replySize (s) is computed as the total amount of data (in kbyte) loaded by the adapter
during the InternetReadFile calls for the main page and all its embedded objects.

complexity class C ∈ {C1, . . . , C9} for the page is derived from its estimated values o and s

using class boundaries o1, o2 and s1, s2 which can be supplied by the experimenter for
the numberOfEmbeddedObjects and replySize parameters, correspondingly (cf. Fig. 3).

requestSize is calculated as the total amount of data (in byte) sent by the adapter to the
server considering requests for the main page, all its embedded objects and the optional
data for POST requests. The mean size of GET requests issued by the IE 7.0 browser
was estimated to 612 byte in [16].

inducedServerLoad class D ∈ {Immediately, Fast, Slow, Annoyingly slow} is derived
from the delay times di, i = 1, . . . , o, induced on the server by requests to the embedded
objects of the page. The delay time induced by the main object is not considered to
exclude the time spent for potential requests to the DNS server. Each di is estimated
as a difference between request execution time ai (cf. Fig. 3) and the server round trip
time (RTTs), estimated either from the TCP handshake in the beginning of the HTTP
session or by means of ICMP echo messages exchanged between our adapter and the
server. The total server delay d induced by the page is estimated as the sum of di in case
HTTP pipelining is not used (and di can, therefore, not “overlap” on the server) or by
the maximum of di, otherwise. Finally, the appropriate inducedServerLoad class D is
chosen considering the boundary values supplied by the experimenter for the server delay
time d.
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Figure 3 Formation of page complexity and inducedServerLoad classes.

A series of IE 7.0 browser sessions for a rather small sample of 61 exemplarily chosen
home pages were captured and analyzed in [16] using WireShark [17] to extract the values
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of abstract parameters according to the rules specified above. The IE 7.0 browser was
instrumentalized in a manner, that only the object types supported by the adapter were
loaded. The results exhibited only marginal difference from the parameter values estimated
by the adapter.

6 Construction of the Pool from Popular Web Sites

As already stated in Sec. 5, a sufficiently large, representative and stable pool is indispensable
for the generation of realistic and representative Web workloads with UniLoG. In this section,
we present the construction of a pool populated with home pages extracted from Alexa Web
statistics service [18] which ranks Web sites according to their popularity among a large
number of users. The representativeness of the Alexa’s sample is though restricted to a set
of users which were able to install the Alexa’s toolbar required to gather the statistics from
the users. A total of 1 million most popular sites available for daily download from Alexa’s
Web site seems to be large enough to construct a comprehensive pool for our load generator,
and the restriction to include only the home pages’ URLs in the ranking guarantees for some
degree of stability in the resulting pool (in respect of reachability of servers and validity of
the corresponding pool entries).

The pool was first populated by the top 1000 home pages from the Alexa ranking
downloaded from the Alexa Web site on 3 May, 2010, and the values of abstract request
parameters were initially set to zero for all pages. The values of real request attributes
serverName, serverPort, objectName, requestMethod, optLength and optData were set
to the host part of the particular page, 80, /, GET, 0 and NULL, correspondingly, as the
Web sites captured in the Alexa ranking are home pages provided by default on the TCP
port 80 by means of a GET request method, and no supplemental data is to be sent to the
corresponding Web server by means of POST requests.

Next, UniLoG.HTTP was instructed to traverse the pool, retrieve every page and update the
values of its abstract request parameters. For this reason, we used the simple UBA presented
in Sec. 3, where the values of the serverName attribute of every abstract HttpRequest to be
generated in the R-state RHttpRequest were specified (using the trace parameterization facility
of UniLoG) to be taken from the column in the pool file, which contains the unique host
names of Alexa’s home pages. In the adapter, each abstract HttpRequest induced a retrieval
of the corresponding Web page, whereby the values of its abstract request parameters were
estimated and, finally, stored back into the pool.

During the execution of the pool update procedure in May 2010 using the T-Online DSL
connection with a maximum of 6 Mbit/s downstream and 640 kbit/s upstream, a total of
979 pool entries were updated. 13 servers were unavailable due to the missing subdomain or
Web page to be loaded (as the Alexa ranking contains some pages used only for Webbugs or
user tracking). Another 8 sites caused an error during the download by the adapter due to
violations of the XHTML or W3C standards in their source code.

A total of 328 servers did not response to ICMP messages making the estimation of the
corresponding RTT impossible. The inducedServerLoad class for such servers could not
be specified ((-1) = n.a., cf. Fig. 4). The mean values of the abstract request attributes
replySize, numberObEmbeddedObjects, inducedServerLoad, and complexity among all
979 pool entries were estimated to 905.6 kbyte, 38, 2 (delay class “Slow”), and 5 (complexity
class C5), correspondingly. In this exemplarily pool update, we used the threshold values
o1 = 10 and o2 = 20 for numberObEmbeddedObjects as well as s1 = 50 kbyte and s2 = 150
kbyte for the replySize to define the complexity class boundaries. For a smaller sample
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of Web sites, which were used for testing the implementation of the pool update function
presented in Sec. 5, these threshold values provided complexity classes with nearly identical
number of servers in each class. Applying the same threshold values to Alexa’s top 1000
pages emerged that nearly a half of home pages were assigned to the complexity class C7,
i.e. these pages contain more than 20 objects and more than 150 kbyte of data (cf. Fig. 4).
We note that the experimenter can easily adjust the threshold values in order to obtain
complexity classes C1 - C9 which are suitable for the particular experiment (e.g., classes
with uniformly distributed number of servers).

inducedServerLoad d # servers

-1= n.a. (d < 0ms) 328

0 = Immediate (0ms ≤ d < 10ms) 159

1 = Fast (10ms ≤ d < 30ms) 66

2 = Slow (30ms ≤ d < 100ms) 120

3 = Annoyingly slow (d ≥ 100ms) 306

complexity(numberOfEmbeddedObjects o, replySize s [kbyte]) # servers

C1(o ≤ 10 ∩ s ≤ 50) 149

C2(o ≤ 10 ∩ 50 < s ≤ 150) 73

C3(10 < o ≤ 20 ∩ 50 < s ≤ 150) 65

C4(10 < o ≤ 20 ∩ s ≤ 50) 20

C5(o ≤ 10 ∩ s > 150) 26

C6(10 < o ≤ 20 ∩ s > 150) 93

C7(o > 20 ∩ s > 150) 504

C8(o > 20 ∩ 50 < s ≤ 150) 44

C9(o > 20 ∩ s ≤ 50) 5

n.a. (-1) 0

Figure 4 Number of servers in inducedServerLoad and complexity classes (cf. [16]).

In this way, the experimenter can create a comprehensive pool of representative Web
sites without a lot of effort and in short time. The execution of the pool update procedure
immediately before the actual experiment in the particular testbed is a very recommended
measure to ensure that the characteristics of Web workloads produced by UniLoG.HTTP

correspond to the parameter values specified in the pool.

7 Summary and Outlook

In this paper, we presented the application of the UniLoG approach to the realistic and
rather representative Web workload and traffic generation. Our approach provides different
levels of abstraction in the user behaviour models used for load generation. The presented
UniLoG.HTTP adapter is able to induce Web workloads with characteristics corresponding
to the values of abstract parameters of real Web sites from the pool, which is required and
provided by our solution. The construction of the sufficiently large, representaive and stable
pool of popular Web sites has been presented by us in Sec. 6. The authors hope to have made
the next step forward to the combination of Web traffic measurements and generation into a
single, coherent approach by this work. The formal load specification technique being used
in the UniLoG load generator provides for a very precise definition of timing and sequence
of resulting requests composing the load being generated, which is indispensable, e.g., to
reproduce experiments with a number of predetermined background loads. Moreover, the
approach presented in this work is applicable to other interfaces (i.e. TCP, IP, Ethernet) of
the protocol stack.

Future work can be directed at the provision of a set of predefined UBA-models for
different types and number of HTTP service users. Moreover, the existing adapter prototype
can be extended to support a larger set of types for embedded objects or to use a real Web
browser (via its remote control interface) for generation and injection of HTTP requests
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instead of imitating its behaviour. From the point of view of the authors, these arguments
demonstrate the high degree of flexibility and good extensibility of the UniLoG approach and
support its usage for Web workload generation.
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Abstract

This paper presents an improved variant of our Markov-based TCP traffic classifier and demon-
strates its performance using traffic captured in a university network. Payload length, flow
direction, and position of the first data packets of a TCP connection are reflected in the states of
the Markov models. In addition, we integrate a new “end of connection” state to further improve
the classification accuracy. Using 10-fold cross validation, we identify appropriate settings for
the payload length intervals and the number of data packets considered in the models. Finally,
we discuss the classification results for the different applications.

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.61

1 Introduction

Traffic classification based on port numbers has reached its limits since a one-to-one mapping
between port and application does not exist for many modern network services. Examples are
peer-to-peer applications, which often allocate ports dynamically, and web applications, such
as streaming servers, which run on top of HTTP on the same port 80 or 443. Classification
based on deep packet inspection (DPI) involves pattern matching on packet payload which
is computationally intensive. Moreover, DPI is restricted to unencrypted traffic. Therefore,
network operators are interested in statistical classification methods which consider traffic
characteristics beyond packet contents.

The common assumption of statistical traffic classification is that the communication
behavior of an application influences the resulting traffic. Hence, by observing appropriate
traffic properties, it should be possible to distinguish applications with different behaviors.
In the literature, the application of machine learning techniques to the traffic classifica-
tion problem is very popular. Examples can be found in the survey paper of Nguyen and
Armitage [8]. Similarly, multiple approaches to traffic classification are evaluated and com-
pared in the paper of Kim et al. [6]. Among other approaches, the authors consider various
machine learning algorithms with Support Vector Machines being the most accurate. In
the article of Este et al. [4], the amount of information carried by various traffic features
is investigated. The authors evaluate the mutual information of the traffic features and
the application type. They conclude that the packet sizes exhibit the highest amount of
information concerning the application type for multiple data sets.

In a previous paper, we present a novel TCP traffic classification approach using observ-
able left-right Markov models [7]. This work is motivated by Estevez-Tapiador et al. who
deploy observable ergodic Markov models for detecting anomalies in TCP connections [5].
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In contrast to Estevez-Tapiador, we do not consider TCP flags but payload length, flow
direction, and position of the first data packets of a TCP connection. Our evaluation shows
that taking into account the first four data packets per connection suffices to achieve very
good classification results. Evaluating additional data packets allow us to further increases
the accuracy. As an advantage to hidden Markov models (HMMs), which have been pro-
posed for traffic classification by Wright et al. [12] and Dainotti et al. [2], the utilization of
observable Markov models drastically simplifies the estimation of model parameters as well
as the classification of a new connection.

In Section 2 of this paper, we present an improved variant of the Markov-based traf-
fic classifier which uses an additional “end of connection” state to reflect the termination
of TCP connections with small numbers of data packets. In Section 3, we apply this ap-
proach to TCP traffic which was captured in the Munich Scientific Network and labeled
with help of OpenDPI [9], an open-source signature-based traffic classification library. Dif-
ferent parameter settings are compared based on the average accuracy achieved in a 10-fold
cross-validation. The most appropriate model parameters are then used to determine the
classification results for a realistic traffic mix. All in all, the results confirm earlier find-
ings that our approach yields very high classification accuracies even when dealing with
real-world traffic data.

2 Markov-based TCP Traffic Classifier

2.1 High-Level Description

Our traffic classifier considers the packet sequence at the beginning of a TCP connection as
the output of an observable Markov model (or Markov chain). In contrast to HMMs used
in other traffic classification approaches [2, 12], each packet in the sequence can be directly
linked to a specific state in the Markov model. Hence, given a packet sequence, we can
directly infer the initial state from the first packet, as well as all further state transitions
from the following packets. If the Markov model’s initial state and transition probabilities
are known, we can calculate the likelihood of the packet sequence.

Our TCP traffic classifier maintains multiple Markov models with identical states but
different initial state and transition probabilities. Each of these models reflects the traffic
characteristics of a different application. Given the sequence of the first data packets of a
TCP connection, the likelihood is calculated for all available Markov models. The classifier
then assigns the TCP connection to the application for which the corresponding Markov
model yields the maximum likelihood.

2.2 Considered Packet Attributes

The accuracy of the classification depends very much on the considered packet attributes.
As a simple example, we could take into account the flow direction of the packets. There
are only two possible directions, namely from the client which initiates the TCP connection
to server and vice versa. Hence, we can model this attribute in a Markov model with
only two states. In fact, the flow direction of the packets is an important aspect of the
communication pattern of an application. Nevertheless, this packet attribute alone is not
sufficient to accurately distinguish different applications.

In addition to the flow direction, we experimented with further packet attributes, such as
the packet length and the TCP flags, and compared the resulting classification accuracies [1].
We found that excellent classification results can be achieved if payload length (equaling the
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TCP segment size), direction, and position of the first data packets within a TCP connection
are considered in the states of the Markov model [7]. Data packets are those packets which
contain at least one byte of payload. All other packets (such as handshake packets and
empty acknowledgment packets) are ignored because their transmission is usually triggered
by the TCP layer and not by the application.

The payload length of the data packets is quantized into a few intervals in order to map
the packet attributes to a reasonably small number of states. We denote these intervals as
sets of interval boundaries, i.e. Bi = {b1, . . . , bm}. Boundary sets with m members lead to
a mapping of the packet lengths onto m + 1 intervals: [1; b1], [(b1 + 1); b2], . . . , [(bm + 1); ∞).
Another measure to keep the number of states small is to restrict the number of data
packets considered in the Markov models. The number and boundaries of the payload
length intervals as well as the number of data packets need to be set appropriately to obtain
good classification results. We discuss these parameterization issues in Section 3.3.

2.3 New “end of connection” State

In the following, we present an improved variant of our traffic classifier. In addition to
the states reflecting packet attributes, we add a new state which is reached if a connection
terminates before the maximum number of data packets considered in the Markov models
is transmitted. The classification of such already ended connections is useful for collecting
traffic statistics, characterizing network hosts, etc. As we will show in Section 3.3, including
the “end of connection” (EOC) state leads to an improvement of the classification accuracy.

The new EOC state is highlighted in Figure 1 which displays the example of a Markov
model considering the first four data packets of a connection. In the example, the payload
length is quantized to four intervals I1, . . . , I4; the directions from client to server and server
to client are indicated as C ⇒ S and S ⇒ C. Hence, the total number of states is 33.
Transitions to the EOC state are possible from the first, second, and third data packet.

2.4 Model Estimation and Storage

Let’s assume that Σ = {σ1, . . . , σn} is the set of states of the Markov model. Then, the initial
state probabilities can be written as vector Π = (πσ1

, . . . , πσn
) where πσi

is the probability
that the first packet has the attributes described by σi. The transition probabilities form
an n × n matrix A = {aσi,σj

} where aσi,σj
specifies the probability of a transition from σi

to σj .
The initial state and transition probabilities are estimated from labeled training data, i.e.

TCP connections for which the application is known. For every application, the probabilities
are estimated with the following equations:

πσi
=

F0(σi)
∑n

k=1 F0(σk)
; aσi,σj

=
F (σi, σj)

∑n
k=1 F (σi, σk)

(1)

F0(σi) is the number of initial packets in the training data matching the attributes defined by
σi. F (σi, σk) is the frequency of transitions from packets described by σi to packets described
by σk. In order to obtain good estimates, a sufficiently large set of TCP connections is needed
which is representative for the traffic to be classified later.

In our case, only states representing data packets at the first position may be initial
states. Furthermore, transitions only occur from one data packet to the next or alternatively
to the EOC state. Hence, maintaining an n × 1 initial state probability vector Π and an
n × n transition matrix A is inefficient because most of the elements are zero probabilities
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Figure 1 Markov model of the improved classifier

by definition. Due to the regular structure of the Markov model, the probabilities can
be stored in a much more memory efficient way. The elements in Π can be limited to
the states defining attributes of the first data packet. If l is the number of data packets
considered, the transition probabilities can be saved in (l − 1) small transition matrices
At, t = 1, . . . , (l − 1), each including only transitions from packet position t to t + 1. As
an example, the probabilities of the Markov model given in Figure 1 can be stored in a Π
vector of length 8 and three 8 × 9 transition matrices At.

Rare initial states or transitions are often not included in the training data. If such an
initial state or transition is observed in a TCP connection to be classified, the likelihood
of the Markov model drops to zero and disqualifies the associated application. This may
lead to wrong classification results. It may also happen that the connection cannot be
assigned to any application because the packet sequence has a zero likelihood for all Markov
models. For this reason, we replace all zero probabilities of logically possible initial states
and transitions by a positive value ε which is smaller than any of the estimated non-zero
probabilities. Afterwards, we normalize the initial state probabilities and the transition
probabilities such that

∑

i πσi
=

∑

j aσi,σj
= 1 for all models.

If a TCP connection can only be classified because of multiple zero probabilities replaced
by ε, it does not really seem to match the traffic characteristics of that application. Therefore,
we set a lower threshold h for the model likelihood which corresponds to a small number of
ε transitions. If this threshold is not exceeded for any application, the connection remains
unclassified. Throughout this paper, we use ε = 10−5 = 0.001% and h = ε3 = 10−15.

Concerning the complexity of model estimation, the computation of initial state and
transition probabilities using equations (1) requires counting the frequency of initial packet
attributes and transitions. The computational effort linearly depends on the number of data
packets considered and the number of connections in the training data. Compared to other
model types, this is very time-efficient.
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Figure 2 Traffic classification using Markov models

2.5 Classification

During the classification phase, it is beneficial to calculate the log-likelihood instead of the
likelihood of the Markov models since this replaces multiplications by additions. Given
the first l data packets of a TCP connection O = {o1, o2, . . . , ol}, the log-likelihood for
this connection is calculated for all Markov models M (k) with Π(k) = (π(k)

σ1 , . . . , π
(k)
σn ) and

A(k) = {a
(k)
σi,σj } using the following equation:

log Pr
(

O|M (k)
)

= log

(

π(k)
o1

l−1
∏

i=1

a(k)
oi,oi+1

)

= log π(k)
o1

+
l−1
∑

i=1

log a(k)
oi,oi+1

(2)

If the connection contains less than l data packets (i.e. fewer data packets than considered
in the Markov models), the likelihood calculation stops after adding the logarithm of the
transition probability to the EOC state. The classifier finally selects the application for
which the log-likelihood is the largest. The overall classification process is illustrated in
Figure 2. The block diagram shows how the Markov models obtained during the training
phase are used to classify new TCP connections.

The computational effort necessary to classify a TCP connection is determined by the
computation of the log-likelihood which has to be calculated for every Markov model using
equation (2). This effort linearly depends on the number of models and on the length of the
state sequence which is bounded by the number of data packets considered in the models.

Other statistical traffic classification methods typically require more complex calcula-
tions. This is particularly true for HMMs where emission probabilities have to be considered
in addition to transition probabilities.

3 Evaluation

3.1 Training and Test Data

In order to evaluate our traffic classifier, we monitored traffic at the gateway which connects
the Munich Scientific Network to the German National Research and Education Network
(DFN). For our evaluation, we captured approximately six hours of IPv4/TCP traffic from
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Table 1 Application labels provided by OpenDPI

Application label Connections Percentage Distinct server ports

http 1,136,359 64.48% 81 (mainly ports 80, 8080)

ssl 158,331 8.98% 22 (mainly ports 443, 993, 995)

smtp 150,173 8.52% 5 (mainly ports 25, 587)

flash 92,273 5.24% 6 (mainly ports 1953, 80)

ssh 22,087 1.25% 3 (mainly port 22)

http+flash 20,030 1.14% 4 (mainly port 80)

pop 7,390 0.42% 1 (port 110)

ftp 6,232 0.35% 6,035 (73 connections to port 21)

windowsmedia 4,974 0.28% 1 (port 80)

imap 4,367 0.25% 1 (port 143)

dns 2,499 0.14% 1 (port 53)

bittorrent 1,735 0.10% 115 (e.g. ports 8080, 80, 6879)

rdpa 1,047 0.06% 1 (port 3389)

other 4,850 0.14% 38 (mainly 80)

unknown 150,013 8.51% 5295 (e.g. ports 10050, 2703)

a remote desktop protocol

and to the class B network of our computer science department. Traffic was captured in one
chunk on a busy weekday. We modified the intrusion detection system Bro [10] to classify the
captured packets into different TCP connections and to extract the corresponding sequences
of payload length and flow direction tuples. Individual TCP packets not belonging to any
valid TCP connection and TCP connections without any data packet were filtered out. In
total, we extracted packet attributes of 1,762,360 TCP connections, each containing at least
one data packet.

In addition to Bro, we applied OpenDPI [9] to obtain an application label for each
TCP connection. Since signatures can only be found in unencrypted traffic, connections
of applications running on top of SSL or TLS are identically labeled ssl. Similarly, all
connections of applications making use of SSH are labeled ssh. OpenDPI was applied to all
packets, which sometimes led to the situation that the label returned by OpenDPI changed
in the middle of the connection. Most frequently, this happened for TCP connections which
were first labeled http and later flash (20,300 occurrences), which we combined in a new
label http+flash. Other types of label changes were observed for 1,544 connections which we
all assigned to the label other (cf. below).

Table 1 shows the number of TCP connections and the number of distinct server port
numbers per application label. Applications with less than 1000 connections are not shown
individually but summed up as other. It is not surprising that 64.48% of the TCP con-
nections are labeled http because HTTP traffic dominates in the Internet today. Although
most connections are directed to well-known server ports, we observe a certain number of
connections with non-standard server ports. Traffic labeled ftp mostly includes data connec-
tions of FTP sessions. These connections are typically established from the FTP server to an
ephemeral port at the FTP client, which is accounted as server port (from the TCP perspec-
tive) in the table. In addition, a small amount of FTP control connections is present. 8.51%
of all connections could not be classified by OpenDPI and are labeled unknown. Almost
28% of these connections are established between two identical endpoints, one of them run-
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ning an unknown service on port 10050. More than 11% are directed to port 2703 which is
commonly used by Razor servers hosting databases with signatures for spam detection [11].

We restrict our classifier to application with more than 1000 connections in our data. For
each of these applications, we randomly select 1000 connections as training data. Although
there are more than 1000 connections, we do not include a Markov model for http+flash
because these connections get easily confused with http. While the training data contains
an equal number of connections for all applications, the test data shall reflect the original
traffic mix. Therefore, we select 2% of the connections of each application as test data,
making sure that none of the connections is contained in training and test data at the same
time.

3.2 Evaluation Metrics

As evaluation metrics, we calculate recall and precision for every application k:

recallk =
number of connections correctly classified as application k

number of connections of application k in the test data

precisionk =
number of connections correctly classified as application k

total number of connections classified as application k

A perfect classifier achieves 100% recall and precision values for all applications.
In order to compare different classifiers with a single metric, we calculate the overall

accuracy, which is the proportion of correctly classified connections. In the cross-validation
case (see Section 3.3), the overall accuracy is calculated for an equal number of connections
per application, which means that the overall accuracy is identical to the average recall.

3.3 Parameterization Using Cross-Validation

The performance of the classifier depends on the parameterization, in particular on the
number of considered data packets and the payload length interval boundaries. We use
10-fold cross-validation to assess the influence of different parameter settings. For this, the
training data is divided into ten disjoint sets. Then, ten classifiers are trained, each one with
a different set left out. For each classifier, we use the remaining fold not used for training
as test data. To evaluate the overall performance of a parameter setting, we consider the
minimum, mean, and maximum classification accuracy resulting from the ten runs.

As a starting point, we use similar interval boundaries as in our previous work [7],
namely B1 = {100, 300, 1450}. This means that the following four payload length intervals
are considered in the states of the Markov models: [1; 100], [101; 300], [301; 1450], [1451; ∞).
A preliminary evaluation of B1 showed deficiencies in the classification of pop and smtp. By
inspection of the applications’ payload length distributions, we noticed systematic differences
in the payload length of the first data packet: For smtp, almost 90% of the first data packets
exceed 50 byte whereas, in case of pop, less than 20% contain more than 50 byte of payload.
Therefore, we add 50 as an additional boundary and evaluate the classifier’s performance
for B2 = {50, 100, 300, 1450}.

The interval boundaries mentioned so far are based on experimental evaluation of the
classifier’s performance and inspection of payload lengths. Given the huge number of pos-
sible boundary combinations, the alternative approach of finding interval boundaries in a
systematic and automatic manner is particularly complex. In order to limit the complexity,
we use an iterative greedy algorithm which determines the best additional boundary based
on an existing set of interval boundaries found in preceding iterations. This is accomplished
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Table 2 Cross-validation results for differing number of packets and boundaries

Packets Boundaries Overall accuracy (min/mean/max)

Without EOC state With EOC state

3 Packets
B1 = {100, 300, 1450} 0.8433/0.8508/0.8708 0.8667/0.8764/0.8883

B2 = {50, 100, 300, 1450} 0.8758/0.8938/0.9025 0.8967/0.9096/0.9258

B3 = {40, 190} 0.8442/0.8544/0.8692 0.8433/0.8610/0.8792

B4 = {40, 190, 380} 0.8842/0.8995/0.9067 0.8933/0.9066/0.9183

B5 = {40, 190, 380, 620} 0.9092/0.9187/0.9317 0.9192/0.9287/0.9367

4 Packets
B1 = {100, 300, 1450} 0.8583/0.8749/0.8975 0.8842/0.8993/0.9092

B2 = {50, 100, 300, 1450} 0.9158/0.9228/0.9333 0.9267/0.9397/0.9525

B3 = {40, 190} 0.8483/0.8584/0.8700 0.8717/0.8834/0.9000

B4 = {40, 190, 380} 0.9000/0.9163/0.9292 0.9142/0.9309/0.9425

B5 = {40, 190, 380, 620} 0.9208/0.9326/0.9450 0.9358/0.9463/0.9592

5 Packets
B1 = {100, 300, 1450} 0.8725/0.8866/0.9000 0.8950/0.9050/0.9183

B2 = {50, 100, 300, 1450} 0.9308/0.9381/0.9458 0.9400/0.9469/0.9625

B3 = {40, 190} 0.8625/0.8760/0.8858 0.8908/0.8977/0.9108

B4 = {40, 190, 380} 0.9217/0.9318/0.9392 0.9408/0.9497/0.9583

B5 = {40, 190, 380, 620} 0.9442/0.9504/0.9567 0.9567/0.9635/0.9717

6 Packets
B1 = {100, 300, 1450} 0.8817/0.8914/0.9067 0.8992/0.9102/0.9225

B2 = {50, 100, 300, 1450} 0.9300/0.9407/0.9533 0.9400/0.9491/0.9550

B3 = {40, 190} 0.8725/0.8814/0.8917 0.8900/0.8997/0.9075

B4 = {40, 190, 380} 0.9300/0.9393/0.9500 0.9400/0.9485/0.9575

B5 = {40, 190, 380, 620} 0.9433/0.9503/0.9617 0.9517/0.9625/0.9750

by analyzing the relation of the application labels and the state sequences of the corre-
sponding connections in the training data. We use a concept from decision tree learning,
the Gini impurity index which measures how “impure” the assignment of state sequences
to application labels is (cf. [3]). As a new boundary, we choose the boundary which re-
sults in a maximum reduction of impurity in order to achieve a strong differentiation of the
applications with respect to the state sequences. Considering state sequences of four data
packets, four iterations of this algorithm lead to the following interval boundary sets: {190},
B3 = {40, 190}, B4 = {40, 190, 380}, B5 = {40, 190, 380, 620}. We restrict ourselves to mod-
els with at least two boundaries which turned out to be the minimum number necessary for
achieving acceptable classification results.

In the following experiments, we compare the overall accuracy of five boundaries sets
B1, . . . , B5. Moreover, we assess the influence of the EOC state. The resulting minimum,
mean, and maximum overall accuracies are tabulated in Table 2 for 3 to 6 data packets. As
can be seen, we achieve a consistent increase in the mean overall accuracy by introducing
the EOC state. Detailed inspection of the application specific results shows that there is a
particularly strong increase of the mean recall for dns and ssl. As an example, the mean
recall for dns increases from 79.3% to 93.5% for boundary set B1 and 4 data packets. At
the same time, the mean recall for ssl is improved by 14.4 percentage points reaching 81.7%.
An improvement of about 2 percentage points is also observed for ftp whenever the EOC
state is included. Regarding the other applications, the effect on the recall value is in the
range of ±1 percentage points in most of the cases. Due to the better overall accuracy, we
concentrate on models including the EOC state in the following discussion.
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The models based on the smallest boundary set B3 exhibit the worst performance. We
conclude that the boundary set should have a minimum size of 3, corresponding to four
payload length intervals. Moreover, the parameterizations with interval boundary sets B2,
B4 and B5 yield higher overall accuracy compared to the boundary set B1. In particular,
the models based on these boundary sets exhibit better performance in distinguishing the
protocols smtp and pop. Based on the boundary set B5 and 4 data packets, we achieve a
mean recall of 87.1% and 97.8% for pop and smtp, respectively. In comparison, the model
based on B1 reaches 71.9% and 67.1%, only.

The models based on the interval set B5 exhibit a slightly higher accuracy than models
based on B2 and B4. On the other hand, the number of states in the models can be reduced
by means of the smaller boundary set B4. Depending on the scenario, this may compensate
for the disadvantages in terms of accuracy. Concerning the number of considered data
packets, there is a consistent increase in accuracy from 3 to 5 packets for all parameterizations
considered. With 6 packets, the accuracy slightly decreases for B4 and B5 wheres a small
increase is observed for the other settings. Therefore, we conclude that the best number of
data packets depends on the interval boundaries. For the boundary sets reaching relatively
higher overall accuracies, i.e. B2, B4 and B5, the strongest increase occurs when considering
4 instead of 3 data packets. Only minor improvements can be achieved by integrating more
data packets into these models, which is consistent with our earlier findings [7].

3.4 Classification of Test Data

In the last subsection, we obtained the best overall accuracy with Markov models considering
five data packets, the new EOC state, and five payload length intervals with boundaries
B5 = {40, 190, 380, 620}. With these settings, we train a new traffic classifier using the
entire set of training data (i.e. all ten folds). Thereafter, we apply the classifier to the TCP
connections in the test data which represent about 2% of the original traffic. As described
in Section 3.1, none of the connections in the test data is included in the training data.
Connections belonging to one of the twelve applications considered in the Markov models
are classified with an overall accuracy of 94.51%, which is 1.8 percentage points smaller than
the average accuracy achieved in the cross-validation. The reason is the different traffic mix
which now corresponds to the percentages shown in Table 1.

Table 3 shows the recall and precision values of the twelve applications as well as the
proportion of unclassified connections, which is negligible in all cases. In addition, the last
column indicates the labels assigned to the incorrectly classified connections. All applications
are detected with a recall value equal or larger than 92%. The low precision values for
bittorrent, dns, and windowsmedia go back to several http connections being classified as one
of these applications. Several smtp connections are classified as pop, which explains the low
precision value of pop.

For comparison, we train and apply another traffic classifier which considers the same
number of data packets and the same payload length intervals but does not include the
EOC state in the Markov models. Table 4 shows the results based on the same training
and test data as used before. As can be seen, the recall value of dns significantly decreases
from 92% with EOC state to 82% without EOC state. The recall values of http and ftp
decline by about 2.4 percentage points, the one of ssl is reduced by 1.1 points. For the
other applications, the recall is identical or only slightly decreased. The overall accuracy
now is 92.70%, which is about 1.8 percentage points smaller than before. As expected, the
influence of the EOC state on the application specific recall values is very similar to what
we observed in the cross-validation results for this setting.
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Table 3 Classification results of test data for B5 = {40, 190, 380, 620} with EOC state

Recall Precision Unclassified Most frequently misclassified as

bittorrent 0.9428 0.0906 0.0000 http, ssl

dns 0.9200 0.1776 0.0000 windowsmedia, bittorrent, ssl

flash 0.9777 0.9535 0.0000 http, ssl

ftp 0.9840 0.8145 0.0000 http

http 0.9428 0.9957 0.0008 windowsmedia, ssl, bittorrent

imap 0.9431 0.9880 0.0000 smtp, pop, ssh

pop 0.9729 0.4298 0.0000 smtp

rdp 1.0000 0.9130 0.0000

smtp 0.9354 0.9975 0.0003 pop

ssh 0.9909 0.9977 0.0000 pop

ssl 0.9406 0.8954 0.0000 bittorrent, http, windowsmedia

windowsmed 1.0000 0.1923 0.0000

Table 4 Classification results of test data for B5 = {40, 190, 380, 620} without EOC state

Recall Precision Unclassified Most frequently misclassified as

bittorrent 0.9428 0.0518 0.0000 ssl

dns 0.8200 0.1872 0.0000 ssl, windowsmedia, bittorrent

flash 0.9788 0.8853 0.0000 http, ssl

ftp 0.9600 0.9448 0.0000 http

http 0.9193 0.9948 0.0008 ssl, bittorrent, windowsmedia

imap 0.9431 0.9880 0.0000 smtp, pop, ssh

pop 0.9729 0.4298 0.0000 smtp

rdp 1.0000 0.9130 0.0000

smtp 0.9357 0.9975 0.0000 pop

ssh 0.9909 0.9977 0.0000 pop

ssl 0.9295 0.8435 0.0000 bittorrent, http, windowsmedia

windowsmed 1.0000 0.1923 0.0000

In the following, we continue our discussion of the classification results obtained with
EOC state. As described in Section 3.1, OpenDPI provided more than one label for several
TCP connections. In most of these cases, the first label was http, followed by a label related
to multimedia content, such as flash or mpeg. Although we did not include any of these
connections in the training data, more than 98% of those contained in the test data are
appropriately classified as http.

Now, we have a closer look at the traffic which was marked as unknown by OpenDPI. For
these connections, we can use the server port number as a weak indicator of the application.
As already mentioned, a large proportion of unknown connections is directed to port 10050
on one host. All of these connections are classified as rdp, which is Microsoft’s remote
desktop protocol. Almost all traffic to port 2703 (Razor) is classified as pop. In both cases,
there seems to be a strong similarity to the corresponding protocols although the signatures
of OpenDPI do not match.

Regarding unknown connections to well-known port numbers, the classification results
are often as expected. For example, most of the connections to port 143 are classified
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as imap. About half of the connections to ports 25 and 110 are recognized as smtp and
pop, respectively. 59% of the connections to port 443 (intended for https) and 100% of
the connections to port 1352 (Lotus Notes) are classified as ssl. Although Lotus Notes
is likely to use SSL, OpenDPI did not label any of these connections as ssl. 3.3% of the
connections labelled unknown go to port 80. Interestingly, only 13% of them are classified as
http while 32% are considered as ssl and 12% remain unclassified. A probable explanation
for not finding any conformance with HTTP is that port 80 is used by other protocols and
applications.

4 Conclusion

In this paper, we presented and discussed a TCP traffic classification approach using ob-
servable Markov models. Departing from our previous work [7], we proposed the integration
of an additional state which further improves the classification accuracy. We tested and
evaluated the improved classifier under real-world conditions using TCP traffic captured
in the Munich Scientific Network. By means of cross-validation, we first evaluated various
parameterizations and proposed methods to systematically derive the interval boundaries
needed for quantizing payload lengths. Thereafter, we demonstrated that our approach is
able to classify a representative traffic mix into twelve application classes with very high
accuracy.

Our traffic classifier is based on Markov models which are intuitive and easy to under-
stand. As another advantage, the training and classification complexity is low. A time-
consuming task is the greedy search for appropriate payload length intervals. Future work
will show whether this task actually needs to be repeated for training data from different
networks or whether the traffic characteristics across networks are consistent enough to yield
good classification results using the same payload length intervals or even the same Markov
models.

Regarding the design of our classifier, we still see room for improvements, in particular
regarding the mapping of payload length to states. We currently use constant payload
length intervals for all packet positions. Instead, the best set of interval boundaries could
be determined separately for each packet position, which may lead to better classification
results. As a downside, this flexibility increases the complexity of finding appropriate values
for all boundaries.

Most kinds of unencrypted traffic can be correctly classified based on port numbers or
signatures. Nevertheless, it is useful to deploy our traffic classifier in parallel in order to
determine the most likely application for those connections which remain unclassified by
DPI. Apart from that, we are currently investigating the classification of encrypted traffic
with the goal to distinguish different applications running on top of SSL and TLS. For these
kinds of traffic, our Markov-based classifier possibly provides useful information while DPI
is only able to detect SSL or TLS records.
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Abstract

This paper presents an approach for ontology-based IT management based on a heavyweight
(formal) ontology using the Web Ontology Language (OWL). The ontology comprises a complete
OWL representation of the Common Information Model (CIM) and management rules defined in
the Semantic Web Rule Language (SWRL). The ontology not only models the managed system
types, but a runtime system dynamically updates model instances in the ontology that reflect
values of managed system entities. This allows the evalution of rules that take into account
both model and model instances. A reaction module uses the CIM interface of the managed
system to invoke CIM methods according to rule evaluation results, thus resulting in automated
management. In order to ensure the consistency of the ontology when changes are performed,
belief change theory is employed.
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1 Introduction

Knowledge bases grow in size and complexity in every domain. Regardless of the concrete
field, the number of data sources and formats that are used in each knowledge base increases
constantly. A common goal in this respect is to allow interoperability between different
knowledge bases and integration and aggregation of data, as well as the possibility to perform
automated reasoning. Established domain models can be used to create a unified view on
the knowledge base, but they often have major shortcomings to be able to be used for
comprehensive management of the knowledge base: They often have limited support for
knowledge interoperability and aggregation, as well as reasoning, and constraints that are
part of the models are often expressed using natural language, which renders them less useful
for automatic evaluation. Also, the models usually do not deal with instance data that is
acquired from the system which the model represents. Unless instance data is kept in a
uniform way together with the model, the definition of constraints or rules that affect both
model and model instances is not possible.

A formal ontology is a type of knowledge base that can help resolve these issues: While
a lightweight ontology defines a hierarchy of concepts and a hierarchy of relations, i.e. a
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description of the concepts and relationships that exist in a domain, a heavyweight ontology
or formal ontology (the terms are often used interchangeably [24]) can contain domain-
specific information models, behaviour rules, constraints and axioms, and can also contain
the corresponding model instances.

Management of an IT environment is one example of a domain for which management
using a formal ontology is desirable. Over time, a number of commercial and free systems
for comprehensive management of IT environments have been developed. Usually, the man-
agement system is not comprised of a single tool, but consists of a set of different tools. To
provide a unified view on the environment and to allow interoperability between multiple
management tools and managed elements, several integrated network management models
were developed. Notable examples are the OSI network management model (also known as
CMIP, the name of its protocol) and the still widely used Simple Network Management Pro-
tocol (SNMP). A more recent approach to specify a comprehensive IT management model is
the Common Information Model (CIM) which is described in more detail in section 2.1. This
widely recognized Distributed Management Task Force (DMTF) standard allows consistent
management of managed elements in an IT environment. CIM is actively used; for example,
the storage management standard SMI-S (Storage Management Initiative Specification) of
the SNIA (Storage Networking Industry Association, [19]) is based on CIM.

CIM can be used to create a unified view on the managed system, but suffers from the
shortcomings mentioned earlier: It is a semi-formal ontology [4, 18] that only has limited
abilities for knowledge interoperability, knowledge aggregation and reasoning [16]. To create
a formal IT management ontology, two parts are required; the first part being a compre-
hensive domain model in a suitable format. The second part is a runtime system that
administers the domain model and model instances that represent entities of the managed
environment. As the runtime system provides means to add and delete model instances to
reflect changes in the managed environment, it must take care that adding and deleting facts
may not render the knowledge base inconsistent.

In this paper we present an approach for building a formal ontology for IT management
based on CIM including a domain model, model instances and rules, a runtime system that
manages the ontology, interfaces with the managed system to add and delete model instances,
and an engine to evaluate management rules. For the domain model, a conversion of CIM
to the Web Ontology Language (OWL) is performed. In order to assure the consistency of
the knowledge base, belief change theory is employed. Section 2 gives an overview of CIM
and belief change theory as background, while section 3 describes related work. Section 4
explains the management approach and how the runtime system is constructed. In section 5,
implementation details and performance measurements of the approach are discussed. The
paper closes with a summary in section 6.

2 Background

2.1 DMTF CIM Overview

This section briefly describes the basic properties of the Common Information Model. CIM
defines how managed elements in an IT environment are represented as a set of objects
and relationships between them. The model is intended to allow a consistent management
of these managed elements, independent of their manufacturer or provider. Unlike SMI
(Structure of Management Information, the model underlying the popular SNMP protocol),
CIM is an object-oriented model. CIM consists of
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A basic information model called the meta schema. The meta schema is defined using
the Unified Modeling Language (UML, [13]).

A syntax for the description of management objects called the Managed Object Format
(MOF).

Two layers of generic management object classes called Core Model and Common Model.

Figure 1 shows the CIM meta schema definition in UML, as shown in the CIM specifica-
tion [6]. The meta schema specifies most of the elements that are common in object-oriented
modelling, namely

Classes, Properties and Methods. The class hierarchy supports single inheritance (gener-
alization) and overloading of methods. For methods, the CIM schema specifies only the
prototypes of methods, not the implementation.

References are a special kind of property that point to classes.

Qualifiers are used to set additional characteristics of Named Elements, e.g. possible
access rules for properties (READ, WRITE), marking a property as a key for instances
(using Key) or marking a class as one that can not be instantiated. Qualifiers can be
compared to Java annotations; some qualifiers also have parameters.

Associations are classes that are used to describe a relation between two classes. They
usually contain two references.

Triggers represent a state change (such as create, delete, update, or access) of a class
instance, and update or access of a property.

Indications are objects created as a result of a trigger. Instances of this class represent
concrete events.

Schemas group elements for administrative purposes (e.g. naming).

Figure 1 CIM Meta Schema

Properties, references, parameters and methods (method return values) have a data type.
Datatypes that are supported by CIM include {s,u}int{8,16,32,64} (e.g. uint8 or sint32),
real{32,64}, string, boolean, datetime and strongly typed references (<classname> ref).

In addition to the CIM schema, CIM specifies a protocol, based on XML over HTTP,
which is used by CIM-capable network managers to query classes, instances and invoke
methods against a so-called CIM object manager (CIMOM).
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2.2 Belief change and ontology change

The process of changing beliefs to take into account a new piece of information about the
world is called belief change. Belief change studies the process an agent has to perform to
accommodate new or more reliable information that is possibly inconsistent with existing
beliefs. Usually, beliefs are represented as a set of sentences of a logical language. Most for-
mal studies on belief change are based on the work of Alchourrón, Gärdenfors and Makinson
(AGM) [2, 1], which is now commonly referred to as the AGM theory. The AGM theory dis-
tinguishes three types of belief change operations that can be made: contraction, expansion
and revision. Contraction is retracting a sentence from a belief set, expansion is adding a
sentence to a belief set regardless of whether the resulting belief set is consistent, and revi-
sion is incorporating a sentence into a belief set while maintaining consistency. The AGM
trio specified postulates for contraction and revision operators which they claim should be
satisfied by all rational belief change operators.

As an ontology can be considered a belief base in the sense of the belief change theory,
the problems described hold for the change of ontologies as well. In this context, the problem
is known as ontology change. Belief change theory can not be directly applied to description
logics (which are the theoretical foundation of OWL) because it is based on assumptions
that generally fail for description logics [15]. However, the authors in [7] show that all
logics admit a contraction operator that satisfies the AGM postulates except the recovery
postulate. In [17], the authors show that the theory can be applied if the recovery postulate
is slightly generalized and to achieve this, replace the recovery postulate with the relevance
postulate by Hansson [9].

Another approach to the problem of ontology update is taken in [11], which proposes
an ontology update framework where ontology update specifications describe certain change
patterns that can be performed. An agent (knowledge worker) “issues a change request by
providing a piece of knowledge to be added to or deleted from the ontology”. The change
request is only accepted when the given ontology update specification accounts for it. An
applicable update rule from the update specification is determined and similar to a database
trigger, “the change request is acted on accordingly by denying or accepting it but possibly
also by carrying out more ontology changes than explicitly requested.”

3 Related Work

The idea of applying semantic web technologies to the domain of IT management has been
examined in several publications, notably by De Vergara et al., e.g. [3, 8], where a semantic
management framework is presented which integrates different definitions of the managed
resources, taking into account the semantic aspects of those definitions. In later works
they favor the use of OWL for the definition of the management ontology. As a domain
model, CIM is often proposed, although the conversion of the native format in which CIM is
specified into an ontology is not trivial. In [5] the authors provide a possible mapping for a
subset of CIM to OWL and in [16] the authors compare possible conversions of CIM to RDFS
(Resource Description Framework Schema) and to OWL. They find that RDFS is unsuitable
to express CIM as it does not allow to express constructs such as cardinality restrictions
and some CIM qualifiers. Instead, they construct an OWL-based ontology for CIM by using
a previously defined mapping of UML. Most CIM concepts (e.g. CIM qualifiers) however,
have no mappings to either UML or OWL constructs, so the resulting ontology lacks a large
part of the information that is provided in the original model. The authors in [12] introduce
a meta-ontology to model CIM constructs that have no direct OWL correspondence, but
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they do not describe how this meta-ontology is constructed, and their approach does not
specify how several qualifiers and more complex elements, such as CIM methods, can be
converted. The approach presented in this paper thus relies on the translation of CIM to
OWL described in section 4.2, and in more detail in [20].

To be able to model a heavy-weight ontology for management purposes, several papers
examine how SWRL (Semantic Web Rule Language) can be employed. In [8], the authors
propose a formal definition of the different management behaviour specifications integrated
with the management information definitions. They try to include both behaviour definitions
included implicitly in the management information and explicitly in policy definitions in the
resulting management ontology. Other works, notably [23] and [22], define a configuration
management ontology and augment the ontology with behaviour definitions in SWRL and
service definitions in OWL-S (an OWL ontology for describing Web Services).

4 Approach

4.1 Architecture

The goal of the approach presented in this paper is the management of a system using
a suitable domain ontology and a runtime system that performs the actual management
using the ontology. Although the approach is not limited to IT management (as the domain
ontology and interfacing components can be replaced), in this paper it is applied to the
domain of IT management. The domain ontology is defined in OWL, as this format is the
de-facto standard ontology language and allows the description of ontologies using classes,
object properties, data properties, cardinalities etc. As described in section 3, the Common
Information Model (CIM) has been examined and found to be an appropriate model for an
IT management ontology, however the translation of CIM to OWL has to be performed first.

Figure 2 Architecture

Figure 2 shows an overview of the proposed architecture. The grey box at the top
represents the runtime system and its components, while the elements at the bottom of the
diagram show the parts the runtime system interacts with. The components of the runtime
system are described in detail in the following sections.
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4.2 Model Import

First of all, the runtime system has a component to import the domain ontology into the
runtime ontology (which is shown at the top of figure 2). The domain ontology is a static
model that describes the entities in the managed system in detail. This component is
responsible for the translation of CIM to OWL. As described in section 3, this translation
is not trivial if most or all CIM constructs are to be translated, including CIM qualifiers.
When CIM is translated into OWL, the result is named CIMOWL here.

Some elements from the CIM schema can be translated in a straightforward way, while
other elements, especially qualifiers, can not be directly translated. To solve this problem,
the translation approach used here consists of two parts: One part is a CIM meta-ontology,
which is statically modelled (i.e. manually) and which consists of super classes, properties
and annotations that meta-model CIM constructs which can not be directly translated to
OWL. The second part is the CIM schema ontology, which is modelled using OWL, RDFS
and CIM meta constructs, and which represents the actual CIM model. It is automatically
created by parsing and translating the MOF representation of the CIM schema. One par-
ticular part of the translation, the implementation of CIM properties in the OWL model, is
given here as an example.

Figure 3 Modelling of properties

To implement CIM properties in the OWL model, a structure as shown in figure 3 is
used. In the figure, rectangular boxes represent OWL classes, rounded boxes with one
connection represent datatype properties and rounded boxes with two connections represent
object properties. Each CIM property is modelled as a combination of an OWL object
property and an OWL class. This class inherits from the meta ontology class CIM_Value

that has two datatype properties, “value” and “valueMap”. To model the semantics from the
original ValueMap and Values qualifiers, the class is restricted using owl:oneOf to allow only
instances from a list of CIM_Value instances (one for each ValueMap-Values combination).

The translation of CIM to OWL is described in more detail in [20]. Only constructs that
are valid in OWL DL are used; the resulting ontology has the expressiveness of OWL DL,
which allows for decidable reasoning.

The translation of the CIM schema has to be performed only once (and whenever the
ontology has to be updated, which can be necessary if a new version of the CIM schema is
released). CIM schema version 2.23.0 consists of about 1400 MOF files, containing roughly
the same amount of OWL classes, and is converted to about 70,000 OWL axioms. The
translation result is an OWL file which can be loaded by the runtime system on startup.
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4.3 Instance Import

The instance import component is the component of the runtime system reponsible for
acquiring up-to-date information from the managed system and incorporating it into the
runtime ontology. As such, it has three concerns: The first task is that of a CIM client. As
CIM is the domain model of choice, any CIMOM (CIM Object Manager) can be queried for
CIM instances. These instances represent concrete entities of the managed system, such as
hardware or software components. Queries are executed using the CIM protocol and result
in an XML document that describes a collection of instances.

The second task of the instance import component is the conversion of this CIM instance
data into the corresponding OWL instances. When performing this conversion, the resulting
OWL instances have to be compliant with the OWL representation of the CIM schema that
was created in the model import component and described in section 4.2. This means that
each CIM instance is mapped to a collection of OWL axioms (for class instances, object
properties and datatype properties, as necessary) that represent the same concept. Also,
primitive values must be converted accordingly: Each signed and unsigned number type is
translated to its XSD equivalent, e.g. uint8 becomes xsd:unsignedByte, sint32 becomes
xsd:int, real32 becomes xsd:float, and so on. Translation is mostly straightforward,
except for char16, which has to be translated into a string, and datetime, which has a
corresponding XSD data type but which specifies a different lexical representation for the
datetime string.

The third task for the import component is to act as a revision operator in the sense of
belief change theory (cp. section 2.2). When OWL axioms that are created when reading
CIM data from the managed system are to be added to the runtime ontology, they must
not render the ontology inconsistent. As the import component normally does not create
axioms that perform structural changes on the ontology when added, but only adds or
changes values, most of the problems that are studied in the field of ontology change can
be circumvented, i.e. a change that leads to an inconsistency does not happen easily. The
component must ensure however, that adding values that represent the current state of
some part of the managed system does not lead to ambiguities. When an instance for an
updated value is to be added, instances of the class the value belongs to have to be removed
accordingly. The import component has to make sure at this moment that the adding and
removing operations, once performed, result in a consistent state of the ontology, and in
unambiguous information.

4.4 Belief Revision Checker

The import component implements an interface for belief revision checks. AGM postulates,
updated for ontology change (see section 2.2), are implemented by the belief revision checker
component. As it is not possible to create a generic belief revision operator that works for any
knowledge base and any new fact, the belief revision checker implements the checks necessary
for a given revision operator to verify that it keeps the ontology consistent. Because these
checks have a comparably high computational complexity for reasoning, which can slow down
the runtime system considerably, the belief revision checker can be switched on and off as
necessary. When a new revision operator is installed in the system, the system is run with
the revision checker switched on, using representative data, to verify that the operator works
as intended (i.e., testing every case of axioms the revision operator adds or updates in the
ontology). For production use, the revision checker is then switched off, which reduces the
overhead to a minimum (the complexity for adding or removing instances in the ontology).
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Listing 1 Sample SWRL rule

CIM_DataFile (?f),

CIM_DataFile (? reffile ),

CIM_LogicalFile__LastAccessed (?f, ? lastaccvalue ),

CIM_LogicalFile__LastAccessed (? reffile , ? reflastaccvalue ),

CIM_LogicalFile__Name (?f, ? filenamevalue ),

CIM_LogicalFile__Name (? reffile , ? reffilenamevalue ),

CIM_LogicalFile__FileSize (?f, ? filesizevalue ),

value (? reffilenamevalue , ? reffilename ),

endsWith (? reffilename , "/ var/ reffile "),

value (? filesizevalue , ?size),

value (? lastaccvalue , ? lastacc ),

value (? reflastaccvalue , ? reflastacc ),

greaterThan (?size , 150000) ,

lessThan (? reflastacc , ? lastacc ) ->

LargeOldFile (? filenamevalue )

The instance import component can now continue its work, as its functionality has been
verified.

4.5 Specification and Import of Rules

While the model import component provides the static domain model in the ontology, and
the instance import component dynamically adds and removes model instances to reflect
changes in the managed system, the rule import component loads rules from external OWL
files into the runtime ontology. Rules are defined using the Semantic Web Rule Language
(SWRL) which can be embedded in an OWL ontology and can take into account both the
statically loaded CIM model and the dynamically added model instances. Therefore it is
possible to define rules that are triggered depending on the current state of the managed
system.

Each set of rules for a certain check or task is accompanied by the definition of classes
that are used in the context of these rules to denote the result of the triggered rule. Listing 1
shows a sample SWRL rule, which checks for files that surpass a certain file size (150,000
bytes in this case) and are older than a reference file (/var/reffile). As CIM does not
natively support the definition of rules, no standard ruleset exists that could be used for
testing the system. The sample rule given here was thus devised for this purpose.

CIM_DataFile(?f) identifies an instance f as belonging to the CIM_DataFile class,
while CIM_LogicalFile__FileSize(?f, *) match for the FileSize and Name properties
of the file, respectively. CIM_LogicalFile__LastAccessed matches for the dateTime value
at which the file was last accessed. The expression value(?filesizevalue, ?size) ex-
tracts the numerical value from the CIM_Value datatype property that is attached to the
file size object property. Using the SWRL builtin swrlb:lessThan on the values of the
LastAccessed fields, it can be determined if the file in question is older than the reference
file.

While the classes that start with CIM_* are defined in the CIM ontology, the class
LargeOldFile is defined to accompany the rule. All instances of CIM_DataFile that have
a CIM_LogicalFile__FileSize attribute with a value greater or equal 150,000 and were
last accessed before the reference file are defined to also belong to the class LargeOldFile.
The rule can be extended and used in a use case where large files that are older than a
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certain date on a filesystem should be compressed or archived. This example shows the
basic approach for the definition of rules. CIM models not only the file system but other
aspects of an IT environment as well, so rules covering other areas can be defined similarly.

4.6 Reasoner and Reaction

A reasoner is called to evaluate rules on the runtime ontology. For the example from sec-
tion 4.5, after the reasoning takes place, the reasoner can be queried for instances that
belong to the LargeOldFile class to receive the results from that rule. After these results
have been retrieved, axioms added by the reasoner during rule evaluation are removed from
the ontology to reset the state.

A custom module can be installed in the reaction component for a rule or a set of rules,
which is configured to watch a certain set of classes (e.g. in the sample case, LargeOldFile)
and decides how to react when instances of theses classes are found. Reactions can include
logging and reporting (e.g. sending SNMP traps to external network managers). More
importantly, the reaction module can make use of the CIM interface of the managed system.
By invoking CIM methods on the target machine, management decisions can be executed
using the existing interface.

5 Implementation and Performance

The translator from CIM to OWL and the runtime system were prototypically implemented
in Scala [21], a programming language that integrates object-oriented and functional features
and that compiles to Java Byte Code. Java libraries can be used in Scala programs, and
OWLAPI 2.2.0 was used for the creation of the ontology. As a reasoner, Pellet 2.2.1 was
employed. The CIM client component was custom built.

The conversion of the CIM schema to OWL takes about 35 seconds on an Intel Core 2 Duo
with 2 GHz and 2 GB RAM and results in a 12 MB OWL file. Loading the ontology using
OWLAPI takes approximately 10 seconds and uses 130 MB RAM on the same computer.

(a) Up to 13,000 instances (b) More than 30,000 instances

Figure 4 Reasoning Performance
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Figure 4 shows the performance of the runtime system and the time required for reason-
ing. For this diagram, the computer described above was used and the ontology used for
reasoning consisted of two parts: The first part is the CIMOWL ontology with 70,000 ax-
ioms, the second part was a varying amount of OWL instances representing CIM_DataFiles
of a server file system. Each CIM_DataFile is represented as a set of 27 OWL instances,
which include the instance for the file and one instance for each of the file attributes (file
size, modification time, etc.). SWRL rules to categorize files by size (as demonstrated in
listing 1) were loaded into the ontology. The test ran on JDK 1.6.0_20. CIM queries were
executed on an OpenPegasus ([14]) installation running locally, including a custom built
file system instance provider. As the CIM queries take a few milliseconds, their impact on
overall performance can be neglected.

In figure 4a the range from 0 to 13,000 instances is shown, which equates to 0 to 500
files. For 2,000 instances and less, the reasoning takes always at least 9 seconds. The graphs
show a nearly linear increase in time needed for more instances. Figure 4b shows the limit
of the tested system at 130,000 OWL instances, or around 5,000 files. After that, the graph
shows a steep rise due to swapping.

The performance results show that the system in its current configuration is not suited
for rules that need to be evaluated with a short reaction time (i.e., less than a few seconds).
However, a reasonable number of instances for real world applications can be handled.
Several changes of the configuration to increase reasoning performances are possible: The
reasoning time can be greatly reduced, if only the closure of axioms the rules and instances
depend on are loaded into the reasoner. Finding such a closure is not trivial because the
corresponding subclass relations and associations have to be taken into account. Another
possibility to reduce reasoning time is to reduce the instance count by adding only those file
attribute instances relevant to the reasoning result to the ontology.

6 Summary and Future Work

In this paper we presented an approach for management of an IT system, based on the
Common Information Model and a heavyweight ontology. Construction of a heavyweight
ontology serves multiple purposes: It contains a complete domain model (defined as com-
prehensively as possible) in a format which is suitable for integration of the managed system
with adjacent domains. For example, if processes in an ontology for semantic business pro-
cess management (see e.g. [10]) refer to physical or logical IT systems, such references can
be directly and unambiguously expressed. More importantly, the heavyweight ontology con-
tains model instances that represent the current state of the real world managed system.
This allows the definition of behaviour rules that are part of the ontology and reference both
model and model instances.

As domain ontology, CIM was chosen, as it is a comprehensive and actively used domain
model. As ontology language OWL was applied, as it is the de-facto standard for ontology
modelling, and was shown to be the best choice for a translation of CIM. An overview to
the approach for the translation of CIM into OWL was given.

A runtime system was presented which is capable of converting the CIM schema into
the OWL format and can load the model ontology and statically defined rules in the SWRL
format. Moreover, the runtime system acts as a CIM client to gather information about the
current state of the managed system and converts this data into corresponding CIM OWL
instances. A reasoner that is part of the runtime system is then used to evalute the rules
using the model and the current instance data. Reasoning results are used in a reaction
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module that can perform arbitrary reactions based each specific rule, in particular issuing
CIM requests for calling CIM methods.

By implementing a belief revision operator according to the postulates from belief change
theory and adjusted to ontology change, the runtime system component that adds and
updates instance data in the ontology makes sure that the ontology stays consistent.

The CIM model is the basis for other standards, such as the storage standard SMI-S
(Storage Management Initiative Specification) of the SNIA (Storage Networking Industry
Association, [19]), and SMASH (Systems Management Architecture for Server Hardware),
a DMTF standard for the unification of the management of data centers. This makes it
possible to apply the presented approach directly to ontology-based storage management,
where management rules can be specified in SWRL, and ontology-based virtual machine
management (for example, VMware server provides a SMASH API). Especially in storage
management, usually a large number of rules exist, which can be defined in a coherent man-
ner with the model using the presented approach. As all necessary parts are implemented,
application to storage and virtual machine management is investigated in the next step.
This investigation will lead to a broader and more detailed evaluation scenario.

Future work also includes the performance optimizations discussed in section 5, especially
automatically finding a closure of axioms required for rule evaluation and thus reducing the
total OWL instance count. In the long term, the application of the approach to another
domain is investigated, Ambient Assisted Living (AAL), where devices and services are
combined to provide support for daily life of assisted persons.
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Abstract

The usage of link quality based routing metrics significantly improves the quality of the
chosen paths and by that the performance of the network. But, attackers may try to exploit
link qualities for their purposes. Especially in tactical multi-hop networks, routing may fall prey
to an attacker. Such routing attacks are a serious threat to communication. TOGBAD is a
centralised approach, using topology graphs to detect routing attacks. In this paper, we enhance
TOGBAD with the capability to detect fake link qualities. We use a Challenge/Response method
to estimate the link qualities in the network. Based on this, we perform plausibility checks for
the link qualities propagated by the nodes in the network. Furthermore, we study the impact
of attackers propagating fake link qualities and present simulation results showing TOGBAD’s
detection rate.

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.85

1 Introduction

In tactical environments (i.e. military or disaster response scenarios) sensitive data (e.g.
soldier positions) is transmitted via insecure links. In addition, there is a high probability
of hostile units and the disturbance or eavesdropping of communication may lead to severe
consequences, in the worst case even to loss of human life. Thus, secure communication is
mandatory in tactical environments.

To enable secure communication, as a first step it is necessary to reliably enable commu-
nication. The performance of a network depends on the routing protocol used. Furthermore,
the routing protocol’s performance heavily depends on the routing metric used. Link quality
based metrics have been shown to outperform simple routing metrics like minimum hop-count
(e.g. [5, 20, 8]). These metrics should be used to provide high quality routes in the network
and by that reliable communication. While it is undoubtedly reasonable to use link quality
based routing metrics, it also opens an additional point of attack. An attacker may try to
disturb network operation or eavesdrop traffic by propagating fake link qualities.

As mentioned, there is a high demand for security in tactical multi-hop networks. Fortu-
nately, these networks possess a property that can be exploited for security purposes. In
such scenarios, there typically exists a command and control structure. The communication
necessary for this structure leads to two types of nodes: fully equipped and light-weight
nodes. The fully equipped nodes have access to power supply and therefore use more powerful
hardware. The light-weight nodes use battery-driven and therefore not so powerful devices.
As an example one may think of a hostage rescue scenario, where the fully equipped node is
an armoured vehicle, while the light-weight nodes are infantry units. We assume that key
material is installed in advance of the tactical mission. Thus, all key material necessary is
available at the nodes.

In the following, we consider insider attacks, i.e. attacks of nodes owning valid keys. For
example, these attacks may be performed by attackers taking over nodes owning valid keys.
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One way to detect such attacks is to use intrusion detection, or to be more specific anomaly
detection. TOGBAD [7, 6], is an anomaly detection approach using topology graphs to
counter routing attacks in tactical multi-hop networks. It exploits the structure of tactical
multi-hop networks by running the detection instances on the fully equipped nodes.

In its basic version TOGBAD is not able to deal with fake link qualities. Nevertheless,
with its detection and communication infrastructure it provides a very good basis for detecting
fake link qualities. Thus in this paper, we enhance TOGBAD with fake link quality detection
capability. In detail, we use a Challenge/Response method to locally estimate the link
qualities in the network. Based on this, we locally perform plausibility checks for the link
qualities propagated in each node’s neighborhood, send important observations to a central
instance and centrally decide whether there is an attack. Furthermore, we present studies on
attackers sending fake link qualities and an evaluation of TOGBAD’s detection.

The remainder of this paper is structured as follows. We first introduce routing attacks
(Sect. 2). Afterwards, we present related work in the field of detection and prevention of
routing attacks in multi-hop networks taking into account fake link qualities (Sect. 3). The
following section introduces TOGBAD, our approach to detect routing attacks and our recent
enhancements to it (Sect. 4). After that, we first introduce our simulation environment
(Sect. 5.1) and then show our evaluation concerning the quality of TOGBAD-LQ (Sect. 5.2).
Finally, we conclude the paper (Sect. 6).

2 Routing Attacks

In wireless multi-hop networks (e.g. Mobile Ad Hoc Networks (MANETs), Mesh networks),
every node of the network may be part of the routing process. Hence, it is quite easy for a
node to influence routing in such networks. An attacker sending false routing information can
try to attract routes and by doing so gain access to data transmitted in the network. Having
gained this access, an attacker may try to achieve different goals: eavesdrop, manipulate or
drop traffic. This kind of attacks is already mentioned in [12], [10],[11], and [13]. In this
paper, we focus on an attack known as sinkhole attack.

2.1 Sinkhole Attack

The terms black hole, gray hole, and sinkhole attack are used for quite similar attacks. The
approach of the attacker is the same for all three attacks. The attacker propagates fake
routing information and by that attracts routes. The differences between the three attacks
are the attacker’s actions after having attracted routes. In a black hole attack, the attacker
drops all traffic of the attracted routes. In a gray hole attack, the attacker selectively drops
traffic and in a sinkhole attack selectively drops or manipulates traffic. In this work, we
consider and detect an attacker propagating fake link qualities. The attacker does this to
attract routes. Thus, we detect the basis for all three attacks and for our purpose it is not of
interest whether the attacker tries to create a black hole, wormhole or sinkhole. Since the
sinkhole attack is the most general one, we will use the term sinkhole attack in the following.

The actual implementation of a sinkhole attack strongly depends on the routing protocol
and routing metric used in the network. Many protocols, such as Optimized Link State
Routing (OLSR) [4], OLSRv2 [3] and Simplified Multicast Forwarding (SMF) [16], use so
called HELLO messages to discover their neighborhood and link qualities. These messages
are a good starting point for an attacker to propagate fake link qualities and, by doing so,
gain a privileged position in the network.
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2.2 Neighborhood Discovery Protocol

The use of HELLO messages to determine a node’s neighborhood is standardized in the
Neighborhood Discovery Protocol (NHDP) [2]. According to this draft, each node periodically
spreads HELLO messages announcing its neighborhood. By these messages, each node learns
about its 1-hop and 2-hop neighborhood. In this draft, link quality is only used locally to
guarantee a minimum quality of links. The link qualities are not used in signaling nor in
a link metric. The neighborhood discovery standardized in the Neighborhood Discovery
Protocol is used by a variety of routing protocols like OLSR [4], OLSRv2 [3] or SMF [16].
However, in none of these protocols a link quality based routing metric is integrated, although
it has been shown, that link quality based routing metrics lead to significantly improved
network performance (cf. [5, 20]).

2.3 Expected Transmission Count

One link quality based routing metric is the Expected Transmission Count (ETX) [5]. Its
idea is to minimize the number of packet transmissions required to successfully deliver a
packet. It measures two kinds of link qualities to calculate the ETX-value: (1) link quality
and (2) neighbor link quality.

The link quality (LQ) depicts the quality of the link in direction from the neighbor node
to the node signaling the link quality. Hence, it is measured by the node itself. The neighbor
link quality (NLQ) depicts the quality of the link in direction from the node to the neighbor
node. Therefore, it is measured by the neighbor node. A correctly behaving node, takes the
last link quality signaled by the neighbor as next neighbor link quality for the link to the
neighbor. From link quality and neighbor link quality the ETX-value is calculated in the
following way: ETX = 1

LQ∗NLQ

To clarify the signaling of link qualities, we consider a small example. Consider a link
between nodes A and B. In the direction A→B 80% of the packets reach node B. In the
opposite direction B→A 70% of the packets reach node A. Node A would signal a link quality
of 70% and a neighbor link quality of 80%. Node A would know about the neighbor link
quality value from node B’s last HELLO message. In this message node B would have
signaled a link quality value of 80%.

The ETX metric has been shown to significantly increase the network performance in
testbeds (cf. [5]) and performs very well under real world conditions (e.g. in various Freifunk
networks in combination with OLSR as routing protocol). Thus, in the following we use SMF
with NHDP and ETX for routing purposes. To enable the use of ETX together with NHDP,
link qualities have to be signaled. Thus, link qualities are added to the HELLO messages.
Each node includes for each of its links a link quality and a neighbor link quality value in its
HELLO messages.

2.4 Sinkhole in SMF with NHDP and ETX

SMF is a multicast forwarding approach suitable for multi-hop networks. Its basic idea is
to forward multicast data using efficient flooding via a selected set of nodes, the relay set.
SMF needs three logical components: Neighborhood Discovery Protocol, Relay Set Selection
Algorithm, and Forwarding Process.

The Neighborhood Discovery Protocol specifies how nodes determine their neighborhood.
Based on this neighbor information, the Relay Set Selection Algorithm chooses the set of
relay nodes. On the basis of neighbor information and relay set selection, the forwarding
process decides whether an incoming packet is forwarded by the receiving node.
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Figure 1 Example for SMF

In this paper, we focus on SMF using NHDP (cf. Section 2.2) and ETX (cf. Section 2.3).
The neighborhood discovery is done according to NHDP. The relay set selection takes into
account link qualities. The neighbor with the highest link quality and reaching at least one
2-hop neighbor not already covered by a relay node, is chosen as relay node. Relays are
chosen until all 2-hop neighbors are covered. Each node signals its choice of relay nodes in
its HELLO messages. Every node only forwards packets for neighbors that have explicitly
chosen it as relay node.

Figure 1a gives a simplified example for SMF with NHDP and ETX. It shows a snapshot
of a network after the relay set selection is done. The black lines represent the links in the
network. Nodes A and B send correct HELLO messages. Node A propagates neighbors C,D
and S with link quality and neighbor link quality 0.5 for each neighbor. This results in an
ETX value of 4 for each propagated link. Node B propagates neighbors C, D, E and S with
link quality 0.625 and neighbor link quality 0.8 for each neighbor. This leads to an ETX
value of 2 for each propagated link. Hence, node S chooses node B as relay node. If node S
sends data packets, only node B will forward these packets.

In order to run a sinkhole attack against SMF with NHDP and ETX, an attacker must
fake HELLO messages, because they are used to provide the basic connectivity in the network.
We consider an attacking node claiming to have high quality links to more neighbors than it
actually has in its HELLO messages. In combination, the high quality of the attacker’s links
and his large number of neighbors lead to a high probability of the attacker being chosen
as relay node, while other nodes are not chosen. By doing so, the attacker gains control of
routes in the network. The more neighbors the attacking node claims to have and the better
link qualities it propagates, the larger the potential impact of the attack. We note: There is
a maximum impact achievable by the attacker. Of course, the more an attacker fakes, the
larger the possibility of the attacker being detected.

Figure 1b shows the SMF network presented in Figure 1a, but this time node A has been
taken over and launches a sinkhole attack. Node A propagates high quality links to nodes
C, D, E and S (Label 1). Hence, node S does not choose node B, but node A as relay node
(Label 2). Thus, node B does not forward data packets, but the attacker is responsible for
forwarding these packets. Therefore, the attacker has gained control over the connection
from S to C, D and E.
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3 Related Work

There is only very little research done so far on detecting fake link qualities. Thus, in the
following we mention not only related work dealing with fake link qualities, but also work at
least being aware of link qualities.

[1] deals with securing the Pulse protocol against several attacks. The countermeasures
include nonces, packet encryption and authentication. Against insider attacks, Awerbuch et al.
use secure loss-rate information. By using cryptographic acknowledgements for each packet
traversing a link, a secure loss-rate is determined for each link. These loss-rate information
are used as a routing metric. Thus, a link quality based routing metric is introduced. Attacks
against this routing metric are not considered in detail.

[15, 14] use intrusion detection to detect sinkhole attacks in wireless sensor networks.
Several rules are defined to detect sinkhole attacks when using MintRoute or MultiHopLQI as
routing protocol. Alteration of the attacker’s link qualities is detected by plausibility checks.
Each node acts as watchdog for its neighbors. It compares link qualities from incoming
packets to link qualities propagated by other neighbors for the same links. If it detects a
significant difference between claims of different neighbors, a fake link quality is assumed.
This approach has two major drawbacks. First, without further processing it is only possible
to indicate a sinkhole attack, but not to identify which node is launching the attack. Second,
the approach requires the presence of watchdog nodes for each link. These watchdogs must
be able to hear both nodes reporting a link between them. At least in a network with high
mobility this requirement may be difficult to guarantee.

[19] defines a method to detect sinkhole attacks and identify the attacker in wireless
sensor networks. It is assumed that data is transmitted to a base station consistently.
Statistical methods are used to detect inconsistencies in data from a region. Upon detection
of inconsistent data, a sinkhole is assumed. Thus, the base station initiates a procedure
resulting in a flow graph for the suspicious region. The root of the biggest tree in the
flow graph is assumed to be the attacker. The assumptions of this approach limit it to
networks where traffic is transmitted to a base station consistently. Thus, the approach is
not applicable to all kinds of multi-hop networks. In addition, fake link qualities are not
considered.

[21] describes an algorithm to defend against selective forwarding attacks in wireless
mesh networks. The detection happens in two phases. The first phase is threshold based.
If for a given source-destination pair of nodes less than threshold packets are received by
the destination node, a selective forwarding attack is assumed. The second phase is query
based. The source node queries all intermediate nodes on the path to the destination. Based
on their feedback, the attacker is determined. The detection threshold for the first phase is
calculated according to the ETX metric. However, fake link qualities are not considered in
this approach.

[15, 14] are the only approaches taking into account fake link qualities. However, these
approaches are tailored to MintRoute and MultiHopLQI in wireless sensor networks, have
some drawbacks (described above) and seem not applicable to tactical multi-hop networks.
Thus, to the best of our knowledge, there are no approaches detecting fake link qualities in
tactical multi-hop networks like our new approach TOGBAD-LQ does.

4 TOGBAD

In this section we present our approach Topology Graph based Anomaly Detection (TOG-
BAD). TOGBAD is a centralised anomaly detection method against routing attacks in
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tactical multi-hop networks. It uses the structure of tactical multi-hop networks by running
the detection routines centrally on the fully equipped nodes. Preliminary versions were
introduced in [7], [6] and are summed up in Section 4.1. In Section 4.2, we present our new
extension TOGBAD-LQ.

4.1 Basic Functioning

TOGBAD utilizes two types of instances corresponding to the two types of nodes present
in tactical multi-hop networks. The sensor instances of TOGBAD run on the light-weight
nodes of the tactical multi-hop network. These nodes act as watchdogs and periodically
send reports to a detection instance. From these reports the detection instances construct
a graph modeling the topology of the network. The detection instances run on the fully
equipped nodes of the multi-hop network. They perform plausibility checks between the
actual topology represented in the topology graph and the topology propagated by nodes in
the network. By doing so, the detection instances are able to detect nodes propagating fake
topology. However, without enhancements this version of TOGBAD is not able to recognize
fake link qualities. For further details concerning the basic functioning of TOGBAD we refer
to [7].

4.2 TOGBAD-LQ

The basic idea of TOGBAD-LQ is to use a Challenge/Response method to estimate the link
qualities in a node’s neighborhood. The nodes include challenges in their messages. Based
on these challenges, neighboring nodes create responses. These responses serve as basis for
the estimation of link qualities. We will describe the Challenge/Response method in more
detail below.

Each node checks the link qualities propagated by its neighbors against its own estimation
of the link qualities. Upon detection of a suspicious link quality, a node sends a report to a
fully equipped node. At the fully equipped node the reports on suspicious link qualities are
aggregated and if the evidence is sufficient the sinkhole attacker is identified.

TOGBAD-LQ can be divided into two parts. The first is the local detection part. It
consists of the estimation and checking of link qualities and the checking of neighbor link
qualities. The second is the global detection part, where the local detections are aggregated
and sinkhole attackers identified.

4.2.1 Local Detection

The local detection consists of two parts: (1) Estimation and checking of link qualities and
(2) checking of neighbor link qualities. For (1), each node adds a challenge to its HELLO
messages. Upon reception of a HELLO message containing a challenge, the neighboring
nodes add a response to this challenge in their next HELLO message. From the number of
received responses from a neighbor, a node can estimate the link quality of this neighbor.
The number of received responses is used for the checking of link qualities. If the difference
between number of received responses and number of expected responses according to the link
quality propagated by the neighbor exceeds a threshold, a report is sent to a fully equipped
node.

The challenges and responses should be chosen in a way that it is very difficult for an
attacker to guess a correct response without the corresponding challenge. In particular, the
challenges should be independent of each other. Thus, we use random values as challenges.
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We will describe a way to derive responses below. Information from HELLO messages should
not be taken as challenges, since successive HELLO messages of the same sender tend to
be similar. To minimize the overhead introduced by our approach and to provide tamper-
resistance, the responder sends back a hash-based message authentication code (HMAC)
calculated from the received challenge. By use of a hash, the overhead is minimized and by
using a message authentication code tamper-resistance provided.

The checking of link qualities is done in the following way: Each node maintains a list of
challenges sent for a given time frame. Additionally, each node has a list of received responses
for each neighbor in the given time frame. A received response is considered correct, if it
corresponds to one challenge not already met by the neighbor sending the response from the
list of challenges. Let CS be the number of challenges sent in the considered time frame, B
the node receiving a HELLO message and performing the check, A the sender of the HELLO
message, LQA the link quality measured by node A for the Link B→A, LQB the link quality
propagated by node B, ER the number of expected responses and RR the number of received
correct responses to a challenge sent in the time frame.

ER := LQA ∗ LQB ∗ CS

local_threshold := ER + δ

A report is sent to a fully equipped node if

RR < local_threshold.

The reports consist of a timestamp, the ID of the suspicious node, the ID of the reporting
node and the difference between local_threshold and RR. In the following, this difference
is named diff . The reports are added to the reports sent for the basic TOGBAD version,
minimizing overhead and transmissions needed.

The checking of neighbor link qualities needs no additional signaling. It can be done
completely locally. The neighbor link quality propagated by a neighbor is the link quality
from a previous HELLO message of the node performing the check. Thus, to defend against
fake neighbor link qualities, a node keeps a list of its previously propagated link qualities. To
check the plausibility of a neighbor link quality propagated by a neighboring node, a node
checks whether this neighbor link quality is present in its list of propagated link qualities for
this neighboring node. Note that it is important to keep the lists of previously propagated
link qualities short for two reasons: (1) to save resources of the nodes and (2) to reduce the
probability of an attacker choosing a valid neighbor link quality. Please note that it is no
problem if new nodes join in. New nodes will start transmitting neighbor link qualities for a
neighboring node after they received at least one HELLO message advertising a link quality
from this node.

4.2.2 Global Detection

The global detection is done at the fully equipped nodes. The approach works period-based.
For a defined period the detector collects the reports sent by the watchdogs. At the end of
the period, the detector aggregates all reports concerning one suspicious node received in the
current period, calculates the mean over the diff values from these reports and generates
an alarm for a suspicious node, if

mean_diff > global_threshold.
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Figure 2 Example for TOGBAD-LQ

To clarify our approach, we consider a simplified
example (Figure 2). The example consists of three
nodes. Node A is the attacker node, node B a benign
node and node FE one fully equipped node. For
this example, we set CS := 10, RR := 2 at node B,
δ := −0.5, global_threshold := 1 and the link quality
for link A-B := 0.5 in both directions. Thus, node B
propagates a link quality and neighbor link quality
of 0.5 for neighbor A in its HELLO message (Figure
2; Step 1). Additionally, node B adds a challenge to
its message. Figure 2; Step 2 shows the subsequent
HELLO message of the attacker node A. The attacker
fakes the link quality and neighbor link quality and
propagates the optimal value for both. Despite faking link quality and neighbor link quality,
the attacker correctly includes the HMAC of node B’s challenge as response in his HELLO
message. Note that it would even simplify the detection of the attack if the attacker would not
include responses in its HELLO messages. Upon reception of the attacker’s HELLO message,
node B first increments its RR to 3. Afterwards, node B checks the propagated LQ and NLQ.
In this case, ER = 5 resulting in local_threshold = 4.5. Thus, node B sends a report with
diff = 1.5 to the fully equipped node (Figure 2; Step 3). Additionally, node B checks the
NLQ propagated by node A. For this example, we consider a list length of 1 for the previously
propagated link qualities. Thus, node B compares the LQ of its last HELLO (0.5) to the NLQ
of node A’s HELLO (1.0). Since the values are unequal, the fake NLQ is detected. At the fully
equipped node, the mean over all reports concerning node A is calculated and compared to
the global_threshold. In this case: mean_diff(A) = 1.5 > 1 = global_threshold (Figure
2; Step 4). Thus, the fully equipped node generates an alarm for node A.

5 Evaluation

To evaluate our approach, we conducted simulations. In this section, we first introduce the
used simulation environment (5.1) and afterwards present our simulation (5.2) results.

5.1 Simulation Environment

For our simulations, we use the network simulator ns-2 [17] in version 2.33. Since ns-2 does
not include an implementation of SMF, we added SMF with NHDP and ETX (cf. Section
2.4).

Since we consider tactical environments, we choose Reference Point Group Mobility
(RPGM) [9] as mobility model. In tactical scenarios there typically are two kinds of com-
munication channels present, intra-group and inter-group. The intra-group communication
is mainly single-hop as the nodes of a group (at least when using RPGM) stay close to-
gether. Typically, the communication between tactical command and the troops in the
field is inter-group and therefore multi-hop communication. In the following the inter-group
communication channel is depicted as command channel. To guarantee multi-hop scenarios,
the RPGM scenarios are generated with the additional criterion that one node at maximum
may reach 50% of all nodes within one hop.

The military units of the RPGM scenarios utilize a tactical MANET that is attacked by
a sinkhole in the simulations conducted. All nodes are equipped with radio hardware with a
maximum communication range of approximately 300m. A combination of log-distance and
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ricean fading is used as signal propagation model. All packets are sent with a transfer rate
of 11Mbps and are routed by applying the Simplified Multicast Forwarding (SMF) protocol
with NHDP and ETX (cf. Sect. 2.4). The modelled military mission consists of several
squads of infantry soldiers that are moving in an area of 1000m x 1000m. Each RPGM
group consists of 10 nodes, which approximates the size of a military squad. The maximum
distance between a unit and its corresponding group center is set to 300m to model a closely
operating infantry squad. The total node number is set to 50. 400 replications of length 1000
seconds are done with varying movements and traffic. Additionally, only replications with
a non-partitioned network for at least 90% of the simulation time are considered, since we
assume that in a real tactical network some kind of topology control is in use.

From the 50 nodes simulated, we uniformly choose one attacker. The attacker sends fake
HELLO messages. In these messages he propagates a fake topology and fake link qualities.
According to the results of [7], the attacker propagates two-thirds of the total nodes as fake
neighbors. Additionally, he sends optimal link qualities and neighbor link qualities for all
propagated neighbors (real and fake ones). The attracted traffic is dropped by the attacker.
The attacker is active between seconds 100 and 500. The rest of the simulation, the attacker
node behaves like a normal one.

The report interval for TOGBAD should be chosen in dependency of the used HELLO
interval. According to [4] we use a HELLO interval of 2 seconds. In [7] a report interval
of 5 or 6 seconds was evaluated to work well given the above HELLO interval. In this
work, we consider a report interval of 5 seconds. The detection of fake link qualities is
done every 5 seconds, accordingly. Consequently, the interval for ETX determination should
also be chosen in dependency of the HELLO interval. At least 10 HELLO messages should
be evaluated for ETX determination. Thus, we consider an interval of 20 seconds. For
plausibility checks of propagated link qualities and neighbor link qualities, only information
from packets being considered for ETX determination are of interest. Therefore, each node
stores its link qualities and challenges sent for 20 seconds.

5.2 Simulation Results

Concerning our simulation results, we start with an evaluation of a reasonable choice for
the global_threshold. For this evaluation, every node sends a report to a fully equipped
node, if the difference between local_threshold and RR is greater than zero. Afterwards,
we consider the impact of bursty packet losses on the detection rate of our approach.

To find a reasonable choice for the global_threshold, we consider the rate of false
positives and false negatives of our approach in dependency of the different choices for the
global_threshold. We choose the global_threshold out of the set {0; 0.5; 1; 1.5; 2; 2.5; 3}. At
first, we consider an idealized situation: We assume that the reports of our sensor instances
are not hit by packet losses. Thus, we have an optimal information base at the detector
instance. The impact of packet losses of the reports is evaluated later (Fig. 4).

Figure 3a shows the rate of false positives over different choices for the global_threshold.
We use boxplots to show the median, lower and upper quartile. For a global_threshold of
zero, our approach leads to a median false positive rate of almost 100%. But already the
choice of 0.5 for the global_threshold reduces this rate to around 10%. A choice of 1 or
greater leads to a median false positive rate of 0%. The very high false positive rate for small
choices of the global_threshold is due to packet losses in the network. Packet losses may
lead to small differences between the measured and real link quality. Thus, there are reports
with diff values slightly above zero for correctly behaving nodes. Given a global_threshold

close to zero, these reports lead to a high number of false positives. For more reasonable
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Figure 3 False Positives, False Negatives without packet loss for different global thresholds

choices of the global_threshold, these false positives disappear. Figure 3b uses boxplots
to illustrate the rate of false negatives over different choices for the global_threshold. For
small choices of the global_threshold the median false negative rate stays at 0%. From a
choice of 1.5 the median rate of false negatives slightly increases up to 5% for a choice of
2.5 for the global threshold. The choice of 3 for the global threshold leads to a median false
positive of 40%. The link quality of the majority of links in the considered scenarios is around
0.7. Given that the global_threshold ≥ 3, with high probability even a node propagating
optimal link qualities (1.0) is considered correctly behaving. This leads to the high number
of false negatives given global_threshold ≥ 3. According to Figure 3 global_threshold = 1
is a reasonable choice. It leads to low false positives and false negatives rates and thus a very
good detection rate. Hence, in the following we use a global_threshold of 1. There are few
outliers in Figure 3b. Given a reasonable choice for the global_threshold, two conditions
may lead to a high false negative rate: (1)very high link qualities in the direct neighborhood
of the attacker node and (2)attacker node nearly exclusively reaches members of its movement
group directly. Condition (1) leads to a low difference between the real link qualities and
the fake link qualities propagated by the attacker. Condition (2) leads to a small number of
watchdogs reporting over the attacker. The outliers visible in Figure 4 are the cases where
Conditions (1) and (2) occur simultaneously. Nevertheless, the probability of both conditions
occuring simultaneously is very low.

Figure 4 shows the impact of bursty packet losses on the detection rate of our approach.
To model the bursty packet losses, we use a two-state Markov chain [18] with states loss and
no loss. We vary packet loss rate and average burst length to measure both the impact of
increasing packet loss rate and burst length. In Figure 4a the false positive rate is visualized
over different loss rate/burst length combinations. Neither with increasing loss rate, nor with
increasing burst length the rate of false positives increases significantly. The median of the
false positive rate stays at 0% for all combinations. Only the number of outliers increases
with increasing loss rate and burst length. Figure 4b illustrates the false negative rate over
different loss rate/burst length combinations. Like the false positive rate, the false negative
rate is very robust against both, increasing loss rate and increasing burst length. The median
false negative rate stays at 0% for all loss rate/burst length combinations. Again, the number
of outliers increases with loss rate and burst length. Figure 4 shows that our approach is very
robust against packet losses. In tactical scenarios group based movement is to be expected.
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Figure 4 False Positives, False Negatives with packet loss for a global threshold of 1

Due to the group based mobility each node has with high probability at least the members
of its group as direct neighbors. Thus, -in the considered scenarios with a group size of 10
nodes- for each node there are with high probability at least 9 nodes reporting about its
behavior. Even if 50% of the reports of these reporting nodes are hit by packet losses, there
is a high probability of at least some of the reports reaching the detection instance. Already
a small number of reports is sufficient to reach a very good detection rate.

6 Conclusion and Future Work

In this paper we introduced a new detection capability for fake link qualities to our intrusion
detection approach TOGBAD. TOGBAD-LQ uses a Challenge/Response method to estimate
link qualities in the neighborhood of nodes. Based on this estimation, first, a local plausibility
check is performed. The results of these local plausibility checks are then aggregated at a
central detection instance. This approach takes advantage of the characteristics of tactical
environments by running the central detection instances on the fully equipped nodes in the
network.

We considered an attacker launching a sinkhole attack by propagating fake topology and
link qualities. To detect this attack, we evaluated a reasonable threshold for our approach.
Given a reasonable choice for the required thresholds, our approach shows very good results.
It leads to very few false positives and false negatives and was shown to be very robust
against packet losses. In total, it reliably detects fake link qualities in tactical scenarios.

However, there are still questions which have to be examined in the future. An evaluation
for a reasonable choice of the local threshold should be performed. Additionally, the overhead
introduced by our approach has to be evaluated. Furthermore, the impact and detection of
an attacker only slightly increasing its link qualities should be considered.
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Abstract

This paper presents a new approach to exclude problems arising from dynamically switching
between protected concurrent and unprotected single-threaded use of shared data when using
software transactional memory in OO languages such as Java. The approach is based on a sim-
ple but effective programming model separating transactions from non-transactional operation.
It prevents the application programmer from errors but does not force the software transactional
memory library to observe non-transactional access and thereby preserves modularity of the soft-
ware. A prototypical toolchain for validation and source code instrumentation was implemented
as a proof of concept.
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1 Introduction

Due to physical and economical reasons CPU manufacturers have stopped to increase CPU
clock speed and now increase the number of cores on a single die instead. As software
is constantly getting more complex and consumes more processing power with each new
version today’s software industry is coerced to move to parallel programming paradigms.
Unfortunately parallel programming is a complex and error-prone discipline due to the
necessity of data exchange between threads of execution whether by message passing or
concurrent access to shared data. Access to shared data was traditionally controlled by locks
that may cause deadlocks and do not scale well (cf. [6]). Another approach is the use of
transactions as known from databases. Emerging from that discipline transactional memory
[6] is currently discussed as a viable alternative for locks to ease parallel programming.

Transactional memory (TM) is a transaction-based concurrency control mechanism for
shared non-persistent memory on a single machine. Some prototypes have been developed as
hardware transactional memory (HTM) integrated into a CPU, e.g. Sun’s Rock processor.
Software transactional memory (STM, [11]), as addressed in this contribution, is implemented
in software libraries usually providing transactions on heap memory of a process. HTM has
not yet reached a productive state, therefore most research focuses on STM.

The underlying principle of software transactions is the repeated execution of a critical
section to resolve occurring conflicts in terms of data consistency or overall progress (i.e.
deadlocks). Data modifications are committed if no conflict occurred during a transaction
and aborted (i.e. discarded) otherwise, resulting in a restart of the transaction. STM can be
based on pessimistic or optimistic concurrency control techniques. While pessimistic STMs
acquire locks before accessing shared data optimistic STMs do not. Thus, before the latter
commits a transaction it checks if the order of concurrently occurred accesses on shared data
is result-equivalent with some serial execution of the involved transactions (serializability).
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Generally, TM provides the opportunity to easily move to concurrent programming
without most of the common problems. It has the potential to push the use of concurrency
and thereby prevent the software industry from losses caused by the change of the architecture
paradigm on the hardware level. But transactions have fundamental differences compared
to traditional locks. Some common patterns to solve tasks in concurrent applications do
not apply to transactions and result in errors when used. Thus, to ease the transition to
concurrent programming through TM its usability is of higher concern; in particular the
prevention from its own known problems.

One class of problems of TM is called the privatization resp. publication problem [12].
Both problems emerge from a strategy used by application programmers to switch between
protected shared use and unprotected local use of data and result in inconsistencies when
applied with transactions. The currently accepted solution for these problems is to enforce
strong isolation, which means that transactions are isolated from modifications of other
transactions as well as they are isolated from non-transactional modifications on shared data.
This usually requires the STM library to observe non-transactional access to shared data,
which either requires modifications of the runtime environment (e.g. the virtual machine) or
modifications of the software which uses a library implemented on an STM.

But a library must be self-contained. Considering larger ecosystems, such as the Eclipse
platform, where a data model and plug-ins working on that data model are provided by
different parties such modifications in plug-ins reduce the attractiveness of the platform.
But even those large ecosystems would greatly benefit from deadlock prevention provided
by STMs. Firstly it is hard to agree on some locking protocol for objects of the model
which prevents deadlocks and secondly the usage of a single lock for the entire model is very
inefficient. Therefore, there is a strong need for an alternative solution.

We advocate an imperative style declaring a programming model which prevents common
errors when using TM such as privatization and publication. The programming model is
enforced by a validation tool and automated code instrumentation is used to achieve a
simple and almost transparent API. The programming model is designed for Java STMs
and it neither depends on language extensions nor forces the STM library to demand new
requirements for the runtime environment or the non-transactional part of the software.

Instead of realizing strong isolation inside the TM system it is enforced by the coding
rules of the programming model. All rules of the programming model are derived from the
following goal: Transactions must operate in a predefined domain of the software only. Access
to the domain is possible via methods of objects only, which automatically start transactions.
This completely isolates transactions from non-transactional access logically and physically
in terms of software architecture. Thus, it realises strong isolation without the disadvantages
in respect to the remaining software system and its environment.

A prototypical implementation of a TM system based on a modified STM library was
developed as a proof of concept. Following the main requirement to reduce complexity of
concurrent programming it provides a very simple API and a toolchain consisting of a validator
checking for violations of the programming model and an automated code instrumentation
tool to enable transaction management for declared transactional objects.

Section 2 reviews details on problems resulting from the use of transactions, existing
approaches and their pros and cons. Also relevant programming models for STM in Java are
discussed. The next section explains the overall concept and the programming model. On
this basis the developed prototype and required modifications of the STM library are covered.
Section 5 contains a detailed discussion of the consequences on programming and impact in
terms of non-functional properties of the STM library induced by the modifications such as
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performance and scalability. The paper finishes with a conclusion and a prospective outlook.

2 Pitfalls of Existing Approaches

2.1 Publication and Privatization

As mentioned above, publication and privatization describe strategies of the programmer to
implement switching between local unprotected and shared protected access to data objects.

Initially: data = 42; _private = false;

Thread T1 Thread T2

1 atomic {
2

3

4 _private = true ;
5 }
6 data = 0 ;
7

8

9

1

2 atomic {
3 i f ( ! _private ) {
4

5

6

7 va l = ++data ;
8 }
9 }

May this code assign 1 to val?

Table 1 Example of Privatization

Table 1 shows an example implementation of privatization. Thread T1 privatizes variable
data and signals it to T2 by the flag _private. The code works fine with locks but represents
a typical problem for transactions when executed in parallel line by line in the given order.
Thread T1 expects the data to be private and accesses it non-transactionally but unfortunately
thread T2 already tested the data to be public and reads it after the update of T1 in line six.
When using conventional locks variable val will in T2 never get the value 1, this was the
programmer’s intention. When using TM instead one of the following may happen:

The TM system treats the contention caused by the update in line four to be valid
because there exists an equivalent serialization of both executions with the same result.
This valid serialization is: Execute line seven before line four. It seems valid to the TM
system because the access to data in line six is invisible to the transaction in T2 which
means line four actually causes no contention.
The TM system might even consider the contention in line four to be valid and will
decide in line nine to rollback all changes. This includes to reset data to the state read at
transaction begin, which was 42 and not 0.

A rare but even more obvious privatization problem occurs when trying to synchronize
at an empty atomic block as demonstrated in Table 2. This is completely incompatible with
transactions because no STM system will ever block a thread which is not accessing any
data. But a synchronized block does!

These are just two examples of privatization problems and there are equivalent patterns in
usage with publication [4]. Common to these problems is the unprotected use of shared data
which is usually invisible to the TM system. The only way to overcome this problem is to
protect any access to shared data which is potentially accessed by transactions concurrently.
Such a TM system provides strong isolation, i.e. isolation of transactions from modifications
of other transactions and from non-transactional modification as well. This is in contrast to
weak isolation which isolates transactions from modifications of other transactions only.
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Initially: data = 42 ; _private = false;

Thread T1 Thread T2

1

2

3 _private = true ;
4 atomic {} ;
5 data = 0 ;
6

7

8

1 atomic {
2 i f ( ! _private ) {
3

4

5

6 va l = ++data ;
7 }
8 }

May this code assign 1 to val?

Table 2 Privatization using an empty synchronized block

To enforce strong isolation a TM implementation needs a way to observe non-transactional
access to shared data. Regarding Java, this may be achieved by modifications to the runtime
environment (e.g. the VM), the use of an agent at the JVMTI or JVMPI interface, or by
source or byte code instrumentation. The latter methods work with insertion of code into
non-transactional code which accesses the shared data to get notified when certain code lines
are executed. In summary, the implementation of strong isolation requires the TM system to
either modify the target runtime environment or parts of the program code. Thus, libraries
implemented based on the TM system with strong isolation are no longer self-contained.

2.2 Related Problems

A known problem of transactions is caused by its all-or-nothing guarantee which requires
rollbacks in case of inconsistent states of data. Rollbacks result in repeated executions of the
same code sequence which is incompatible with operations performing data exchange with
external entities not supporting transactions (e.g. a text console). A common solution to this
problem is the use of so-called irrevocable transactions [9]: A transaction is made irrevocable
when hitting a non-transactional method such as an I/O operation. All concurrently running
transactions which might get in conflict with the irrevocable transaction are rolled back
which guarantees the irrevocable transaction to commit without rollback.

A similar problem is the use of condition-driven synchronization (monitor, condition
variables or similar wait/signal primitives) e.g. by calling wait() and notify() in Java
(see Table 3). Usually this scenario is bound to a lock, protecting some variables and an
expression based on a subset of those variables representing the condition expected by a
waiting thread. Another thread, which changes variables referenced by the expression signals
the changes and the waiting thread is resumed. The condition is checked again and either
the loop gets restarted or the condition is met.

Waiting Thread Signaling Thread

1 synchronized (<lock >) {
2 while (<condi t ion >) {
3 wait ( ) ;
4 }
5 }

1 synchronized (<lock >) {
2 <condi t ion > = true ;
3 n o t i f y ( ) ;
4 }

Table 3 Blocking synchronization
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The inherent problem of this scenario is that the waiting thread must release the lock to
allow the signaling threads to change the variables referenced in the expression. There are
several proposals to provide an equivalent mechanism for transactions (cf. [5], [2], [1]) but
they all are complex, reintroduce the danger of lifelocks or deadlocks, or are of restricted use.

2.3 Programming Models of STMs

The most prominent way to declare code sections to be transactional is the use of atomic

blocks (see Listing 1) as in the TM systems ATOMOS [2] and AtomJava [7].

Listing 1 Use of atomic blocks

1 atomic {
2 // t r a n s a c t i o n a l code goes here . . .
3 }

Appropriate code to begin, control and end a transaction inside a block are transparently
added by a compiler or by dynamic code instrumentation, thus rollback or commit is in most
cases invisible to the application programmer. This approach requires an extension of the
language causing problems with existing tools such as IDEs and compilers. Alternatively,
transaction handling may be explicitly programmed by the application programmer using
calls into the TM system. A similar approach is to provide transactional code sections to the
STM system through an object with a designated method (e.g. call()) as in DSTM2 [8].

Another prominent object-oriented programming model for STM which provides trans-
parent handling of transactions is to declare so-called transactional objects which support
transactions. Transactional objects define transactional code sections in their methods and
transactional data as member variables of the object. Programmers are still allowed to use
even non-transactional access to transactional objects. There are examples such as Deuce
[10] and Multiverse [13] which are based on this model and use annotations to declare objects
and methods to be transactional (see Listing ??).

Listing 2 Example for transactional objects in Multiverse label

1 @Transact ionalObject
2 class MyTxObject {
3 private int x ;
4 @TransactionalMethod
5 public int incX ( ) {
6 return ++x ;
7 }
8 }

Atomicity of transactional objects is just an optional feature as long as the underlying
STM library does not enforce strong isolation. Member variables may be globally visible
and accessed by non-transactional operations, and transactional methods are able to access
non-transactional data.

The first approach proposing so-called type-level enforcement of strong isolation was
published by Harris et al. when introducing composable memory transactions [5] as an
extension for Concurrent Haskell. Concurrent Haskell requires operations performing I/O
actions to be explicitly declared as IO actions. With the proposed extension by Harris et
al. the programmer can also define so-called STM operations. These require a running
transaction and are restricted to use non-I/O operations only. Thus, strong isolation is
enforced through the type system.
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3 Proposed Programming Model

When looking at the problems mentioned in Section 2 it seems to be non-trivial to use
TM and it was no surprise when the question appeared whether TM was just a research
toy [3]. In databases those problems simply do not occur, because transactional data and
transactions are completely separated from non-transactional operations. This implicitly
provides strong isolation in terms of TM and it even prohibits calls to non-transactional
operations and use of blocking statements. Correspondingly, the fundamental and generic
concept of our programming model is to move TM and associated transactional code into a
closed part of the system which is separated from non-transactional code.

In order to reduce the complexity in concurrent programming our programming model
addresses the following requirements:

Avoidance of privatization and publication problems: To eliminate these problems the
programming model should support strong isolation.
Preserve software modularity: To reduce impact on the runtime environment and to keep
software modular, strong isolation should be enforced through the programming model
rather than through the STM library as explained in Section 2.1.
Simple API: The application programmer should be free from explicitly controlling
concurrency by calling methods of the STM library.
No changes to the programming language’s syntax: The syntax should remain unmodified
to preserve compatibility with existing tools. Therefore, language extensions such as
usage of new keywords (e.g. atomic) are excluded.

3.1 Overall Concept

As mentioned above, the generic fundament of the programming model presented here
requires to move transactions and transactional data into a logically separated transactional

domain of the software. The transactional domain is meant to guarantee consistency by
restricting access to contained data and operations to transactions only.

Figure 1 Transactional domain
Figure 2 Implicit transactions

To achieve such a guarantee for Java the transactional domain is build up from trans-
actional objects as depicted in Figure 1. Each transactional object is responsible to ensure
guaranteed data consistency for its member variables. Each transactional object therefore
offers no member variables but transactional methods only and each such transactional
method transparently starts a transaction if not already running (see Figure 2). This way
transactional data inside of transactional objects is accessed via transactional methods only
which guarantees the consistency inside of them.
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The interface of the transactional domain consists of the public transactional methods
offered by the transactional objects. Crossing the boundaries of the transactional domain
without starting a transaction is made impossible.

3.2 Coding Rules

Transactional objects are instances of transactional classes which are declared by implementing
the empty interface Transactional. A class declared to be transactional will get all of its
methods and constructors turned into transactional methods. Compared to annotations the
usage of interfaces provides type-safety even for a development environment without the
toolchain of the STM (e.g. when using a library with transactional objects). APIs of the
STM can refer to objects implementing the interface Transactional while annotations need
runtime checks or a tool for extended type checks at compile time.

A transactional class has to fulfill the following rules to guarantee strong isolation:

Instance variables of transactional objects must be of primitive type, of type String,
or references on transactional objects. This rule even prevents a programmer to put
consistency on risk through methods returning references on internal non-transactional
data or to keep temporary non-transactional data between two method calls. In Java
primitives are returned by value and strings are constants. This makes modifications of
both kinds of internal data impossible.

Non-final instance variables of transactional classes must be private. By doing so, only
methods - which start a transaction if necessary - can access internal variables.

Inside of transactional methods any access such as method calls or variable access to
external non-transactional objects is prohibited. That way it is impossible to break up
strong isolation and get access to inconsistent data inside a transactional method. Usage
of temporary local non-transactional objects in transactional methods (e.g. on the process
stack) are allowed.

Parameters of a transactional method must be of primitive type, of type String or
transactional. Parameters provided to a method might be modified in the transaction and
therefore need to support transactions as well. For all method parameters of primitive
type, Java provides a call-by-value semantics. Thus, the method is working on its own
copy and needs no concurrency control. The same applies to objects of class String.

Arrays as parameters of transactional methods are prohibited because they do not support
transactions. Arrays have to be replaced by a generic transactional wrapper class provided
by the STM and supporting access to an underlying array.

Base classes of transactional classes and sub-classes of transactional classes or interfaces
must be transactional as well. This prevents a programmer from calling non-transactional
methods of the base class or sub-class when expecting guaranteed consistency. It also
allows to declare any implementation of an interface to be transactional. Methods of the
super class Object are overridden by transactional methods or prohibited when final.

Type arguments of transactional generic classes must be either of type String or trans-
actional. Therefore, a transactional generic class declaration must have at least one
transactional type bound (e.g. <T extends Transactional>) or a type bound of type
String. Generics allow to implement type-safe transactional versions of standard inter-
faces such as Collection, Set, List or Map.

Use of non-transactional irrevocable operations is implicitly prevented by the rules.
Additional rules are required to guarantee deadlock-freedom. This is not addressed here
but is needed to meet the requirement of a simple API. Therefore, explicitly locking or
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suspending of threads inside transactional objects using wait, notify, notifyAll, or keyword
synchronized is prohibited. There are already approaches to support blocking transactions
and irrevocable transactions (see Section 2.2) but those are not addressed in this paper.

3.3 Ramifications on Software Development

The proposed programming model prevents a programmer from errors concerning privatization
or publication because it is impossible to use shared transactional data in an unprotected
local fashion. In contrast to other approaches the proposed programming model primarily
expects the data to be declared transactional and not only the critical code sections which
leaves the responsibility to avoid those problems at the application code.

The programming model guarantees consistency for individual transactional objects only.
To achieve consistency of an operation over a set of transactional objects a programmer
still needs to move the operation into a transactional method. Appropriate rules, to force
a programmer to do this could consist of an access restriction on transactional objects to
transactions and the requirement for explicit declaration of intended non-transactional access
to transactional objects. But both rules are at odds with the requirement to enable the
implementation of self-contained libraries with transactional objects.

Currently the only way to privatize data and to get the performance advantage of
unprotected data access is to create a corresponding non-transactional class to receive a copy
of the data of a transactional object. This method will be applicable on certain but not all
use cases because copying may produce a lot of overhead and narrows the intended speedup.
There exist other feasible techniques to support privatization and publication through the
STM system (cf. [12]). Those techniques have smaller per-call overhead than transactions
and very low initial overhead compared to copying. Thus, a preferable alternative is to
provide such a mechanism and offer an appropriate simple API for the following operations:

privatize: Switches visibility mode of the transactional object to private, i.e. moves the
object into the local area of a thread. Exactly one thread gets the owner of the object
and has exclusive access to it. Transaction management on this object is turned off but
the correct ownership of accessing threads is still checked. A thread trying to access a
privatized object of another thread causes a runtime exception to occur.

check visibility: Allows every thread to identify the current owner of the object, e.g. to
check if the data is currently privatized. This is the only operation of a privatized object
available to threads not owning the object.

publish: Switches visibility mode of the transactional object back to public and returns
it into the shared area. The method is available to the current owner of the object as
long as the object is private. It turns on transaction handling for this object.

All three operations should support transaction handling. This allows for example to perform
the visibility check and the intended access to the data in a transaction.

Privatization and publication follow a general pattern which is supported by these
operations: The visibility of an object is indicated by a flag which must be considered by all
threads prior to an access to a potentially privatized object. A thread can neither privatize,
publish or access an object owned by another thread. To prevent programmers from any
error in usage with this pattern each access violation according to this pattern leads to a
runtime exception. There are other patterns which rely on the modification of the reference
on the shared object. When the reference on a privatized object is redirected to a new object
or null or has been removed from a list, the object is simply no longer reachable for other
threads. To get the performance advantage in this case the programmer still needs to use
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the privatization operation with the modification of the reference. Thus, combined with
transactions these operations are enough to support all use cases addressed by privatization.

By the restrictive rules of the programming model, a programmer is forced to decouple
transaction enabled code from unprotected code. Thereby a programmer merges transactional
data and related code which should be protected by transactions in the transactional domain.
Each operation on transactional data will be delegated to transactional methods inside the
transactional domain. In larger ecosystems, such as the Eclipse platform, there will exist
even a three level architecture as depicted in Figure 3. A lower level will provide simple
transactional objects with just getter and setter methods representing the shared data model
(data objects). The programmer of a specific software package for the ecosystem will create
some additional transactional objects offering transactional methods for complex operations
of its specific application on top of this level (data access services). The non-transactional
application logic operating on the transactional shared data model will be on the highest
layer (application objects). Thus, there will be three layers separating basic data objects
from some application specific data access service objects and the application logic on top.

Figure 3 Sample application

Figure 4 Toolchain for the compilation

4 Prototypical Toolchain

To support the designed programming model a prototypical toolchain has been developed
(see Figure 4). It consists of a validation tool which checks the given source code for
conformance with the coding rules (Validation) and an instrumentation tool which injects
code for transaction handling in transactional objects (Instrumentation) prior to compilation.

Source code that does not pass the validation is not given to the instrumentation. An
advantage of the separation of both tools is that the instrumentation tool can be easily
exchanged with an instrumentation tool using another instrumentation style such as byte
code instrumentation or supports another STM library.

The usage of AtomJava, which supports source code instrumentation, allows the debugging
of instrumented classes. The following modifications and extensions were incorporated in
AtomJava to enforce the guaranteed strong isolation and modularity of transactional objects.

The STM library now supports transactional constructors keeping the order of constructor
calls in respect to the inheritance dependencies.
The initialisation expressions of Java member variables are executed before a constructor
is called. Those expressions may contain method calls to other objects. Because a
transactional object must guarantee consistency throughout its life cycle, the initialisation
of member variables of a class was made transactional as a whole.
Initialisation of static variables of a class takes place at class loading time. To guarantee
consistency of those initialisations too, they are now put into one transactional method
executed at class loading time.
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AtomJava replaced the main thread by an instance of AThread requiring an instrumen-
tation of method main. This provides fast access to thread context information but
it requires modifications in the environment. The dependency on class AThread was
removed and a thread context object stored in thread local storage has been introduced.

AtomJava uses a special strategy for lock handling to implement deadlock detection. A
thread holding locks keeps them as long as no other thread signals its need for it even when
the transaction has already been finished. The owner of the lock constantly polls for lock
requests of other threads and releases them on demand. This required instrumentation of
any source code which uses the STM and is in conflict with the modularity requirement.
Therefore, all locks are made available immediately after a transaction has completed
and the instrumentation of calling source code is discarded.

5 Evaluation of the Prototype

The compliance with the functional requirements such as avoidance from privatization and
publication, consistency of class and object instantiations, has already been tested during
development. Of major interest for the evaluation was the impact of required modifications
to the STM library even with this first not optimized prototype. A second interest was to
show the difference of source code instrumentation and byte code instrumentation which
actually provides more possibilities for optimizations.

The evaluation was performed on a shared memory system with two Intel Xeon Quadcore
X5365 processors at 3.00GHz, 16GB DDR RAM memory, a Linux Debian operating system
with 64 bit kernel in version 2.6.26-2 supporting SMP and a Sun Java VM version 1.6.0_21
also supporting 64 bit using the incremental garbage collector to get more precise results.
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Hotspot behaviour

Measurements were made over 107 iterations of a loop over a single test unit (method
or constructor call) which have been repeated one hundred times to check the precision of
the calculated average. Measured constructors and methods contained a read and a write
operation on a four byte integer instance variable. All measurements were performed for
instrumentations with AtomJava (atomjava), our modified version (jtd), Multiverse with
byte code instrumentation (multiverse) and for comparison with synchronized versions
of methods and constructors (sync) which provides similar abstraction. The difference of
the calculated average to the average duration of the same method or constructor without
concurrency control provided the average overhead of a concurrency control mechanism.

Figure 5 and 6 show the average overhead of method calls and object instantiations over
ordinary calls or instantiations without concurrency control. As expected the modified version
shows a significant additional overhead compared to the original AtomJava instrumentation
but it is still similar to the overhead produced by Multiverse and even lower in case of



Holger Machens and Volker Turau 107

transactional object instantiations.
When the number of threads concurrently calling a method is increased the impact of

the access to thread local storage is getting more obvious (see Figure 7). This is the main
difference to the original version of AtomJava. While Multiverse shows a nearly constant
behaviour the overhead of the modified AtomJava version increases with each additional
thread but is still far less than the overhead of the synchronized version.
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STM is known to have problems with so-called hotspot objects, which are rapidly accessed
by many threads. Therefore, another measurement was performed where the amount of
operations a thread performs inside and outside the instrumented method was synthetically
controlled by iterations of a loop with read/write operations (approximately ten Java byte
code operations) on a shared four byte integer variable. Figure 8 shows an example where
the load inside the instrumented method is ten times higher than the load the thread spent
outside of the method. In this case the modified version performs better because the effort to
access thread local storage is lower compared to the total work inside the transaction. It is
even better than Multiverse and has nearly the same performance as the original AtomJava
STM system. When increasing the work outside the method as depicted in Figure 9 the
overhead of the instrumentation by the modified version rises again due to the same reason
of the increased access to the thread local storage.

6 Summary and Future Prospectives

This paper proposes an alternative programming model for Java STMs which prevents a
programmer from errors with privatization and publication in use of STM. The fundamental
concept is to keep transactions and transactional data in a closed domain. The model
relies on source code instrumentation to provide a simpler API. The concept keeps libraries
using STM self-contained preventing an impact on software which uses the STM-based
library and the target runtime environment. Ramifications on the software development
process are discussed and a proof of concept is given by a prototypical implementation of a
toolchain consisting of a validation tool and an instrumentation tool based on AtomJava.
The evaluation of the prototypical instrumentation tool shows a significant overhead due to
the necessary modifications to the original instrumentation tool which is still lower as the
overhead produced by Java monitors.

Existing STM systems have been predominantly developed with the focus on performance
and transaction throughput and already reached acceptable quality compared to traditional
locks. But the complexity of the APIs is still high and significantly reduces the advantages
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over traditional locks such as deadlock-freedom. The work presented here is an attempt
towards a simpler API preventing a programmer from errors while using an STM system.
The overall goal of this work is to ease the move to parallel programming. But there are still
open issues left which are considered in the design of the programming model and will be
addressed in subsequent work. The issues include support for privatization and publication
by the STM system as described above, blocking transactions, irrevocable transactions, and
long running transactions. For all concepts elaborated approaches already exist and it may
be possible to improve them in order to achieve simpler error-preventing APIs.
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Abstract

Despite of all progress in terms of computational power, communication bandwidth, and feature
richness, limited battery capacity is the major bottleneck for using the resources of mobile devices
in innovative distributed applications. Incentives are required for motivating a user to spend
energy on behalf of other users and it must be ensured that providing these incentives neither
consumes much energy by itself nor allows for free-riding and other types of fraud. In this
paper, we present a novel incentive system that is tailored to the application scenario of energy-
aware resource-sharing between mobile devices. The system has low energy consumption due
to avoiding the use of public key cryptography. It uses a virtual currency with reusable coins
and detects forgery and other fraud when cashing coins at an off-line broker. A prototype-based
measurement study indicates the energy-efficiency of the system, while simulation studies show
its resilience to fraud. Even in scenarios with 75 % of fraudulent users that are colluding to
disguise their fraud only 3.2 % of them get away with it while the energy overhead (about 3 %)
for the incentive system is still moderate

Keywords and phrases incentive system; resource sharing; fraud detection
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1 Introduction

Current sales figures1 indicate a significant increase in the popularity of smart phones and
evidently show a trend towards feature-rich mobile devices. Besides offering computing and
storage resources almost comparable to desktop PCs ten years ago, such devices offer a
variety of other resources, including different communications capacities like 3G, WiFi, and
Bluetooth, as well as sensors for position, acceleration, light, and temperature. Combining
the resources provided by multiple devices enables new and exciting applications. These are
typically observed as a natural subset of pervasive computing [25] and find increasing interest
in many other disciplines of distributed computing, e. g., in Grid computing [10] and service
overlays [5]. Example applications range from pooling capacities of the cellular connections
of multiple devices to speed up downloads [3] to people-centric sensing exploiting the sensors
of thousands of smart-phones [8].

Unfortunately, despite of the growth in resource variety, processor speed, memory size,
and communication bandwidth, battery capacity remains the limiting factor for realizing
the vision described above [18]. Providing resources for applications running on remote
devices may consume a significant amount of energy, limiting the operating time of a mobile
device for the owner’s personal use. In fact, mechanisms are required to motivate device
owners—that are not known to each other in general and, thus, do not pursue a common
goal—to spend energy on behalf of others. Such mechanisms can be provided by incentive
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systems. These systems could recompense the energy spent for serving a remote resource
request, and allow to use the refund in turn to recompense others for using their resources.

Many incentive systems for motivating cooperation among users have been proposed with
different application scenarios in mind, e. g. MilliCent [20], NetPay [9], and Micromint [24].
However, most of them cannot be used to motivate resource sharing among mobile devices,
since they either require trusted hardware, connections to a central broker or other third
parties on each interaction that requires a refund, or utilize refunds that cannot be reused
without opening the door for fraud. An even more important drawback when it comes
to providing incentives for spending energy is that most systems consume lots of energy
by themselves, e. g., by requiring the use of public key cryptography on each payment,
contradicting the primary goal of the incentive system.

In this paper, we present an energy-efficient and resilient incentive system tailored to the
use-case of recompensing the energy required for resource sharing. For achieving energy-
efficiency, the system works entirely without public key cryptography. Nevertheless, it is based
on a virtual currency that can be exchanged between participants without communication
with a central broker or any other third party on each payment. An amount earned by
providing resources for a remote device can be re-used for consuming remote resources from
other devices. Multiple-spending of coins is persecuted by posterior fraud detection when
coins are cashed by an off-line broker.

We illustrate the main benefits of our incentive system—energy-efficiency and resilience—
in in-depth performance studies. By prototype-based measurements we show that using our
system increases the energy consumption only marginally compared to a resource-sharing
system that does not provide incentives. Furthermore, in a simulation study considering
different fractions of malicious users, we show that fraud can be detected with high probability.
Even in a worst case scenario with 75% of all participants being colluding malicious users
only 3.2% of them get away without being punished for their fraud for a short period of
time. These results clearly illustrate that the proposed system can successfully recompense
energy for servicing remote resource requests with low energy-consumption by itself and high
resilience to fraudulent users.

The remainder of this paper is organized as follows. Section 2 reviews existing incentive
systems with focus on the design goals energy efficiency and resilience. The concepts of our
incentive system are described in Section 3. Section 4 presents the mechanisms that are
applied for fraud detection when cashing coins at the off-line broker. Evaluation results with
respect to the energy consumption and the probability of fraud detection are provided in
Section 5. Finally, concluding remarks are given.

2 Requirements and Related Work

Subsequently we present a reference scenario to show the requirements that we hold necessary
to be fulfilled: Imagine a group of tourists gathering around a point of interest. Assuming
that their mobile devices advertise the resources they can provide in a MANET a camera
may add location tags to taken pictures by obtaining GPS readings from a nearby navigation
device. Beyond offering remote access to a single resource, a device can offer remote services
that combine multiple resources. For example, exploiting its GPS and WAN links a PDA
can offer a service for location-tagging and gallery-upload of a picture.

Providing such services is expensive in terms of energy. That is why there must be some
kind of incentive system that recompenses users who provide services to other users. Based
on the described scenario we see the following requirements for such an incentive system:

No need of trusted hardware: Incentive systems that depend on trusted hardware modules
are applicable only on a subset of the currently widespread mobile devices. The more
requirements an incentive system makes with respect to the using devices the smaller the
group of potential users will become.
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No need of always available central infrastructure: Long-living connections to central
infrastructure components via wireless WAN technology considerably decrease the battery
lifetime of mobile devices [14]. The incentive system itself should not be a major consumer
of energy itself.
No involvement of third party: Including a third party in every payment increases the
communication overhead considerably. Either an internet connection is needed every time
a user wants to consume or provide a service or the involved party must be nearby in the
very same MANET. Both assumptions are to strong restrictions for our use case.
Vendor-independent currency: Currency that can be used only to pay a specific vendor
restricts the usability in scenarios in which every participant is a potential resource
provider and consumer.
Reuse of currency possible: Currency that can be earned and spent several times allows
participants to achieve liquidity by providing services. So there is a real incentive to
provide resources and services.
No need of public key cryptography: Creation and verification of digital signatures as well
as de- and encryption of data using public key cryptography is a demanding task with
respect to CPU capacity.
Fraud detection possible: In case malicious users commit fraud it is a desirable property
of an incentive system, that the fraud can be detected and the initiator can be tracked
down.

There is plenty of related work on accounting and creating incentives in decentralized
networks. According to the classification presented by Obreiter and Nimis [12] incentive
schemes can be categorized into trade based and trust based systems. Examples and
discussion of trust based systems can be found in [16], [6]. As good reputation only gives
good return in settings with stable cooperation patterns [12] and our use case assumes flexible
and often changing cooperation patterns our approach is a trade based incentive system.
Subsequently we will explain in which aspects our approach differs from other trade based
incentive systems.

Buttyán and Hubaux [7] present an incentive system that stimulates cooperation in
MANETs by introducing a so called nuglet counter. This counter is incrementend whenever
foreign data is forwarded and decremented whenever own data is sent. As a positive counter
is required to send own data, there is a strong incentive to behave cooperatively. To avoid
users to manipulate this counter is is secured by a tamper resistant security co-processor.
Although this approach might be used for other resources than forwarding capacity as well,
the need for a trusted hardware module on each participating device contradicts our first
requirement.

Liebau et al. [19] propose a token-based accounting system for P2P-systems. Although
they provide a concept for accounting without central infrastructure their scenario differs in
an important point: As we focus on resource sharing on mobile devices it is most important
to us not to spend to much energy on the incentive system itself. Otherwise the accounting
and incentive system would not encourage people to share resources at all. As we want to
build an incentive system that is tailored especially to the needs of battery driven mobile
devices, we try to go without the means of public key cryptography. According to Rivest et al.
[24] the usage of public key cryptography for securing electronic currency is rather expensive
in terms of CPU load and thus also in terms of energy: They estimate that the computing
time needed for verification of an RSA signature is 100 times higher than computing a hash
function, generating an RSA signature takes even 10000 times longer than computing a hash
function.

Other payment schemes that apply public key cryptography are P-Pay [26], Sprite [27],
and the work by Blaze [4] and Abdelkader [1]. Another important difference is the value of a
token. The tokens proposed by Liebau et al. do not have any intrinsic value whereas each
coin that we use in our approach represents a fixed value. How this specific value can be
determined is discussed in Section 3.2.
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There are incentive systems that do not make heavy use of public key cryptography.
However, some of them do not offer a currency that can be used for several subsequent
payment operations. Millicent [20], NetPay [9], and Micromint [24] for example assume that
the means of payment are redeemed after a single payment. In our use case this would mean
that each participant must either possess a larger amount of electronic currency to maintain
liquidity for a sufficient period of time or that he must get small amounts of electronic
currency more frequently.

Bocek et al. propose a private and shared history-based incentive mechanism (PSH).
However, their approach is based upon an assumption that is fundamentally different
from ours: Bocek et al. assume that resource interests in the resource sharing system are
asymmetric, i. e. that an entity that provides a resource to another entity is not interested
in the resources that this one is sharing. In contrast we do not take that assumption but
hope that resource consumers also offer resources that are attractive to resource providers.
Besides, PSH also makes use of public key cryptography, which we do not for reasons that
are explained above.

In PeerMint [13] a decentralized accounting system for P2P applications is provided. In
contrast to our approach it tries to accomplish a system without any central component
whereas we rely on a central broker although this component of our system may be reachable
only casually. In order to guarantee high scalability and robustness it is built upon a
structured P2P overlay network. As we are considering use cases with only a small number
of users we do not base our approach on such a system that comes along with a considerable
communication overhead.

Another distinguishing feature is the scale of the incentive system. As our reference
scenario that was described before shows we are considering resource sharing in small
MANETs. This means that the cost for implementing large scale solutions as proposed for
example in [17] and [6] is not adequate.

3 An Incentive System for Resource Sharing in MANETs

Our resilient and energy-saving incentive system for resource sharing in MANETs uses
electronic currency to compensate resource providers for their efforts. We use the MicroMint
system [24] to create such "digital coins". A coin consists of a certain number of values that
create a hash collision when used as input for a certain hash function. It is very hard in
terms of computing time (and thus energy) to create such collisions but easy to verify if
certain values create such collisions. This means it is hard to create coins (even on strong
computing machines), but easy to check, whether a coin is valid (even on poorly equipped
mobile devices). There are a couple of techniques to vary the effort that is needed to create
valid coins. That way it is possible to make it unprofitable if not impossible to forge a
substantial amount of coins. The coins are generated on a central system, that has plenty of
resources compared to the mobile devices that are supposed to use the coins.

Coins that are constructed following the MicroMint approach are actually not made for
multiple payments. They are valid only for a specified amount of time and they are supposed
to be used only once. However, we see the option of using earned coins for consuming services
as a major motivation to provide services. Furthermore, redeeming the coins after using
them only one time would increase communication with the broker and would therefore
mean higher energy expenses. Thus, we developed a system that allows to use MicroMint
based coins in multiple payments. As this opens up several opportunities to commit fraud
for malicious users we also present a technique to track down fraudulent users. Thus, we
explore the design space that is spanned by the trade-off security vs. energy consumption.

In the remainder of this section we will clarify the assumptions that our work is built
upon before we give an overview on the entire system.



H. Teske and J. Furthmüller and O. Waldhorst 113

3.1 Assumptions

Our incentive system and the technique for tracking attempted and committed fraud relies
on several assumptions that are reasonable with respect to the use case presented in Section
1.

Participants can be identified: Tracking down and punishing malicious users requires
a way to identify each user. In a lot of incentive systems this is achieved by digital
signatures that employ public key cryptography. As explained before, it is one of our
explicit goals not to use such techniques because of their high demand of computing
capacity and energy. Still we assume, that every participating device can be identified.
This can be done for example using pre-distribution of random keys like proposed e. g. by
Ramkumar et al. [21].
There is a central, trusted component: This component that is called broker subsequently
does not need a continuing connection to the resource providers and consumers, but
at least once in a validity period of the used coins. The broker is not involved in any
payment operation between a service provider and a service consumer. It only delivers
new coins at the beginning of a validity period and redeems coins at the end of a period.
There is a common schedule: All participants that want to take part in the fraud detection
system contact the broker within a certain time frame. This could be the first day of each
month for example. Participants that do not meet this deadline still can redeem their
coins, however they must accept not be recompensated if the coin has been redeemed by
a malicious user before.
There are means to invoice the transactions: Just in case that the virtual currency is
supposed to be bound to a real currency (which is not necessarily the case) we further
assume that the broker is able to bill and withdraw the according amount of money from
the participants account. Just as it is done for example by a cell phone provider. The
actual arrangement of this business process is out of scope for this paper.
Attacker model: Furthermore, we assume that malicious users cannot forge coins that
pass the validity checks run by each device before accepting a coin. This assumption is
reasonable as Rivest et al. [24] provide techniques that make the necessary efforts for
forging coins many times higher than the costs that the legitimate issuer of the coins has
to bear. Instead we consider malicious users that try to spend original coins several times.
We examine both cases, a single fraudulent user and colluding fraudulent users. A single
fraudulent user can try to conceal the fraud by forging transaction logs whereas a group
of colluding fraudulent users can even come to an agreement to incriminate a third party
of having committed the fraud. We assume such colluding fraudulent users to act in fixed
groups. We think this is reasonable as the most likely appearance of such a colluding
group is a person that owns serveral mobile devices that she configured to commit fraud.

3.2 Overview

The architecture of our system consists out of three major components: broker, service
consumer and service provider. Mobile devices might either act as both service consumer and
service provider or incorporate only one of the two functions. At least once in the validity
period of a coin (that might be a month, e. g.) service providers and consumers need a
connection to the broker. This can be done either through a wireless WAN interface or when
the mobile devices eventually gain access to the internet via WiFi-LANs. Then the mobile
devices can get new valid coins or redeem the ones that they earned for providing services.
Note that this requires only a sporadic connection between broker and participating devices.
Each coin represents a fixed, small monetary value. This could be 0.1 cent, for example.

Every time a mobile device wants to offer a service, an adequate fee for using the service is
also published within the service advertisement. As we want to recompense service providers
for their energy expenses, the price to pay for using a service should be related to its energy
cost. However, the value of energy for the user of a mobile device varies depending on usage
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Figure 1 Transactions between honest users. Node one and five standing for the broker’s
dispensing and redeeming part.

scheme, remaining battery charge and chances to recharge the battery. There are several
approaches in related work how the price of a service can be adjusted with regard to those
variable conditions, e. g. in [3].

As the price of a service is published within the service advertisement, a service consumer
can base the choice of provider on the announced service cost. On requesting the service,
the service consumer transfers the specified number of coins to the service provider. If the
service provider fulfills its obligation the service consumer marks the corresponding coins as
spent. If the service provider does not meet its duty the service consumer adds the provider’s
id to a blacklist. In case of a successful payment both participants create transaction logs. A
transaction log contains the unique id of all coins involved in the payment and the ids of
service provider and consumer. These transaction logs can be used for the posterior fraud
detection presented subsequently in Section 4.

4 Posterior Fraud Detection

According to the attacker model presented in Section 3.1 only multiple-spending of coins will
discussed in this work.

The only chance of detecting the reuse of already spent coins at user-level is, if the coin
already exists in the local coin set and a user wants to pay this user with the same coin. In
all other cases, fraud can only be detected by the broker after all coins have been redeemed.
Therefore every client saves a transaction log for received and spent coins including the
involved user-IDs. The transaction log is handed over to the broker when redeeming the
coins. If the broker detects that one or more coins are redeemed by more than one user,
he uses a graph built from the collected transaction logs. This graph is used for detecting
the fraudulent users. The nodes thereby represent the users, the edges the transfer of coins
(identified by their coin-IDs) between these users (as shown in Figure 1, e. g.).

Honest users, redeeming all received coins at the end of the validity period, should have
the same amount of incoming to outgoing edges, as shown in Figure 1. In this case we
call all edges verified as for all of them two congruent transaction log entries can be found.
Only fraudulent users or users trading with fraudulent users will show an imbalance or have
unverified transactions, where only one log entry for the payment can be found.

As a fraudulent user is willing to hide his fraud, he will likely manipulate his own
transaction log by either keeping only one of the entries for the multiple-spent coin or
adding bogus entries telling he received the coin multiple times. This manipulation leads to
notcongruent transaction log entries as shown in Figure 2. We call these unverified edges.

The broker scans the transaction logs for these unverified transactions and marks the
involved users. A naïve approach would be to only mark the users with outgoing unverified
edges as cheaters. Then two or more users could conspire to draw the broker’s attention on
another user as shown in Figure 3. In this example user 3 could hand over a coin received
from user 2 to node 4. Both colluding fraudulent users could delete the transaction log for
this transaction and create transaction logs that indicate that they received the coin from
user 2.



H. Teske and J. Furthmüller and O. Waldhorst 115

Figure 2 Transactions including a cheaters (node 2) double spending of a coin. Node one and
seven depict the broker that is dispensing and redeeming the coins.

Algorithm 1 explains the tracking algorithm that is used to face the challenge of colluding
fraudulent users. If an unverified edge is detected, the user with the outgoing unverified edge
and all users receiving the involved coin from this user are marked as possibly fraudulent.
The user with the outgoing edge hereby gets a score of two, the users with the incoming edge
receive a score of one (line 5 and line 10). Considering the example from Figure 3 user 2 gets
a score of 2, users 3 and 4 get a score of one each. These scores were chosen with respect
to the thresholds used in Algorithm 2. A user must occur at least two times spending a
duplicated coin or three times receiving a duplicated coin before he is considered a malicious
user.

Thereafter the set of the receiving users (in our example this is {3,4}) is put into a list
of potential conspiratorial groups. If the group has been added before, its group score is
increased (lines 14 - 19). The score of the users and the group score is used to determine
whether a user is treated as fraudulent user or as victim of a conspiracy. How this is done is
shown in detail in Algorithm 2. A fraudulent user who spends a coin several times without
forging transaction logs will be caught as he has more verified outgoing transactions than
incoming transactions for the very same coin (lines 22 - 27). He gets a score of 3 (line 25)
which is higher than the COIN-FRAUD-THRESHOLD (=2).

Algorithm 1 Algorithm to detect fraud

1: for all coins in multipleRedeemedCoins as coin do

2: for all unverified transactions of coin as ut do

3: source = ut.source
4: if source has more than 1 outgoing transactions then

5: setScore(source, coin.id, 2)
6: possibleConspirators = new List
7: for all outgoing transactions of source as ot do

8: receiver = ot.receiver
9: if receiver has at least one outgoing transaction && getScore(receiver) == 0 then

10: setScore(receiver, coin.id, 1)
11: possibleConspirators.add(receiver)
12: end if

13: end for

14: if suspectedGroups.contains(possibleConspirators)) then

15: incrementGroupscore(possibleConspirators)
16: else

17: suspectedGroups.add(possibleConspirators)
18: setGroupscore(possibleConspirators, 1)
19: end if

20: end if

21: end for

22: for all verified transactions of coin as vt do

23: source = vt.source
24: if source has more outgoing than incoming transactions for coin then

25: setScore(source, coin.id, 3)
26: end if

27: end for

28: end for

The process of actually resolving the fraud is described in Algorithm 2: The marking of
multiple users as possible fraudulent requires the adoption of thresholds for the scores to
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Figure 3 Colluding cheaters (node 3 and 4) blame an honest user for the double spending by
forging history entries.

avoid bringing innocent users to justice. First, only if the score for one coin is above the
COIN-FRAUD-THRESHOLD (=2) for the user, he is regarded when reallocating the costs
of the excessive redemption (line 8). This means a user must be involved at least two times
into suspicious transactions before he is charged for a fraud. Users with a low score are
likely to be innocent while the probability of a fraudulent user is higher the more he is being
involved in unverified transactions for the coin.

Nevertheless a user whose score for all the coins is below the threshold could still be
fraudulent by just double spending each coin and hereby keeping a low score for each coin.
So the total score over all unverified transactions also has to be below a second threshold,
TOTAL-FRAUD-THRESHOLD (=4), before the user is marked as innocent (line 8). The
values for both thresholds provided good results, however, future work might show that there
are better settings. Generally higher values for the thresholds bear the risk of an increased
number of false negatives whereas lower thresholds increase the number of false positives.

After the broker’s detection of who of the users is fraudulent, he uses the scores of these
users to reallocate the values of the excessive redemption and debits their user accounts. The
amount a convicted user is held liable for depends on his score. So users that are more likely
to be cheaters have to pay more.

The broker maintains a list where he keeps a record of all frauds committed by the users.
When a user reaches a predefined limit he will be blocked out of the system. The blocked
users are regularly distributed to all other users, so a blocked user can not trade anymore
with the broker or any other users.

Note that Algorithm 1 can be easily parallized. This is important as checking the
transaction logs might become a bottleneck of the system. Future work will show whether
and how it is possible, to parallize or speed up Algorithm 2.

5 Evaluation

The evaluation of our approach was twofold: First, we examined how much energy is spent
for the actual payment. Related work states clearly, that systems based on hash functions
are cheaper than for example RSA signatures. Rivest et al. explain that hash functions are
about 100 times faster than RSA signature verification [24]. Still, it remains to show that
the energy cost of the incentive system is small compared to the resource sharing framework
itself. For this reason we did measurements to determine the additional energy overhead
caused by our incentive system.

Second, we analyzed how good the mechanism to detect fraudulent users actually works.
Both are critical issues with respect to user acceptance. The energy measurements were done
using a prototype whereas we did a simulative evaluation of the fraud detection mechanism.

5.1 Energy Consumption

The prototype [11] for measuring the energy overhead that is caused by the incentive system
consists out of two Nokia N810 devices. We implemented a resource sharing framework based
on OSGi [2, 23] and R-OSGi [22]. Resources and services that are supposed to be shared
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Algorithm 2 Algorithm to resolve fraud

1: //remove possibleConspirators from suspectedGroups if groupscore is below threshold
2: cleanSuspectedGroups();
3: for all coins in multipleRedeemedCoins as coin do

4: conspiracyDetected = false
5: totalScore = 0
6: fraudulentUsers = list of users with score > 0 for this coin
7: for all users in fraudulentUsers as user do

8: if getScore(user, coin.id) > COIN-FRAUD-THRESHOLD || getScoreForAllCoins(user) >
TOTAL-FRAUD-THRESHOLD then

9: score = getScore(user, coin.id)
10: if user is in suspectedGroups then

11: score = (number of possibleConspirators groups the user appears in for coin) * 3
12: conspiracyDetected = true
13: else

14: if conspiracyDetected && score < COIN-FRAUD-THRESHOLD then

15: fraudulentUsers.remove(user) // Delete innocent user when conspiracy is detected
16: score = 0
17: end if

18: end if

19: totalScore += score;
20: //User is below thresholds
21: else

22: fraudulentUsers.remove(user) // Delete fraudulent users below threshold
23: end if

24: end for

25: doubleRedeems = number how often this coin has been redeemed
26: ratio = doubleRedeems / totalScore
27: for all fraudulent users of coin as user do

28: valueToPay = round((getScore(user, coin.id) * ratio) + accRoundingError);
29: accRoundingError = ((getScore(user, coin.id) * ratio) + accRoundingError) - valueToPay;
30: end for

31: end for

as well as the broker and the software for doing the actual payments are implemented as
remotely accessible OSGi bundles. One of the devices runs a simple service that changes the
characters of a word from upper- to lowercase and vice versa. The service is advertised in a
wireless ad hoc network. The other N810 device acts as service consumer. It requests the
service and sends the needed number of digital coins to the service provider. The service
provider checks the validity of the payment and if there is no reason to complain it provides
the service. We used an SNMD [15] to measure the current drawn from the battery during
the process of providing the service and checking the validity of the coins. In each run of the
experiment the service was requested, provided and payed for 100 times. We conducted 10
runs of this experiment. The measured energy cost does not include the cost for redeeming
the coins. However, this occurs rather infrequently (e.g. once a month) compared to the
actual payment operations and thus it can be neglected.

As a reference point we repeated the entire experiment without doing any payment.
Figure 4 shows the electric charge that was drawn from the battery in these two experiments.
In average, checking the payment for valid coins adds an overhead in terms of energy of
about 3%. This is mainly due to a slightly longer runtime (in average 4.54%). Note, that the
relative overhead will become much smaller for services that consume more energy than our
modest dummy service. So the 3% overhead can be seen as an upper bound for the overhead
that is caused by our incentive scheme. The fact that there are even some runs with payment
that consume less energy than some of the runs without payment shows, that the overhead
of the payment system in fact is very small. Obviously it can be outweighed by other factors
that are not related to the incentive system, e. g.background processes scheduled by the
operating system or necessary retransmissions due to a busy WiFi channel.
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























   











 
 

Figure 5 Detection rate of single fraudulent
users.
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Figure 6 Detection rate of conspiratorial fraud-
ulent users.

5.2 Fraud Detection

The effectiveness of our technique for posterior fraud detection was analyzed in simulations.
The simulations were done with an event based simulator written in Java. In each run 100
participants did 1000 payments in total with a randomly chosen transaction partner. The
fraction of fraudulent users was set to 5, 25, 50 or 75 percent. In each configuration we did 10
runs with different random seeds. We did the entire experiment twice, once for the attacker
model of a single malicious user that tries to use his coins more than once, and a second
time for a more powerful attacker that is able to cooperate with other malicious users. Such
collusive participants can try to spend coins multiple times and both blame a third party,
that is actually innocent.

After each run the broker did its graph based fraud detection using the transaction logs
provided by the service providers and consumers. The results of the fraud detection process
were compared to the actual behavior of the users and each decision that was taken by the
broker was classified to be one of the following:

honest, correct: An honest participant was correctly detected as an honest user.
fraudulent, correct: A fraudulent participant was correctly detected as a fraudulent user.
honest, false positive: An honest participant was wrongly detected as a fraudulent user.
fraudulent, false negative: A fraudulent participant was not detected.

Figure 5 shows the results in case that fraudulent users act on their own and do not
collude. Our key finding from this result is that the number of malicious participants that
are not detected by the broker is close to zero (0.6 % in average). As malicious users hardly
have any chance to get away without being punished there is only little appeal to behave
badly.

Figure 6 shows even better results for groups of collusive cheaters. Fraudulent users
colluded in teams of two, spent coins multiple times and blamed a third, innocent user for it.
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They are detected, because they appear several times as a suspicious group, according to the
assumption presented in Section 3.1. The broker and its detection mechanism work pretty
well. Less than 5 % of the users are classified wrong, even in the worst case scenario with
75% of fraudulent users. A substantial amount of wrong classifications is due to colluding
malicious users that did not spend a coin twice but were involved in blaming an innocent
user. Such users are often detected as cheaters and this decision is considered to be a false
positive, here. If this was not the case the rate of wrong detections would even be lower
(2.4 % of all users in the case of 75 % fraudulent users). Relating to the number of fraudulent
users this means that 3.2 % of the cheaters get away.

6 Conclusion and Outlook

In this paper we argued that resource sharing systems for MANETs lack an incentive system
tailored to this specific use case. Our approach provides the means to recompense service
providers for the energy they spent on service provision. As neither public key cryptography
nor communication with a third party is needed on each payment we could eliminate two
major drivers of energy costs. This results in only very little additional energy consumption
(< 3 %) caused by our incentive system as shown by prototype measurements. Although the
abandonment of powerful cryptographic tools and the reuse of currency create opportunities
for abuse we showed through simulations that almost all malicious users can be tracked down
by our system for posterior fraud detection by an off-line broker. In a worst case scenario
with 75 % of the users being cheaters only 3.2 % of them get away without being caught.
This proves that it is possible to build an incentive system that suites the needs of resource
sharing in MANETs: being cheap with respect to its energy consumption and still effective
on preventing abuse.

In the near future we plan to compare the energy consumption of our incentive system
to solutions that apply digital signatures for payment transactions. Further we want to
investigate on how to further decrease the number of false positives in our fraud detection
system.
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Abstract

In this paper we present a novel peer-to-peer system specifically designed to support the unique
properties of traffic information systems. We discuss important design decisions, such as update
strategies and algorithms for dynamic vehicular route planning. Our system is then assessed
using a combination of network (OverSim/OMNeT++) and road traffic (SUMO) simulators. We
discuss the network load required by our system and show the benefits—in terms of travel time
savings—that users can expect from it.

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.121

1 Introduction

Traffic information systems (TIS) provide navigation units with information about current
traffic conditions and thus enable dynamic routing decisions. Research in this area has
investigated all flavors of communication as a basis for TIS applications, ranging from
VANET-style direct communication [9,10,22] to infrastructure-based approaches using either
a centralized server [19] or a peer-to-peer network [17]. The focus of existing work, however,
has mainly been on the technical feasibility of the proposed solutions, e. g., regarding the
constrained bandwidth and connectivity of VANETs. Feasibility of a technical solution is
certainly an important point. But, as far as market introduction is concerned, it is even more
important to show that such a system, when in place, can really bring benefits to its users.

Given this background, the contribution of this paper is threefold. We first introduce
a novel peer-to-peer network structure that is particularly well suited to managing traffic
information data. For our approach we rely on infrastructure-based cellular communication,
like for example UMTS. We therefore assume that an IP-based communication channel is
present between the cars. Car navigation units participating in our system use this channel
to set up a fully distributed overlay network, over which they cooperatively share information
about the current traffic situation. As a second contribution, we extend this peer-to-peer
structure by a publish/subscribe mechanism to handle updates efficiently, and show how
dynamic routes can be calculated efficiently. Finally, and potentially most importantly, we
investigate the benefit—i. e., the travel time reduction—that a user can expect.

The remainder of this paper is structured as follows: we first review related work on both
cooperative traffic information systems and peer-to-peer networks in Section 2. Following
this, in Section 3, we introduce a novel peer-to-peer structure that has been specifically
designed for storing and retrieving TIS information. We then show how the handling of
updated information can be realized efficiently by means of a publish/subscribe paradigm in
Section 4. The evaluation of the performance of the proposed peer-to-peer structure and an
assessment of the benefits for participants of our system will be presented in Section 6.
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2 Related Work

2.1 Cooperative Traffic Information Systems

Traffic information systems are systems for collecting and providing information about the
current traffic situation in a road network. They constitute the basis for dynamic car
navigation, i. e., navigation avoiding traffic jams and selecting the fastest route with regard
to current traffic conditions.

Pfoser et al. [13] used historical floating car data (FCD) extracted from recorded move-
ments of a taxi fleet as a basis for their analysis. The data were aggregated over small time
intervals. The work is based on the assumption that there exists a strong correlation between
historical data (already collected and analyzed) and future traffic conditions: knowing the
current situation and historical data it is then possible to estimate the traveling times in the
future. However, this assumption does not necessarily hold. This was observed, for instance
by Yang et al. [23]. They likewise used FCD collected by taxis and treated them as if they
were current information in a traffic information system. They demonstrated that the routes
originally chosen by the taxi drivers were sub-optimal in most of the cases. Further, the
authors also determined that historical information about traveling speed often deviates
widely from real-time data. This motivates the use of a real-time traffic information system.

In order to gain real-time traffic information, communication is required. In cooperative
traffic information systems, the data are collected by the system users themselves: cars make
observations on current traffic conditions and share them. Ideas to realize such systems span
a wide range. On the one hand, fully distributed approaches based on local, immediate
wireless communication via vehicular ad-hoc networks (VANETs) were discussed, including,
e. g., SOTIS [22] or TrafficView [10]. Such approaches, however, inevitably suffer from the
inherent scalability constraints [18] and limited connectivity [9] of VANET communication.

Therefore, alternatives based on mobile Internet access and centralized servers [19] have
been proposed. The main drawback of this approach is that significant resources in a central
location are required, and that the central server constitutes a bottleneck or even a single
point of failure. Furthermore, all the data that is cooperatively collected by the users are
put in the hands of a central (and typically commercial) operator—a fact that might not
be desirable and that contradicts the cooperative nature of the application. By using a
peer-to-peer overlay it is possible to overcome these issues and to preserve the benefit of
decentralization provided by VANETs, while at the same time making use of the good network
service of infrastructure-based (cellular) communication. We first put this idea forward
in [16]. Subsequently, there has been a first implementation: in [17], where we proposed to
adjust the CAN distributed hash table (DHT) [14] to store and retrieve traffic data more
efficiently. In the paper at hand we go a significant step further: we propose an overlay that
has been specifically tailored to the application’s key space structure and look-up pattern.

2.2 Peer-to-Peer Networks

Due to their inherent scalability, peer-to-peer networks are commonly viewed as a solid basis
for many distributed applications. The work in this area often focuses on optimizing the
independent retrieval of data associated with a single looked-up key—the classical setting
of a DHT. However, a traffic information system typically generates updates and queries
regarding multiple keys that are related to each other. Our work therefore focuses on how
to design peer-to-peer networks that exploit the application-level knowledge about these
dependencies in order to store and retrieve the data more efficiently.
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Figure 1 Minimal bounding box containing planned route (Route 66 from Chicago to L.A.).

Among the subjects discussed in the peer-to-peer community, range queries are probably
closest to what we do in our work. The general idea of range queries is to efficiently retrieve
all values that are associated with a range of keys. This is a hard problem, since most
peer-to-peer networks use hashing to map keys to peers. Hence, without any specific support,
a range query would result in independently querying all key values in that range. A good
overview of search methods typically employed in peer-to-peer networks including a discussion
of range queries is given in [15].

The problem we face in our work is quite different from requesting all values in a given
range. We need to query keys where we know—on the application level—how the keys are
related to each other, i. e., how the individual road segments are connected in the street
graph. The difference can be best shown through an example. Imagine a traffic information
system relying on two-dimensional range queries and a driver which wants to drive from
Chicago to Los Angeles along the famous Route 66. Before the journey she wants to be sure
that the current traffic conditions are sufficiently good to enjoy the trip, so she generates
a query for the traffic information system to retrieve all relevant measurements. With a
typical interval-based range query system, this would encompass all the information for the
two-dimensional “range” between Chicago and L.A. (Fig. 1). This would include a huge
amount of data that are not relevant, like parallel routes, routes heading in the opposite
direction, and so on. Our work, in contrast, takes full advantage of the information provided
by the road network itself to query only the required data effectively and efficiently.

3 Peer-to-Peer Network for Traffic Information Systems

As a basis of our work we assume that each participating navigation unit has access to a
street map that provides information on road segments and how they are connected to each
other. A road segment is a part of a road delimited by two consecutive junctions. Each
road segment is uniquely identified by a globally known ID, which will be used as a key in
the peer-to-peer network. In the following, we thus use the terms “key” and “road segment”
interchangeably.

Traffic information applications differ in some significant aspects from most “classical”
peer-to-peer applications like file sharing. In particular, this holds for the very specific
request and update pattern. Individual overlay nodes access information about a limited,
contiguous part of the road network between their position and the planned destination.
This characterizes the subset of the key space a given overlay node is interested in, and thus
the interrelation between the queried keys. An important observation that constitutes the
basis of our approach is that the organizational structure of the data in a traffic information
system is a graph: the street map. Information about the current traffic situation is always
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associated with a road segment, i. e., with an edge in this graph. The technical challenge
tackled here is to store this graph in a distributed fashion in such a way that typical queries
can be served quickly.

3.1 Overlay construction

In our design, each peer—that is, each car navigation unit currently participating in the
system—is responsible for one part of the road network, i. e., for one sub-graph. This
sub-graph need not be close to the car’s current geographical position (very much in contrast
to the situation in VANETs, immediate physical proximity of communication partners brings
little to no benefits in cellular networks); in particular, the responsibility zones do not change
due to the cars’ movement, but only when peers join or leave. A peer stores the measured
data for the road segments it is responsible for, and makes them available for other peers.

Initially, the overlay structure consists of only one peer which is responsible for the whole
street map. In order to join the overlay, a new peer obtains the address of at least one active
peer by some arbitrary bootstrapping mechanism, and sends a join request to a randomly
picked peer. The contacted peer splits its sub-graph and hands over one half to the newly
arriving node, along with the stored data for the respective keys.

In the next section we will describe how a graph can be divided between peers. For the
moment let us assume that there exists an algorithm which takes a graph as an input and
bisect it into two disjoint and roughly equally sized partitions. The further development of
the peer-to-peer structure is a sequence of join and leave operations of the peers, during
which sub-graphs are split and re-joined. Each peer maintains overlay links to those peers
managing a partition connected to the peer’s own sub-graph in the street graph, i. e., to those
peers responsible for neighboring roads. These overlay links are used for routing queries: in
essence, queries follow the structure of the road network, which is resembled in the overlay.
The information on the relevant neighbor peers, to which a newly arriving node can then set
up overlay connections, is exchanged during the join operation.

3.2 Graph partitioning

In order to realize an overlay as outlined above, we need a mechanism to partition the street
network graph and to dynamically assign a sub-graph to each overlay node. Our guideline
for this process is to keep keys preferably within one partition if they are often requested
together: in our application, cars request information about contiguous routes, so we should
keep connected road segments close together in the overlay to speed up typical queries.
Consequently, this boils down to a graph partitioning problem: dissecting the graph into a
number of (almost) equally sized disjoint sub-graphs, while cutting as few edges as possible.

Given a graph G = (V, E) with n vertices V , edges E, and weights wi,j > 0 for (i, j) ∈ E,
the general graph partitioning problem is to divide the original graph into k (approximately)
equally sized subsets V1, . . . , Vk such that

1. ∀1 ≤ p ≤ k : |Vp| $ n/k,

2. ∀1 ≤ p, q ≤ k : p %= q ⇒ Vp ∩ Vq = ∅, and

3.
⋃

p=1,...,k Vp = V ,

and the total edge cut

T :=
∑

(i,j)∈E,i∈Vp,j∈Vq,p "=q

wi,j

is minimal. Here, we will only need the case k = 2, i. e., bisecting into two partitions.
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Figure 2 A street network graph with four nodes and its partitioning tree.

It is known that optimal partitioning is NP-hard. Unfortunately this holds true even if
all edge weights are equal, if k is small (even if only a bisection of the graph is sought), and
if the maximum vertex degree is limited [2]. However, a number of heuristics for finding
good graph partitions have been proposed, on which we can build. Here, we use geometric
partitioning techniques [5] and graph growing methods [6]. Both algorithms can be refined
with an algorithm devised by Kernighan and Lin [7]. For more details we refer the reader to
the respective publications.

The tree of graph partitions that is traversed as nodes join and leave the network is
exemplarily depicted in Fig. 2 for a graph with four nodes in total. Each internal node in
the tree has two child nodes resulting from bisecting the corresponding sub-graph. This
hierarchical partitioning of the road network is calculated in advance and is stored with the
road map data, so that pre-computed bisections of all sub-graphs are readily available to
all peers. Therefore, it is not necessary to perform the complex computations for the above
mentioned heuristics on the (computationally limited) peers while the system is running.

3.3 Requesting data for a single, arbitrary key

A peer that queries a given key (road segment) first locates it on the street map. It then
uses a shortest path algorithm on the local street map data to find the shortest path from
any node in one of its neighbors’ sub-graphs to the sought-after segment.1 This identifies
the neighbor that minimizes the remaining distance (in terms the road network graph) to
the destination key. This neighbor is selected as the next hop for the query. The look-up
message transmitted to that neighbor includes the sought-after key and the address of the
node initiating the query. The same process is then repeated by each peer receiving the
query, until the destination key is reached. Therefore, the query essentially travels across
the road network graph on its way to the peer responsible for the sought-after key. Once
that peer has been reached, it replies directly to the query originator. A requesting peer
is provided with a record that describes the current traffic condition on the queried road
segment. This record is generated by the peer that is responsible for the road segment, based
on the information that has previously been uploaded by other peers. It could, for instance,
characterize the average value and the gradient of the driving speeds recently reported for
the segment.

1 This requires only one run of Dijkstra’s algorithm (or of another shortest path algorithm).
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3.4 Requesting a set of correlated keys

Finding the data for a single, arbitrary key is an important function of the overlay; however,
as argued before, the efficient processing of queries for sets of consecutive keys is much more
important, since it clearly dominates the request pattern. The specific strength of our overlay
is the handling of such queries.

In order to obtain information on a set of consecutive road segments, the query originator
first needs to locate a peer responsible for one of the keys. This peer—it might be the one
that is responsible for the starting point of a queried route—can be found as described in
the preceding subsection. The list of all searched segments is included in the query that is
sent to this first node. Because the employed graph partitioning algorithms preferably keep
related segments (that are often requested together) within one partition, the first node will
often already be able to provide information on more than one segment. The remaining
request—with the segment IDs that it cannot answer itself—is forwarded to the respective
neighbors. These answer their “share” of the request and then proceed analogously until all
the requested information has been retrieved. The query thus, in some sense, follows the
queried route through the overlay. Since our overlay is built in such a way that consecutive
road segments are either handled by the same peer or by peers between which a direct
connection exists, each hop in the overlay yields information on at least one of the queried
keys—and typically more than one.

3.5 Leave and recovery

When it comes to maintaining the overlay we stay close to concepts presented so far in the
peer-to-peer community. In particular, we adapt the respective mechanisms from the CAN
overlay [14] for join, leave, and recovery from node failures. They are well understood and,
though originally designed for a hierarchical subdivision of a Cartesian space, they can quite
easily be adapted to a hierarchically bi-partitioned graph. We only outline the mechanisms
here, because the details are equivalent to what has been discussed for CAN.

For failure detection, peers exchange periodic hello messages with their neighbors. If a
peer misses a number of periodic hellos from one of its neighbors, a node failure is assumed
and a recovery strategy is utilized to restore a consistent overlay structure. Leaving peers
and recoveries from peer failures can be handled directly if there is a “sibling peer” that is
responsible for the full other half of the sub-graph from which the leaving peer’s responsibility
zone had previously been obtained through splitting. In that case, the sub-graphs can easily
be merged, handing over the responsibility to the remaining sibling. If there is no sibling node
(that is, if the sibling sub-graph has been further partitioned), a leave request is sent to the
smallest known neighbor. It will become responsible for both partitions for a short time and
will try to resolve the merging either by accepting a join or by employing a defragmentation
mechanism.

4 Publish/Subscribe

The basic functionality of a traffic information system is to provide information on the
current conditions on a given route. However, the situation on a given route is dynamic. In
order to keep up-to-date regarding the traffic situation, the relevant data have to be updated
periodically. If periodic requests are used, this could be a waste of resources: when the
situation does not change, redundant information is transmitted. We mentioned the idea to
use a publish/subscribe approach as an alternative in prior work [16], but until now we did
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not investigate it in detail. In a publish/subscribe-based system, instead of repeating the
request, the participants subscribe once for the selected keys. They are then actively informed
by the overlay if relevant changes occur. We will now describe how we have implemented this
idea for a TIS. For a general discussion of using publish/subscribe in peer-to-peer networks,
we refer the reader to [4].

Using the taxonomy from [4], we use a peer-to-peer content-based publish-subscribe
system with a hierarchical multicast topology. Peers implicitly subscribe for road segments
when they request data about them while performing the route planning. Subscription
request are thus regular query packets, and they are directly answered with the requested
data. In addition to this immediate response, though, the responsible peers also keep track
of a list of all peers that subscribed for the segment. Thus, each peer is a so-called broker for
the data concerning the road segments it manages.

The broker of a road segment monitors the incoming data and determines if the traffic
conditions on that segment have changed significantly. This is the case when the travel time
needed to traverse the road segment changes by more than a given factor compared to the
value reported previously (in our evaluation we used a deviation of more than 10 %).

To reduce the burden of informing all subscribers, the broker divides the group of peers
which shall be informed into several equally sized subgroups. Only one representative out
of each such group is directly informed. The messages, beside the actual notification, also
contain the addresses of further peers which shall be informed. Each representative will then
forward the notification to those peers. We consider more elaborate multicast schemes to be
an orthogonal direction of research compared to our own work. We plan to use them when
they turn out to be beneficial to the overall performance of our system.

For the subscription management we employed a soft-state approach: subscriptions have
limited time-to-live after which they are removed from the system. When a broker leaves the
network it hands over the list of subscriptions similarly to the way it hands over the traffic
data it was responsible for.

5 Dynamic Vehicle Routing

The process of dynamic routing of vehicles encompasses two phases. First, an initial route
to the planned destination has to be found. Second, while the vehicle follows this route,
updates on the traffic condition may cause it to change.

5.1 First routing decision

As far as classical navigation is concerned, routing algorithms like Dijkstra’s shortest path
algorithm are used. Unfortunately, though, these algorithms require information on all
edge weights. While the peer-to-peer traffic information system can provide the navigation
unit with data on any road segment it asks (or subscribes) for, the retrieval of all available
measurements each time a routing decision has to be made is not feasible. Thus a challenge
is to select and subsequently request only the data crucial for the routing decision. For that
purpose we developed two strategies.

In the first one, the navigation unit determines the static (not considering the current
traffic conditions) shortest path to the planned destination. Thereafter the information about
the current traffic condition on this route is requested and the local weights for that route are
updated accordingly. The static values in the map are based on the maximum allowed speed,
so these travel times are lower bounds for the real-time values. The returned information can
thus only increase the estimated travel time along the calculated route. Hence, the routing
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is started again after the information has been received, now with static travel times for
those route segments not yet queried (those that have not been on the static shortest path),
and with real-time travel times for those route segments that have been on the calculated
route. If a new shortest path is found, the respective missing data is requested. The process
is repeated until the shortest path contains only segments for which information is available.
We call this the greedy approach. Because the static travel times are lower bounds, this
algorithm is guaranteed to find the route with the currently lowest travel time based on
real-time data—but it may happen that a huge amount of data needs to be requested in
many iterations until the algorithm terminates. In practice, it is therefore advisable to limit
the number of iterations (here, we use at most five rounds).

An alternative strategy defers the communication until the set of segments that should be
queried is fully known. First a set of the static n fastest routes are determined by means of
a modified Dijkstra Algorithm [3] (here, we use n = 5). For these routes the dynamic data is
requested. As soon as the data are available, the fastest route out of that subset is selected.

5.2 Keeping in touch with the development of the situation

Since the traffic conditions change over the time, the navigation units need to update their
information in order to check if the original route decision is still optimal. This is done
either by periodically requesting the data for the current route (in our simulations, every
three minutes) or by subscribing for the data and waiting for notifications as described in
the previous section. When new data becomes available, the route has to be adjusted. This
is done in a similar manner as the first routing decision described above. In order to avoid
an overreaction, we do the following: if a better alternative route is found when the car is
already driving, it will not necessarily change its route. Only when the expected travel time
savings exceed some predefined threshold (we use 10 % here), the current route is changed.

6 Evaluation

6.1 Simulation setup

We implemented the proposed algorithms and protocols in the peer-to-peer simulator Over-
Sim [1], which we coupled with the road traffic simulator SUMO [8]. The latter was responsible
for generating car movements on a real street map of the city of Düsseldorf, extracted from
the OpenStreetMap project [12]. We focus on the city scenario as there are number of
working solutions for a dynamic navigation on highways. Our main motivation for using
a fully-fledged road traffic simulator like SUMO was to obtain realistic query and update
patterns. SUMO also offers a convenient way of interacting with the simulation through its
TraCI interface [21]: not only is it possible to get information about the current position
of a given car, its planned route, etc. but also to change the routes of individual cars. We
extended this interface by implementing some new functions. In particular we integrated the
extended Dijkstra’s algorithm, as described in Section 5, in SUMO. The results of the routing
can now be fetched via TraCI. We coupled cars in SUMO with OverSim peers: when a
participating car sets off on its journey we created a new peer, upon arrival at its destination
the peer left the overlay. It is possible to limit the number of cars accessible via TraCI by
defining a penetration ratio. We used 20 % penetration in our simulations, resulting in up to
1 000 peers present in the simulation. The simulation time was 2 400 seconds of road traffic
for each simulation run. At the beginning of the simulation, all initially present cars will join
the overlay almost at the same time. Furthermore, at the very beginning of the simulation,
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there will be no measurements available in the system. Such a situation will obviously not
occur in the real world, where cars join and leave continuously. We therefore removed the
initial seconds of simulation time from our evaluations, giving the system time to reach a
stable state and gather enough data for biased routing decisions. Stable state does not mean
that the set of participating peers is constant, but rather that the overall number of peers
stays more or less the same: new peers join the network and others leave the network as
soon as they reach the planned destination.

The communication between the peers was realized in OverSim (via the underlying
network simulator OMNeT++ [11]). As soon as a car traversed a road segment it contributed
a measurement of its travel time along that segment. Such a strategy is often utilized in
traffic information systems, but may lead to the following problem: a traffic jam is only
reported after the relevant road section has been completely traversed by a participating car.
This could potentially take a long time, depending on the road condition and the length of
the road segment. We therefore also used triggered updates: each car estimates the travel
time along each segment it is entering, and if the traversal already took much more time
before the segment is left, severe congestion is inferred and a triggered update is sent.

6.2 Graph-based peer-to-peer overlay

We first compared the performance of the graph-based peer-to-peer structure with the general-
purpose DHT Chord [20] using periodic requests. The network performance of both systems
was measured by the number of overlay hops needed to answer a query completely, as shown
in a cumulative distribution plot in Fig. 3a. It can be seen that a graph-based peer-to-peer
network improves the hop-count significantly, yet its performance depends on the graph
partitioning algorithm employed. The best choice is the algorithm based on geometric mesh
partitioning [5] combined with the Kernighan-Lin algorithm [7] (labeled KL-GM in the plot).
Simple graph-growing partitioning combined with Kernighan-Lin (KL-BF) performed much
worse, but still significantly better than Chord. An important result of these simulations
is that a general-purpose DHT tuned to handle independent queries for single keys cannot
keep up with overlays preserving the structure of the data.

We were also interested in the bandwidth usage of our approach in order to see whether
it can be realized over existing mobile access technologies. Fig. 3b shows the per-peer
bandwidth required for maintaining the overlay and transporting the application data when
the alternative routes approach with n = 5 alternatives is used. The error bars show
95 % confidence intervals. It can be seen that, on average, about 800 bytes per second are
required—this can easily be achieved even with GPRS.

6.3 Dynamic Routing

Next, we estimated the potential benefits offered by a traffic information system. We
specifically compared the results achieved by different routing algorithms: greedy and
alternative routes as described in Section 5 versus routing decisions taken without information
about the current traffic conditions. Again, periodic updates were used. The results of our
experiments are depicted in Fig. 4a, which shows the cumulative distribution of the relative
travel time changes: by which fraction are travel times reduced or increased if drivers follow
the recommendation, compared to their travel time if routing based on static information
is used? As the plots show, both the greedy and the alternative routes algorithm yield
significant improvements for many of the drivers, in relation to the travel times with static
routes. The differences between the two request algorithms, though, are negligible.
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Figure 3 Performance of the street graph-based overlay.
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Figure 4 Comparison of different vehicle routing algorithms.

However, the greedy algorithm causes significantly higher bandwidth usage in the network.
To illustrate this we summarized the size of all packets sent by the application in each
simulation second. The load over time plot including 95 % confidence intervals is presented
in Fig. 4b. The greedy algorithm requests more data than the alternative routes approach
because the measured travel times provided by the cars are typically significantly worse than
the static values, so each iteration in the greedy algorithm generates a route that is largely
disjoint from the previously calculated ones, and requests information on it. The routes
produced by the alternative routes algorithm, on the other hand, were often very similar to
each other, and thus resulted in requesting information about a lower number of keys.

We were also able to observe an interesting interrelation between the changes in the road
traffic due to the TIS and the overlay structure: due to the dynamic routing decisions, many
formerly unused road segments were traversed. This, in turn, increased the fraction of road
segments about which data was available in the system substantially. As a consequence,
we are convinced that any simulation environment which does not include the feedback
loop between application and network (i. e., re-routing of vehicles based on the collected
information) is unlikely to capture the full complexity of this environment.
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Figure 5 Comparison of publish/subscribe and query-based traffic information systems.

6.4 Publish/Subscribe

The integration of publish/subscribe aimed at reducing the bandwidth usage in network. The
difference in bandwidth usage between systems using periodic queries and publish/subscribe
is depicted in Fig. 5b. Especially in combination with the greedy algorithm to determine
routes, a substantial difference can observed. These bandwidth savings, however, go hand
in hand with a slight degradation in route quality. This is due to the fact that the traffic
conditions on a segment have to change significantly before this change is reported to the
subscribers. For our choice of the threshold the impact can be seen in Fig. 5a. It should be
noted that this is a trade-off: for both periodic requests and publish/subscribe, bandwidth
can be saved by accepting less accurate road traffic information.

However, an interesting general effect which we observed is that there is a stabilizing
property of the traffic information system, which in turn reduces the bandwidth used for
notifications: as more vehicles follow the recommendations, traffic jams are reduced and the
road network is better utilized, so that less notifications are necessary.

7 Conclusions

In this paper we presented a novel graph-based peer-to-peer network which takes into account
the special properties of traffic information systems. We also reported on first efforts to use
a publish/subscribe scheme to reduce the overall network traffic. By employing dynamic
routing of vehicles we were able to investigate the benefit that a user can expect from using
this system and were able to identify interesting effects regarding the interplay between the
overlay structure and the real-world traffic that is influenced by the application.
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Abstract

Measuring the per-flow traffic in large networks is very challenging due to the high performance
requirements on the one hand, and due to the necessity to merge locally recorded data from
multiple routers in order to obtain network-wide statistics on the other hand. The latter is non-
trivial because traffic that traversed more than one measurement point must only be counted once,
which requires duplicate-insensitive distributed counting mechanisms. Sampling-based traffic
accounting as implemented in today’s routers results in large approximation errors, and does
not allow for merging information from multiple points in the network into network-wide total
traffic statistics. Here, we present Distributed Probabilistic Counting (DPC), an algorithm to
obtain duplicate-insensitive distributed per-flow traffic statistics based on a probabilistic counting
technique. DPC is structurally simple, very fast, and highly parallelizable, and therefore allows
for efficient implementations in software and hardware. At the same time it provides very accurate
traffic statistics, as we demonstrate based on both artificial and real-world traffic data.

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.133

1 Introduction

In this paper, we consider the problem of measuring network-wide flow sizes in high-speed
network environments. We are interested in determining how many distinct packets of
each given flow traversed a network during some time period. These data are relevant, for
example, in the context of network usage monitoring, network layout optimization, or data
traffic accounting. Gathering such statistics is not straightforward, though, if the considered
network has a non-trivial topology: if there is no single, central point in the network that will
“see” all the traffic, it is necessary to take measurements at multiple different points to obtain
a complete picture. As packets may enter and leave the network at different points, and may
take different paths through it, a packet may traverse multiple measurement points. Then,
the question arises how to merge the individual routers’ measurements without counting
packets that have been observed at multiple routers more than once.

The reasons that make this problem so challenging are twofold. First, solving it requires
distributed duplicate-insensitive counting, which is algorithmically challenging: if router
A observed 500 packets of flow x, and router B saw 800 packets of this flow, how can we
determine how many distinct packets of this flow have traversed the network? Did all of
the 500 packets at A also traverse B, or did B just see a subset of them? Or are these two
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sets of packets completely disjoint, so that there were a total of 1,300 distinct packets of
flow x the network? Second, it must be taken into account that traffic measurements in
high-speed network environments are a highly performance-critical task. For a single 40 Gbps
link, the available time for processing a minimum-size IP packet is only 12 ns. Switching
and routing equipment with a potentially large number of high-speed ports cannot provide
enough processing power and memory bandwidth to maintain exact per-flow statistics—at
least not at reasonable cost [14, 21, 29, 22]. As Gilder’s law states, network bandwidth
increases more rapidly than processing power, so the situation is getting worse and worse.

Here, we propose a technique which is able to perform distributed, duplicate-insensitive
traffic accounting with extremely low effort per processed packet. Our technique—termed Dis-
tributed Probabilistic Counting (DPC)—uses probabilistic techniques to obtain approximate
flow sizes. To this end, DPC builds upon ideas developed in our Probabilistic Multiplicity
Counting (PMC) algorithm first described in [22]. However, while PMC allows for high
performance traffic accounting at a single measurement point with very high accuracy, it
makes heavy use of random numbers and, as a result, does not allow to merge traffic statistics
from multiple routers in a duplicate-insensitive manner. DPC avoids these random decisions
entirely and is able to perform duplicate-insensitive merging of distributed measurements.
This ability is the key distinguishing feature of DPC.

The probabilistic approach employed in DPC deliberately waives perfect accuracy and
accepts an (adjustable) estimation error. In turn, it becomes possible to perform distributed
duplicate-insensitive measurements with minimal computational and storage requirements:
DPC is able to record information on a passing-by packet by setting only one single bit in a
bit field. This operation can be performed in constant time, without loops or conditional
branches in the code, and with write-only memory access. It is therefore ideally suited for
pipelined and parallelized implementation, and can also easily and efficiently be realized in
hardware. We will first focus on a basic DPC variant which can count the number of packets,
and then also discuss how to measure the total size of the packets in a flow.

The remainder of this paper is structured as follows. We first discuss related work in the
area of traffic monitoring in Sec. 2. Subsequently, we derive the Distributed Probabilistic
Counting algorithm step-by-step from its basic building blocks in Sec. 3. We evaluate DPC
with both artificial network traffic patterns and based on real-world network traces in Sec. 4,
before we conclude this paper with a summary in Sec. 5.

2 Related Work

Due to its high practical relevance, the topic of flow measurement has attracted a lot of
attention in recent years, and many approaches have been proposed. However, they typically
cannot be used for duplicate-insensitive multipoint measurements. This fundamental constrain
applies to deterministic techniques like [27, 26, 23], and likewise to packet sampling based
network usage data generation and collection approaches like Cisco’s NetFlow [2], IPFIX [29],
sFlow [18], Sampled NetFlow [3], Sketch-Guided Sampling [20] or ANLS [15]. The well-known
“Sample-and-Hold” approach [9] and its successors [25, 19, 6] reduce the storage overhead at
a single measurement point, but can again not easily be generalized to duplicate-insensitive
multipoint measurements. The same holds true for hash-based and (pseudo-)randomized
traffic accounting techniques including Spectral Bloom Filters [4], Count-Min Sketches [5],
Counter Braids [23], MRSCBF [7], and also for our own prior work PMC [22].

The lack of techniques to merge traffic statistics from multiple measurement points into
a network-wide per-flow total has previously been recognized as a problem. Nevertheless,
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there is only one existing approach that is able to fill this gap: hash-based sampling [11].
This technique builds upon existing sampling techniques as employed in, e. g., Sampled
NetFlow. These standard techniques either record every n-th packet passing by, or they
randomize the process and sample each packet with probability 1/n. Based on the sampled
subset of packets at a measurement point, the total amount of data is estimated. However,
since only a (random) subset of the packets is considered, duplicate-insensitive merging of
observations is not possible: different measurement points will draw different sample subsets
of the passing-by packets, so one cannot reliably decide if two measurement points have seen
entirely different sets of packets, or whether the same set of packets passed by and the nodes
have just drawn different sample subsets from it.

Hash-based sampling overcomes this problem by using a hash value over the packet
contents as a basis for the sampling decision. For instance, a packet might be sampled if
its hash value modulo n is zero, which results in one out of n packets being sampled in
expectation. This has the benefit that a packet will either be sampled at all measurement
points it traverses, or at none of them, so that sampled packet sets from distinct measurement
points can be compared. However, this approach exhibits a number of drawbacks. First, it
shares the well-known granularity drawbacks of all sampling-based approaches [8, 17, 1, 9].
Moreover, in order to allow for duplicate-insensitive merging, it is necessary to collect and
store additional payload data for each sampled packet, which implies significant storage
requirements at the measurement points. Our proposed algorithm DPC is structurally so
simple that it can process each packet, so sampling is not required. It does also not need
to collect any per-packet information—and still allows for duplicate-insensitive merging of
multiple measurement points’ data.

3 The Distributed Probabilistic Counting Algorithm

Distributed Probabilistic Counting (DPC) builds upon the concept of FM sketches [10]
to allow for efficient duplicate-insensitive counting. On this basis, it is able to process a
traversing packet in O(1) time. In the course of this section, we will first recapitulate the
essential prerequisites for understanding DPC, which in particular includes a brief outline of
the key ideas behind FM sketches. Subsequently, we discuss how distributed network flow
size measurement can be accomplished on this basis.

Before we dive into the details of the algorithms, though, it is helpful to concretize the
notion of a “flow” that we are going to use throughout this paper. By a flow we denote a
subset of the packets in the network that are characterized by some common criterion. Each
packet belongs to exactly one flow. For instance, a flow might consist of all the packets
originating from the same source address, belonging to the same protocol, or traveling
between the same pair of communicating hosts or subnets. The techniques proposed in this
paper are independent from the specific criterion used to characterize the flows, as long as
it is possible to determine the flow from the packet with little effort. For most practical
purposes, determining the flow ID of a given packet does not incur more effort than to extract
one or two header fields. This is trivial in both software and hardware. In the following, we
may therefore assume that the flow ID of each processed packet is known.

3.1 FM sketches

FM sketches have been introduced by Flajolet and Martin to estimate the number of distinct
elements in a multiset. Determining this number exactly requires Ω(n log n) time for a
multiset of size n; FM sketches provide a good estimate in linear time, i. e., with constant
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effort per element. Before we step into the details of their application to network flow
measurement, we briefly summarize the key concepts of FM sketches; a much more detailed
description and analysis can be found in Flajolet and Martin’s original publication [10].

An FM sketch is based upon a bit field S = s1, . . . , sw, w ≥ 1 and a hash function h1

with geometrically distributed positive integer output, where the probability that h1(x) = i
(i ≥ 1) for any randomly picked element x equals P (h1(x) = i) = 2−i. The bit field S is
initialized to zero. When an FM sketch is used to estimate the cardinality of a multiset M ,
each element x ∈ M is hashed using h1. Each output of h1 is interpreted as an index in S,
and the corresponding bit sh1(x) is set to one (regardless of its current value). This leads to
a bit pattern emerging in S, which, due to the geometric distribution of h1, will typically
have many 1-bits on the left hand side and many 0-bits on the right hand side.

Flajolet and Martin found that a good estimate for the number of distinct elements can
be obtained from the length of the uninterrupted, initial sequence of ones in S, i. e., from

Z (S) := min {i ∈ N0 | si+1 = 0} . (1)

The estimate C is calculated from Z as

C =
2Z

ϕ
where ϕ ≈ 0.77351. (2)

The variance of Z(S) is quite significant, and thus the approximation is not very accurate. This
can be improved by using multiple sketches in parallel to represent a single value, essentially
trading off accuracy against memory. The respective technique is called Probabilistic Counting
with Stochastic Averaging (PCSA) in [10]. With PCSA, each element or packet is first mapped
to one of the sketches by using a uniformly distributed hash function h2, and is then added
to this (and only this) sketch.

If m sketches are used, denoted by S1, . . . , Sm, then the estimate for the total number of
distinct items added is given by

C(S1, . . . , Sm) := m ·
2
∑

m

i=1
Z(Si)/m

ϕ
. (3)

One can identify a PCSA set with an m × w matrix, where each row is a standard FM sketch.
Upon addition of an element, a uniformly distributed hash function h2 selects one row, and
a second, independent, geometrically distributed hash function h1 picks one column. The bit
located at these coordinates in the matrix is then set to one.

For a sufficiently large number of elements, PCSA yields a standard error of approximately
0.78/

√
m [10]. Increasing m thus results in a higher estimation accuracy. Note that increasing

m also increases the total number of 1-bits in the PCSA matrix for a given, fixed multiset;
this trait will be important for understanding DPC’s parameter tradeoffs discussed in our
evaluation. For very small element counts in the order of m or below, there are well-known
initial inaccuracies. These can be partially alleviated by switching to a different evaluation
method, based on “hit counting” [28], when Z is small. For details, we would like to refer
the reader to the respective discussion in [22].

FM sketches (and likewise PCSA matrices) can be merged to obtain the total number of
distinct elements added to any of them by a simple bit-wise OR. Combining the FM sketch
with all elements of set A and the FM sketch with all elements of set B using bit-wise OR
produces a FM sketch that is identical to the sketch of set A ∪ B. Elements present in both
A and B will obviously not be counted twice, since the respective bit will always have value
1 in both sketches. This trait—termed duplicate insensitivity—is an essential key to the
operation of DPC, and one key reason why FM sketches are an ideal basis for distributed
traffic measurement.
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3.2 FM sketches for flow accounting

We will now consider the case of measuring traffic data in a very much simplified case, where
there is only one single flow f in the network. Subsequently, we will then turn to the problem
of handling an arbitrary number of flows in the network in parallel.

We consider the set Pf of all packets from f . Of course, we can only measure traffic that
has traversed at least one measurement point; we will therefore assume that there are enough
measurement points in the network to observe each packet at least once (e. g., all routers or,
for transit traffic, all entry/exit nodes). Consequently, each measurement point m ∈ M has
observed a subset of Pf,m ⊆ Pf , such that

Pf =
⋃

m∈M

Pf,m.

In general, the subsets Pf,m will not be disjoint. Due to the duplicate insensitivity property
of FM sketches discussed above, though, the overlap between the observed packet sets of
distinct measurement points is not an issue if FM sketches are used to determine packet
counts: the sketches from multiple measurement points can then be merged using bit-wise
logical OR, and packets that have been recorded at multiple measurement points will only
be counted once. Bringing this idea to reality, though, poses a number of challenges.

The first question that arises is what to use as the input for hash functions h1 and h2.
There are two conflicting aims: one the one hand, distinct packets should yield different inputs
to the hash functions—if this does not hold, the packets are essentially considered identical,
and the duplicate insensitivity property of FM sketches will result in an underestimation
of the flow size. From this perspective, it appears desirable to use the maximum available
amount of information—that is, the complete packet—as the hash input. On the other
hand, though, processing packets at the measurement points is highly performance critical.
Therefore, it is reasonable to keep the amount of data that needs to be hashed as small as
possible. There is clearly a tradeoff.

In PMC, the problems associated with deciding what to hash are overcome by introducing
random decisions in the algorithm. This, however, comes at the cost of sacrificing the
duplicate insensitivitiy property of FM sketches. We explicitly need duplicate insensitivity
for distributed measurements in DPC, so the solution employed in PMC is not an option
here. However, we can take the work in the context of hash-based sampling into account,
where a similar tradeoff exists. It has been explored in that context by Henke et al. [12], who
found that using a subset of the network and transport header fields as the hash function
input is enough. They propose a solution which includes different transport header fields
depending on the used transport layer protocol. In the context of DPC, this is undesirable,
as it requires complex decisions and conditional branches in the algorithm, which contradicts
DPC’s aim to stay algorithmically very simple, in particular avoiding conditional branches.
We therefore opt for a solution which includes a fixed subset of the bytes in each packet.

In order to investigate such a solution, we performed experiments to see how much data
is necessary to distinguish packets. As the data basis we used 17 hours of real-world traffic
captured in the network of FH Salzburg and made available in the MOME database [16].
This is the same data set that has also been used by Henke et al.. We extract varying
amounts of data from the packets in this trace: the IP header (ignoring those fields that are
modified by intermediate routers) plus an increasing number of bytes from the IP payload.
We then determined in each case how many distinct packets resulted in identical extracted
byte strings, and thus in identical inputs to h1 and h2.
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Figure 1 Distinguishability of packets based on varying amounts of IP payload.

Figure 1 shows how many of the packets in the MOME Salzburg traces were indistin-
guishable from a previously seen packet, based on comparing the non-volatile fields of the
IP header plus a varying initial fraction of the IP payload (0–16 bytes). The traces contain
a total of ca. 12.6 million packets. Using the IP header alone is clearly insufficient, as this
leads to huge numbers of non-distinguishable packets. As expected, when more bytes from
the IP payload are taken into account, the accuracy increases. The steps to using 4, 8,
and 12 bytes of IP payload in addition to the IP header result in significant improvements.
Then, however, the number of undistinguishable packets has become very low already, and
increasing the amount of data taken into account further to 16 bytes does not yield further
benefits. Therefore, we use the IP header plus the first 12 bytes of IP payload as the input
to hash functions h1 and h2 in the following.

3.3 Measuring all flows in parallel

So far, we have discussed how an FM sketch can be used to measure the number of packets in
an individual flow. This alone, however, is of limited utility: even if each router used an FM
sketch in the way discussed above for each individual flow, this would require to locate the
FM sketch for the respective flow in the router’s memory whenever a packet is to be recorded.
This in turn would require using some lookup data structure to find the corresponding FM
sketch for each processed packet—which clearly incurs far too much overhead.

We therefore take up the idea of virtual matrices from PMC [22]: there, the information
about individual flows is not stored explicitly and separately. Instead, all bits describing
all flows are mapped to one single, unstructured bit field B of size l bits. The parameter l
can be chosen arbitrarily and is typically in the order of a few megabits. This mapping is
performed using another (uniform) hash function H, which maps a tuple of a flow ID plus
the row and column coordinates of a PCSA matrix entry to one of the bits in B, i. e.,

H : F × {1, . . . , m} × {1, . . . , w} → {1, . . . , l},

where F is the set of possible flow IDs and m and w are the dimensions of the virtual PCSA
matrices. This is visualized in Figure 2. If the bit at row i and column j in the virtual PCSA
matrix of flow f is to be accessed, H(f, i, j) yields the corresponding index in B.

Recording information about packets in a router using DPC consequently works as
follows: initially, all positions in B are set to zero. Whenever a packet from flow f is
encountered, it is hashed using hash functions h1 and h2 (using the IP header plus 12 bytes
of IP payload, as discussed above). This yields the row and column indices—denoted by i
and j, respectively—in f ’s virtual matrix. Then, H(f, i, j) is evaluated and the resulting bit
in B is set to one.
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Figure 2 Mapping of virtual matrix entries to B [22].

All these operations can be implemented very efficiently in both software and hardware.
In particular, if hash functions are chosen carefully, implementations without conditional
branches are possible, which is ideal for using the algorithm on pipelined CPU designs.
Moreover, DPC inherits the write-only property of FM sketches: counting a packet with
DPC does not require reading from memory—instead, only one single bit needs to be written
to B. The address of this bit can be determined from the packet alone, without looking up
any information from memory. In particular, there is no need for a complex lookup data
structure. This, too, makes the algorithm a perfect match for highly performance critical
tasks like network traffic monitoring: in contrast to other approaches like, e. g., per-flow
counters in combination with hash-based sampling, DPC’s per-packet effort is constant.

Of course, it may (and will) occur that multiple positions from the same or different
virtual matrices are mapped to the same bit in B. This must be taken into account when an
estimate is extracted from a virtual matrix: it may happen that a value of one is read from
bit position H(f, i, j), even though the addressed entry (i, j) in the virtual matrix of flow f
has never been set to one during the measurement period—simply because H(f, i, j) is equal
to H(f ′, i′, j′) and the bit at position (i′, j′) in the virtual matrix of flow f ′ has been set to
one. We call this a “false positive bit”.1

In [22], we have argued that the probability that this happens is identical to the fill rate

p of bit field B, i. e., to the fraction of bits in B that are set to one. The fill rate p is trivial
to determine from B, and can be used to adjust Flajolet and Martin’s estimation formula
accordingly. Due to space limitations it is not possible to repeat the reasoning in detail here,
but the key result from [22] is that it suffices to substitute Flajolet and Martin’s constant
ϕ in (2) or (3), respectively, by a value ϕp which takes the bit field fill rate p into account.
This ϕp can be obtained as the following limit

ϕp = lim
n→∞

2E[Z(n,p)]/n (4)

where

E[Z(n, p)] =
w

∑

k=1

k · (qk(n, p) − qk+1(n, p)) with qk(n, p) =
k

∏

i=1

[

1 − (1 − 2−i)n · (1 − p)
]

.

1 Note that the inverse case of a “false negative bit” cannot occur, since bits are never reset to zero during
one measurement interval.
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The convergence in (4) is so fast that simply evaluating the formula for a sufficiently large
value of n (e. g., n = 105) suffices to obtain a practically usable value for ϕp.

Consequently, after a measurement period (e. g., one day) is over, the bit fields B can
be collected from all measurement points in the network. They can then be merged in a
duplicate-insensitive manner by a bit-wise OR operation. For each flow f of interest, it is
then possible to extract the virtual PCSA matrix by iterating over the tuples (f, i, j) for
all virtual matrix entries (i, j), evaluating H for each of them, and thereby re-constructing
f ’s virtual PCSA matrix. This matrix can then be evaluated using Flajolet and Martin’s
methodology, with the modification of using ϕp in the role of ϕ as discussed above. The
result is a duplicate-insensitive estimate for the total number of packets from flow f observed
in the entire network. By combining not all bit fields from all measurement points, but only
some of them, it is of course likewise possible to obtain per-flow statistics for different parts
of the network or for individual measurement points—based on the very same raw data.

3.4 Determining flow sizes instead of packet counts

In some applications, including billing of customers of an ISP, it is not only interesting to
count the number of packets in a flow. Instead, the total size of the flow in bytes is required.
To solve this, [22] suggests to draw a random integer in the range [0, MTU − 1] for each
packet. The packet is counted if and only if this random number is less than the size of the
packet. This essantially leads to probabilistically counting “MTU equivalents” instead of
packets. The flow size estimate is obtained by multiplying the estimate with the MTU.

This cannot be done in the same way for DPC, though: the random decision may lead to
a packet being counted at one measurement point, but not at another. Duplicate-insensitive
merging as discussed above is then not possible. However, following the spirit of hash-based
sampling, we can substitute the random decision by a hash-based one, where instead of the
random number a (uniform) hash value over the packet is used (with a hash function that
is independent from h1, h2). A bit in B is set if and only if the packet size exceeds this
hash value modulo the MTU. Then, a packet will either lead to a bit in B being set at all
measurement points, or at none of them, avoiding the above discussed problem. We therefore
obtain a variant of DPC that can perform distributed flow size measurements.

4 Evaluation

We evaluated DPC by simulating artificial network flows in a small and static topology on
the one hand, and by applying it to traffic traces from a real university network on the other
hand. This provides insights into the performance of the algorithm both under controlled
conditions and when applied to real-world network traffic.

Let us first consider real-world network traffic. We use the freely available traces from FH
Salzburg [16] that have been employed above in Sec. 3.2 already. These traces were captured
at a mirror port of a 4 Mbps link using tcpdump and were anonymized with tcpdpriv. They
contain TCP, UDP, and ICMP traffic without payload. These traces are from one single
measurement point only; we can therefore use them to compare DPC’s results to PMC, but
we cannot assess DPC’s distributed measurement capabilities. PMC is structurally similar
to DPC, and has been shown to greatly outperform sampling-based traffic accounting and
other bitfield-based techniques in [22]. Here, we use both PMC and DPC with a bit field
size l of 4 MBit, m = 64 rows per virtual matrix, and SHA1 for hashing (using some of the
bits to construct h1, others for h2).



A. Marold, P. Lieven, B. Scheuermann 141

100

101

102

103

104

105

106

100 101 102 103 104 105 106

e
st

im
a

te
d

 f
lo

w
 s

iz
e

 [
p

a
ck

e
ts

]

real flow size [packets]

(a) PMC.

100

101

102

103

104

105

106

100 101 102 103 104 105 106

e
st

im
a

te
d

 f
lo

w
 s

iz
e

 [
p

a
ck

e
ts

]

real flow size [packets]

(b) DPC.

Figure 3 PMC and DPC flow size estimation accuracy on the FH Salzburg traces.

In Figure 3, each data point represents one flow. The x axes show the true flow sizes, the
y axes the corresponding estimates (note the log scales). For a perfect estimation, all points
would therefore lie on the line of identity (here indicated as a dashed line). The subfigures
show the results for DPC and PMC, respectively, if applied to the same network traffic.

Both algorithms produce accurate results at least for flows of non-negligible size; they
do not differ in their accuracy. This becomes clear if we consider the standard error. When
calculating the standard error in our setting, there is one caveat, though: large deviations
between correct flow size and estimate are visible only on the left hand side of the plots. There,
the absolute flow sizes are very small, so an estimation error of only a few packets already
causes large relative deviations. This expected effect is due to the inherent inaccuracies of FM
sketches for small estimates, which can be compensated only to a certain extent as discussed
in Sec. 3.1. If not handled appropriately, these large relative deviations for very small flows
dominate the standard error, and do not allow to appropriately judge the estimation quality
for (practically much more relevant) flows of non-negligible size. We therefore consider the
standard error for those flows which exceed a size of m packets (as discussed in Sec 3.1, this is
the point where the inaccuracies vanish). While the standard errors without this adjustment
are 5.879 (for PMC) and 5.854 (for DPC) in this experiment, they drop to 0.1669 (for PMC)
and 0.1673 (for DPC) when only flows of size > m are taken into account. Whichever of the
two variants is considered, it becomes clear that the accuracy differences between DPC and
PMC observed here are vanishingly small and statistically not significant.

Since the central intention behind DPC is to allow for duplicate-insensitive measurements,
we now turn towards a more detailed assessment of DPC in a distributed environment. To
this end, we use simulated network traffic in a structurally simple, artificial network with
multiple measurement points. This network consists of four routers A–D in a fully connected
topology. Each of the four nodes runs one instance of DPC. We generated a varying number
of flows in the network, with Pareto-distributed flow sizes (shape parameter α = 0.5) to
model the Internet traffic flow size distribution [24, 13]. We randomly picked one out of six
possible routes for each flow, all with equal probability.2 We then generated the packets
for each flow (with random payload) and recorded them in all traversed DPC bit fields.
Since the order and exact timing of packet arrivals at the router has no influence at all on

2 The configured routes were: route 1: all packets A→D; route 2: all packets 3→4→2; route 3: 50 % of
the packets 1→2, 50 % 1→3; route 4: 50 % of the packets 2→4, 50 % 3→4; route 5: 50 % of the packets
1→2, 50 % 3→4; route 6: all packets 1→2→3→4.
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Figure 4 Impact of the number of flows on the fill rate, for varying l and m.

the resulting bit field, it is not necessary to employ a full-scale network simulator for these
experiments. At each node, the result was a DPC bit field, containing information about all
packets encountered by the respective router. The bit fields from all routers in the topology
were subsequently combined for evaluation. Based on this combined bit field, the flow size
for each flow was estimated.

The fill rate p plays a central role for the estimation accuracy of DPC. The more bits in
B are set, the more false positive bits will occur, which in turn increases the estimation error.
We are therefore interested in how fast p grows with an increasing number of recorded flows,
and performed a corresponding evaluation. Figure 4 shows the results for different values of
m and different bit field sizes l, as the number of flows increases. The figure includes 95 %
confidence intervals; the error bars are so small that they are barely visible, though. As one
would expect, using a larger bit field results in lower fill rates.

Figure 5 shows that lower fill rates directly translate into more accurate estimates, if
other parameters remain unchanged. It shows the resulting standard errors for the same
parameter combinations as above (for the reasons stated before, only flows of size > m are
taken into account; this figure does not include error bars, since the y values already are a
quantification of the error). These insights imply that it is possible to increase the accuracy
by simply increasing the size of the available memory—or by decreasing the measurement
interval duration, as a lower total number of sampled packets, too, is an obvious means to
reduce the fill rate of the bit field. Note that the used bit field size has no influence on the
computational effort for processing one packet, so the accuracy can be increased without
incurring higher processing effort. This trait stands in sharp contrast to sampling-based
techniques, where a higher fraction of packets need to be sampled to achieve higher accuracy.

The impact of the number of rows in the virtual PCSA matrix (parameter m) is slightly
more complex. As m inherently limits the estimation accuracy of the underlying FM sketches,
it is, at some point, necessary to increase m to achieve higher accuracies. Just like using a
larger bit field, increasing m does not increase the effort for processing a packet. As stated in
Sec. 3.1, though, a higher value of m results in a higher number of 1-bits per virtual matrix,
and thus in turn increases the fill rate. This effect is visible in Figure 4b. It causes a higher
number of false positive bits and thus reduces the accuracy benefits obtained by increasing m
in the first place. Despite this inherent tradeoff, finding a good value for m is not too difficult:
as Figures 4 and 5 show, the impact of this parameter is again just as one would expect, and
all degradations are very graceful. Depending on the accuracy requirements, values of m
in the range between 32 and 1024 seem reasonable in practice, where for higher values it is
advisable to use correspondingly larger bit fields (or shorter measurement intervals).
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Figure 5 Impact of the number of flows on the standard error, for varying l and m.

5 Conclusion

In this paper, we have introduced Distributed Probabilistic Counting (DPC), an algorithm
for obtaining flow size estimates in an entire network. With DPC, routers in the network
can independently measure the network traffic during a measurement period. Their local
observations—represented in an unstructured bit field—can then be merged in a duplicate-
insensitive manner to yield statistics for the network in total. DPC is based on probabilistic
counting techniques to perform this task with minimal effort per processed packet. We have
shown that DPC yields accurate flow sizes estimates using both simulated network traffic
patterns and real-world traffic traces.
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Abstract

Localized geographic single path routing along a wireless network graph requires exact location
information about the network nodes to assure message delivery guarantees. Node localization
in practice however is not exact. Errors ranging from several centimeters up to several meters
are usual. How to perform localized routing in practice when such errors are prevalent?

In this work we look at a promising routing variant which does not completely overcome
this practical problem but which mitigates it. The concept does away with trying to find node
positions as precise as possible but allows inaccuracies from the very beginning. It partitions the
plane by a regular mesh of hexagons. The only information which is of interest is in which cell of
that partitioning a node is located in. Using this node embedding, a virtual geographic overlay
graph can then be constructed.

To find the node positions we apply three variants of multidimensional scaling, two of them
being a node localization approach which has been well studied in the context of sensor networks
and one which we apply here for the first time in that context. Using the location information
we get from these localization approaches we embed the nodes into the clusters their location
falls into. We define two graph metrics to assess the quality of the overlay graph obtained by
the embedding. Applying these two metrics in a simulation study, we show that cluster based
routing is an eligible approach to support localized geographic routing when location errors are
prevalent.
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1 Introduction

We consider geographic routing along geographical clusters which are resulting from a regular
hexagon tiling of the plane. With that approach a node does not need to know its exact
location. It is sufficient that each node locates itself in the geographical cluster it is actually
located in.

As we briefly describe in Section 2, in conjunction with routing, geographical clustering
has been considered to improve robustness of localized routing methods. In these routing
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approaches, it is assumed that nodes already know their exact physical location (e.g. by
means of GPS). This, however, is not a realistic assumption.

In this work we consider geographical clustering under the assumption that nodes can
perform erroneous range measurements with their immediate neighboring nodes. In Section 3
we apply multidimensional scaling, one of the well known localization techniques applied in
sensor networks, to estimate node locations based on range measurements. We apply three
different multidimensional scaling variants, a non-metric, a classical, and a probabilistic one.
The latter variant has not been used in sensor networks so far. Using the position estimates
we get from multidimensional scaling, we then embed the nodes in hexagonal geographical
clusters. To reduce the number of nodes placed in a wrong cluster we propose a simple
heuristic to align the hexagonal grid based on anchor node positions.

The proposed approach is a heuristic and the quality depends on the number of anchor
nodes and the extent of the range measurement errors. In Section 4 we define two quality
metrics, the connectivity of an overlay graph one can construct over the geographical clus-
ters and the consistency of the view of each node on the cluster structure. Both metrics
are of interest when geographical cluster based localization is applied in combination with
geographic routing.

With these metrics we performed a simulation study on the quality of geographical
clustering under range measurement errors. In Section 5 we first derive a model to express
range measurement errors which is used in our simulations. The results of the simulations
are then summarized in Section 6. In Section 7 we finally conclude the findings and draw
some open directions which could be followed in the sequel.

2 Related Work

2.1 Multidimensional Scaling

Multidimensional Scaling (MDS) [2, 15, 12] is a method used to depict the spatial structure,
normally in 2 or 3 dimensions of distance-like data between points in space. MDS aims to
find a geometric representation of the data, such that the distances between data points fit
as close as possible to the given dissimilarity (or similarity) information.

In the domain of sensor networks MDS has been used to determine node positions.
In this work we consider the following well known centralized MDS localization method1.
Nodes which are neighbors in the wireless network determine their mutual distances and
communicate these distances to one central node. This node collects these distance values
in a so called dissimilarity matrix and then completes this matrix by the shortest paths
between all possible node pairs. The matrix then contains an estimate of the distance
between all possible node pairs. The dissimilarity matrix is used as MDS input to determine
node coordinates. After that the central node communicates the coordinates back to the
network nodes.

Depending on the MDS method applied two kind of node localization can be considered:
range free and range based. In range based localization, inter nodal distance measurements
are determined through different ranging techniques, viz. RSSI, time of arrival (TOA),
or time difference of arrival (TDOA). The goal is to estimate the true Euclidean distance
between the neighboring nodes. Whereas, in range free localization Euclidean distances are
not considered. The only information available is whether two nodes are connected or not.

1 Distributed methods of multidimensional scaling based localization can be found in the literature as
well but are not subject of study of this work.
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Range-free localization based on MDS can be found in [12]. Starting with the given
network connectivity information, the shortest path in hop counts between each possible pair
of nodes is determined. So called non-metric multidimensional scaling is then applied which
allows a dissimilarity matrix just consisting of the hop counts. The resulting coordinates
are shifted, rotated and/or reflected about an axis so as to get the anchor nodes (nodes with
known location information) as much as in their right locations. The result is a placement
of nodes which compares quite well with the nodes’ true physical locations.

Range-based localization based on MDS can be found in [11]. The starting point is the
Euclidean distance measurements between neighboring pairs of nodes through some range
measurement technique. The missing distances are completed by the path lengths of the
Euclidean shortest paths between all node pairs. The dissimilarity matrix is then fed into
so called classical metric MDS which expects a dissimilarity matrix of Euclidean interpoint
distances.

A third MDS variant which we consider in this work is probabilistic MDS. It hitherto
has not been explored for wireless sensor localization. Unlike the other two MDS methods,
probabilistic MDS [8] can take as input a variance value associated with each distance mea-
surement along with the distance (dissimilarity) matrix. This makes probabilistic MDS more
feasible to use in cases where the standard deviation of a ranging measurement technique is
known beforehand. It was shown in [8] that probabilistic MDS performs better over classical
MDS in node positioning when variances are associated with distance measurements.

2.2 Geographical Cluster Based Routing

Geographical cluster based routing was originally introduced in [5]. It is a combination of
routing and topology control based on a virtual geographic overlay graph. To support correct
routing, the overlay graph may not contain intersecting links. The original publication
described a way to remove intersecting links which was then further refined in a follow
up publication [3]. Moreover, the basic idea of geographical cluster based routing was one
year later rediscovered in [14]. The publication describes a slightly different way to remove
intersecting links. In [13], a follow up of that publication, the same algorithm was simulated
with another routing metric. Besides these two works in that year one more algorithm was
introduced in [9] which is an alternative to remove intersecting overlay links.

While these works focus on removal of intersecting links, one plain alternative approach is
preventing intersecting links in the first place such that no intersections have to be removed
later on. This is the variant considered in [4] which forms also the object of investigation of
this work. The details of that approach are as follows: As assumed in all geographical cluster
based routing variants, nodes have to know their physical location on a two dimensional
plane. The plane is partitioned by a regular mesh of hexagons. Each hexagon defines
a geographical cluster. Using its location information each node can assign itself to the
cluster it is located in. We denote such assignment as v1 ∈ S. Moreover, C(v) denotes the
cluster, a node v is assigned to.

Using the cluster assignment, the geometric overlay graph considered here is then con-
structed as follows. The centers of the clusters which contain at least one physical network
node form the nodes of the overlay graph. The links between the clusters are defined by
the physical links. Two clusters C and D are connected if they share a hexagon boundary
and if there exists at least one pair of nodes v ∈ C and w ∈ D which are connected in the
physical network graph. We term these links short links, since these overlay graph links are
the ones with the smallest Euclidean length.

It is easy to see that the resulting overly graph is always planar. However, simplicity of
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the scheme comes at a cost. In sparse networks the overlay graph might be disconnected.
However, if the network is dense enough – for instance in sensing covered networks with
the double range property defined in [16] – then connectivity of the network can always be
assured [4].

Routing along the planar overlay graph is done according to a combined greedy face
routing strategy. Whenever possible a message is forwarded to a cluster which is closer to
the destination cluster compared to the cluster the message is currently residing in. If no
such cluster is found, right hand or left hand rule is applied to traverse a sequence of clusters
until a cluster again closer to the destination cluster is found where greedy routing can be
resumed. Under right hand or left hand rule a message is forwarded to the overlay graph
link which in clockwise or counterclockwise is lying next to the last overlay link visited by
the message.

3 Subject of Study

As it will be detailed in Section 5 we assume that nodes which are neighbors in the wireless
network determine their mutual distances using RSSI based ranging. In the way already
explained in Section 2 we then apply multidimensional scaling (MDS) on one central node
to determine the node locations. We consider the three mentioned MDS variants: the non-
metric, the metric (also termed classical), and the probabilistic one. The node locations we
get out of these MDS variants are then used to determine the clusters the network nodes
are located in and each node in the network is then informed by the central node about the
cluster it is located in.

This basically explains our subject of study. However, two aspects need further explana-
tion: the way the central node determines exactly the cluster a node is located in, and the
way the central node computes the additional variance input required by the probabilistic
MDS variant.

To determine the cluster a node is located in, we consider three anchor nodes which
already know their positions. In our evaluation we select from the random node set the three
nodes which are farthest from each other as anchor nodes. We then align the hexagonal grid
with a heuristic to get all the anchor nodes as close to the cell centers. Starting with an
initial alignment of the grid, for each anchor node, the hexagon it is located in and the six
neighboring hexagons are determined. Then, for each anchor a and for each hexagon h of
the seven hexagons determined for a, the grid is shifted such that a is the center of h. Then
the grid is rotated around a to get the other anchor nodes closest to the center of one of
the seven hexagons determined for them. Among all iterations the grid placement which
minimizes the placement error is chosen, while the placement error is the sum of the squared
errors of the distance of the anchor nodes from their cell centers.

The variance input for probabilistic MDS is determined with the following heuristic.
The actual Euclidean distances between anchor nodes is known a priori. From the disparity
matrix fed into MDS we also know the estimated erroneous distances between the anchor
nodes. For the three anchor node pairs, the statistical variance of the erroneous distances
from the actual true Euclidean distances is then computed.

4 Evaluating Cluster Based Localization

If all network nodes are assigned to the right cluster they are physically located in, then the
scheme described in [6] supports guaranteed message delivery from one cluster C to another
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cluster D; of course, provided that there exists at least one path in the overlay graph which
connects C and D and provided that all nodes exchange adjacent clusters they see with all
neighbor nodes which are in the same cluster. If we consider, however, that nodes may be
wrongly assigned to clusters they are not physically located in, then any localized routing
scheme following the links connecting neighboring clusters may fail although the underlying
physical network is connected. We observe two phenomena which might occur. One is that
the overlay graph might be disconnected and the other one is that the nodes in the same
cluster might have an inconsistent view on the adjacent clusters. Both the phenomena and
the evaluation metrics we use to account for them are detailed in the next two subsections.

4.1 Number of Partitions

Consider the example depicted in Figure 1a. The true node locations are depicted with solid
dots. These are pointing to the determined node locations which deviate from true locations
due to localization errors. In the example, the network nodes are connected by a network
link – the dotted lines – if the Euclidean distance between the nodes’ true locations are less
or equal than the cluster diameters. This results in the depicted physical connected network
over v1, . . . , v6 and the depicted overlay graph over the clusters A, . . . , E. Obviously, the
overlay graph is connected. However, sending a message from A to E for instance, following
the links will not be successful. A message can get from A to B via the physical link v4v3,
from B to C via v3v2, from C to D via v2v1. However, there is no physical link which
supports sending a message directly from cluster D to E.
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Figure 1 Potential failure sources in localized, cluster-based routing.

The example shows that just checking connectivity of the overlay graph defined by the
cluster centers and the short links one can draw between the cluster centers is not sufficient
to see if localized routing along this structure is always successful. To account for such
phenomena in our empirical study, given an overlay graph we count the minimal number of
connected cluster partitions we can construct over the set of clusters. Thereby, a given set of
clusters S is termed connected if for any two clusters C, D ∈ S there exists a path v1v2 . . . vk

in the physical network such that C(v1) = C, C(vk) = D, and C(vi) and C(vi+1) are either
the same or have a hexagon edge in common.

In the network depicted in Figure 1a communication between any pair of clusters in
{A, B, C, D} is possible based on the path v1v2v3v4. However, no communication is possible
between a cluster in {A, B, C, D} and cluster E. Thus, in this example we count two
connected partitions, one partition is {A, B, C, D} and the other one is {E}.

4.2 Number of Inconsistent Clusters

Consider now the example depicted in Figure 1b. There is a direct connection from cluster
S to C via the physical link v1v2, from cluster C to D via v3v4, from D to E via v4v5, from
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E back to D via v5v7, and then from D to T via v7v8. Thus, the clusters S, C, D, E, and T

form a single partition. However, the success of planar graph routing based on that overlay
graph depends on the actual selection of the physical nodes located in those clusters.

Suppose starting at node v1 a message is to be sent from cluster S to T . Since S has no
adjacent cluster closer to T , face routing has to be employed. This leads to routing along
the clusters C, D, and E using the physical network path v2v3v4v5, for instance. Once the
message arrives at v5 in cluster E, the next hop decided at v5 may either be v4, v6, or v7.
If v5 decides on v4 or v6 the message will traverse the clusters D and C back to S and will
eventually be dropped at S since nodes v4 and v6 know about adjacent clusters C and E

but not about T . If in contrast v5 decides on v7 the message will travel as well back from
cluster E to cluster D, however, at cluster D the message arrives at a node which has a
direct connection into cluster T . Thus, the message will eventually reach its destination
cluster.

The example shows that in case of location errors it is not sufficient to exchange informa-
tion about adjacent clusters within a cluster. In the example the node sets {v4, v5} and {v7}
are forming two partitions of the physical nodes in cluster D which can not communicate
without resorting to relaying nodes outside of cluster D.

If the overlay graph is connected in the sense defined in the previous subsection and if
none of the involved clusters are hosting partitions of the physical nodes then face routing
along the overlay links will always find a path to the destination cluster. This follows
immediately from the correctness proof in [7]. Thus, testing for clusters with physical node
partitions is a reasonable metric for measuring if routing errors might occur with cluster
based localization under location errors.

The routing failure depicted in Figure 1b originates from the fact that the inconsistent
view of the nodes in cluster D leads to intersecting overlay graph links. In the example,
the link DE exists twice. It exists due to the connection of v5 with v7 and due to the
connection of v5 with v4, v6. Besides intersection due to such edge doubling, intersections
may also occur in the way depicted in Figure 1c. In this example the physical network
path v1v3v5 produces the overlay path CEG, while the path v2v4v6 results in the overlay
path DEF . The physical network nodes v3 and v4 located in cluster E are forming two
partitions in that cluster. A message traveling along the edge CE according to the left or
right hand rule will always be forwarded along the edge EG, while a message traveling along
DE will always be forwarded along the edge EF . Thus, the overlay paths CEG and DEF

are basically forming two intersecting links CG and DF . It is well known that face routing
in case of such intersecting links may fail. We term this as an inconsistent view and more
so, an inconsistent view with duplicate overlay graph links as exemplified in Figure 1b a
critical inconsistent view.

Besides the critical ones we can also observe what we denote benign inconsistent views
which will not lead to a routing failure. In the example in Figure 1d the physical nodes v3

and v4 in cluster E are forming two partitions in that cluster as well. The difference however
with the case in Figure 1c is that the links {EC, EF} seen by v3 and the links {ED, EG}
seen by v4 can be interpreted as face boundary links of two faces which are touching each
other in one single point. A message traveling along the overlay edge DE according to the
left or right hand rule will always be sent to the overlay edge EG next. It will thus never
travel inside the upper area of the face having CE and EF on its boundary. The same
applies to a message traveling along the overlay edge CE. It will never travel inside the
lower area of the face having DE and EG on its boundary.
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5 Model Assumptions

5.1 Modeling RSSI Measurements

We consider ranging based on RSSI2 measurements. Neighboring nodes exchange a sequence
of data packets and compute an average over the RSSI values they get for each data packet.
We assume that the number of exchanged data packets is sufficient such that fading and
interference will average out. In that case the measured average RSSI between two node
pairs at different locations but same transmitter receiver separation may still vary due to
shadowing and multipath propagation caused by surrounding environmental clutter. We
use the well established log-normal shadowing [10] to model this effect. Expressed in dB
the signal attenuation P L(d)[dB] encountered when sender and receiver are separated by a

distance d is then given by P L(d)[dB] = P L(d0)[dB] + 10n log10

(

d

d0

)

+ Xσ, where n is the

path loss exponent, P L(d0)[dB] is the average path loss in free space for reference distance
d0, and Xσ is a zero-mean Gaussian distributed random variable with standard deviation σ.

Given a transmitter output power Pt[dBm] and signal attenuation due to log-normal
shadowing over a transmitter receiver separation d, the average over the RSSI values at the
receiving node can then be expressed in dBm as RSSI(d)[dBm] = Pt[dBm] − P L(d)[dB].

5.2 Modeling Ranging Errors

Once a node has determined the RSSI average for a given transmitter, the value has to be
mapped to a distance value. We consider the technique of inverting the average large-scale
path loss formula. Given path loss exponent n, reference distance d0, path loss at reference
distance P L(d0)[dB], and transmitter receiver separation d, the theoretical average large-

scale path loss P L(d)[dB] is P L(d)[dB] = P L(d0)[dB] + 10n log10

(

d

d0

)

. Thus, given trans-

mitter output power Pt[dBm] the average RSSI value RSSI(d)[dBm] not taking shadowing
into account amounts RSSI(d)[dBm] = Pt[dBm] − P L(d)[dB]. By inverting this function
we can estimate the transmitter receiver separation d(x) from measured RSSI averages x by

d(x) = d0 · 10
Pt[dBm]−P L(d0)[dB]−x

10n . Substituting x with the expression RSSI(d)[dB] we use to
model measured RSSI averages under shadowing then eliminates Pt[dBm] and P L(d0)[dB],
yielding the erroneous distance estimate d̃ for a given transmitter receiver separation d as

d̃ = d0 · 10
10n log10( d

d0
)+Xσ

10n = d · 10
Xσ

10n .

6 Evaluation

We present a simulation study on the quality of the MDS based geographical clustering
methods as described in Section 3. We consider how localization errors at node level affects
correctness of geographical clustering. Moreover, using the metrics derived in Section 4, we
express the feasibility of the resulting geographical clustering for geographic routing. The
simulations were done with MATLAB using the built in function for non-metric and classical
MDS. In the following we term those functions NMDS and CMDS, respectively. In addition,
PROSCAL [8] was used to perform probabilistic MDS.

Every depicted measurement point is the average of 100 independent simulation runs.
In each simulation run the network nodes are placed uniformly random distributed on a

2 The received signal strength indicator (RSSI) expresses the power received at the receiver. Many
wireless transceivers provide an RSSI value for each received packet and usually a mapping from RSSI
values to radio frequency level in dBm can be found in the data sheets.
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square field. Then for each node pair the path loss between two nodes is randomly selected
according to the log normal model. Connectivity of the wireless network is then tested by
checking if all nodes can communicate directly or via intermediate hops. Two nodes are
defined as connected if the average RSSI for transmission between the two nodes is on or
above the nominal receiver sensitivity. Non-connected networks are discarded.

6.1 Simulation Parameters

For choosing evaluation parameters, we consider TmoteSky sensor nodes which are equipped
with the Chipcon CC2420 transceiver as a reference architecture and we consider the em-
pirical average RSSI value estimates for CC2420 transceivers listed in [1]. The latter reports
(among others) results of an indoor measurement with one CC240 transmitter and one
CC2420 receiver. From standard formulas (see [10]) a reference distance d0 = 1m and path
loss at reference of P L(d0)[dB] ≈ 40[dB] can be determined. Applying the least squared
error method3 described in Example 4.9 of [10] on the empirical mean RSSI values listed in
table 2 of [1] we determine a path loss exponent n ≈ 2.7 and a standard deviation σ ≈ 3.3
for the log normal shadowing model.

We conduct simulations with 50 nodes. The simulations are adjusted to path loss expo-
nent 2.7 and vary the log normal standard deviation around the estimated value 3.3. The
cluster diameter is adjusted to 100 which is close to the average maximum communication
range of the nodes given by the CC2420 nominal receiver sensitivity of −94[dBm].

To adjust the node density we keep the number of nodes fixed and vary the size of the
rectangular simulation field. Given k nodes, average maximum communication range d,
and a square field length l, under uniform node distribution the expected neighbors δ in a
node’s average maximum communication range can (despite boundary effects) roughly be
expressed as δ = (k − 1) · πd

2

l2 . Thus, for a desired network density δ we estimate the square
field length by solving for l.

6.2 Results

6.2.1 Assignments to Wrong Clusters

The first question we look at is how far the physical node position errors of the MDS variants
propagate into the geographical clustering structure. We consider the Geographical clus-
tering of nodes using the physical node positions determined by MDS and then embedding
the node into the cluster structure as described in Section 3. We consider the clusters the
nodes are placed according to that method and the actual clusters with respect to their
true physical positions. For the latter we use the same alignment and orientation of the
hexagonal grid computed by the method from Section 3.

Figures 2a, 2b, and 2c show depending on σ of the log normal path loss, the percentage of
nodes which are placed into a cluster they are physically not located in. Of course, a higher
σ means a higher variance in distance measurement errors which then negatively affects the
MDS precision and consequently clustering as well.

What can be seen as well is how improved quality of physical location information posi-
tively affects the assignment of nodes into the right cluster: clustering based on probabilistic

3 The method finds the path loss exponent n which minimizes the sum over the squared distances between
path loss due to log normal shadowing and the empirical values. Having found n, σ is determined by
the statistical variance of the empirical and the mean values given by the log normal model.
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Figure 2 Percentage of node placement errors over log-normal σ for different node densities.
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Figure 3 Average distance from original cell over log-normal σ for different node densities.

MDS performs slightly better than the one based on classical MDS, and classical MDS per-
forms visibly better than the non-classical one.

Finally, for all methods, increasing the network density reduces the wrong assignment
of nodes to clusters. This can be explained by the fact that completing the distance matrix
by computing shortest paths among all node pairs has larger distance estimate errors when
the network is sparse. Of course, the shortest path length may deviate from the Euclidean
distance between the nodes. In the case where the network density tends to infinity, the
shortest path becomes the true Euclidean distance between the nodes, and MDS would
produce error free node locations, and no node placement errors would occur. In our mea-
surement we went to a network density up to 15 which of course is not an infinite network
density, so still results in node placement errors.

6.2.2 Closeness to the Correct Cluster

Figures 2a, 2b, and 2c show that particularly in sparse networks almost all nodes are lo-
cated in a wrong cluster. So the question arises if the considered MDS based geographical
clustering makes sense at all if used to reflect the actual geographical positions of nodes. To
answer this question in Figures 3a, 3b, and 3c we consider the average Euclidean distance
of the center of cluster the node is assigned by the considered MDS based geographical
clustering methods and the center of the cluster the node is actually physically located in.
Here again we use the alignment and rotation of the hexagon grid resulting from the MDS
based geographical clustering methods to decide the cluster a node is physically located in.

We observe that though many assignments to wrong clusters may exists, on an average
the deviation from the actual clusters are just local fluctuations. Of course, we consider a
cluster diameter of 100. Thus, the Euclidean distance between the centers of two neighboring
hexagons is given by

√

3
2 ≈ 87. The numbers depicted on the y-axis of the Figures 3a, 3b,

and 3c show that on an average error distances range within a few hops from the true cluster
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Figure 4 Network partitions over network density for different log-normal σ values.
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Figure 5 Percentage of critical inconsistent clusters over log-normal σ for different node densities.

in low density networks. In high density networks the value is clearly below 87 which means
that the combined MDS and clustering methods often hit the right cluster.

The intuition behind the observation in Figures 3a, 3b, and 3c is that the applied MDS
strategies do not find a perfect node embedding which reflects the true physical node loca-
tions but of course, for all variants it is highly unlikely that a node suddenly happens to be
located in another area of the network than its neighboring nodes.

6.2.3 Support of Localized Routing

When considering the Figures 2a, 2b, and 2c, also the question arises if MDS based geograph-
ical clustering makes sense at all to be used in combination with geographical cluster based
routing. To asses the quality of the overlay graph we apply the metrics which we defined in
Section 4. Figures 4a to 5c show though there are local fluctuations in the right cluster as-
signment, the resulting structure is in fact surprisingly a robust one for geographical cluster
based routing.

The average number of network partitions depicted in Figures 4a, 4b, and 4c is about 1 for
all MDS variants when σ of the log normal shadowing is low. Only in low network densities
performance visibly degrades for all schemes when σ increases. At this, the frequency of
partitions is the highest for non-metric MDS, is better for classical MDS and, is the best
for the probabilistic one. This is again in accordance with the fact that probabilistic MDS
results in node positions closest to the physical node positions, which in terms of precision
is then followed by classical MDS and then by non-metric MDS which considers only hop
count but not the Euclidean distance.

The same trend can be observed in Figures 5a, 5b, and 5c for the percentage of clusters
where nodes have an inconsistent critical view. Within the considered parameter range the
fraction of clusters with such inconsistencies is around 10% for non-metric and classical
MDS in the worst case. Probabilistic MDS achieves even better results in those worst case
parameter settings with a fraction of clusters with inconsistencies never exceeding 5%.
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7 Conclusion

Geographical cluster based routing is an interesting research track to make the conceptual
idea of localized routing robust to the stochastic vagaries of real wireless networks. In this
work we were interested in the effects of location errors which occur when information about
node positions is determined by the wireless network infrastructure itself. In conclusion: The
percentage of nodes assigned to wrong clusters can be high under large localization errors.
However, in our study we observed that even for very large localization errors, the number
of network partitions and inconsistent clusters is low. Thus, though message delivery is not
guaranteed, geographical cluster based routing is feasible under inaccurate node localization.
Here, among the three variants observed, geographical clustering with probabilistic MDS
turned out to be the best variant.

In this work we investigated a centralized localization scheme. Though it seems curious
at the first look to apply a centralized scheme first which already learns all nodes and then
resort to a localized routing method later, this actually makes sense. The wireless links
may change over time while the node positions are not (in a static wireless sensor network).
Once nodes are assigned to geographic clusters, localized routing further requires only local
maintenance to adapt to network dynamics such as changing links, and node failures.

We derived a model for location errors based on a well established path loss model
and we derived the model parameters based on previous work which cited testbed results.
This gives us high confidence that our conclusions actually hold for real sensor network
deployments too. However, to get to the final conclusion that geographical cluster based
routing in conjunction with certain localization scheme makes sense, it will be of high interest
to complement our results with testbed experiments.

In this work we defined graph metrics to asses the quality of the geographical cluster
based overlay graph with respect to localized routing. We selected this approach to have
results independent of a particular routing algorithm. In fact, the results of the network
partitions and critical inconsistent views depicted in our plots are worst case statements. In
case of more than one overlay graph partition, two randomly chosen communication partners
may happen to be in the same partition and routing is still successful. And, though there are
clusters with critical views in the overlay graph, for two randomly chosen communication
end points the path followed by a concrete face traversal algorithm may happen to visit
only clusters with no or with benign inconsistent views. Even when a cluster with a critical
inconsistent view is visited this does not necessarily mean that routing fails; there is only
a chance that it may fail. An interesting future research direction is to complement our
findings with measurements where actual localized geographic routing variants are applied
over the constructed overlay graphs. Compared to the already promising low fraction of
network partitions and critical inconsistent views observed in this work, we expect even
better outcomes with respect to the success rate of those routing protocols.

Finally, it is important to note that if we allow several non connected node partitions in
one cluster (as it may happen under localization errors as described before) the geographical
cluster based routing approach as described, does not assure that a node in a certain cluster
can be reached. In the case that there are more than one node partitions in one cluster,
a message may eventually reach its destination cluster but happen to arrive in any of the
partitions. If we are just interested in reaching a particular cluster, this is not an issue. If we
are interested in reaching a particular node and when the node is not in the partition where
the message arrived, a recovery has to take place to eventually reach the right partition in
that cluster. The latter problem opens an interesting track of future research.
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Abstract

Traditional replication protocols that logically arrange the replicas into a specific structure have
reasonable availability, lower communication cost as well as system load than those that do not
require any logical organisation of replicas.

We propose in this paper the A2DS protocol: a single protocol that, unlike the existing
proposed protocols, can be adapted to any 2D structure. Its read operation is carried out on any
replica of every level of the structure whereas write operations are performed on all replicas of a
single level of the structure. We present several basic 2D structures and introduce the new idea
of obtaining other 2D structures by the composition of several basic ones.

Two structures are proposed that have near optimal performance in terms of the communi-
cation cost, availability and system load of their read and write operations. Also, we introduce
a new protocol that provides better performance for its write operations than those of ROWA

protocol while preserving similar read performance.
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1 Introduction

In large distributed systems, data is replicated to provide a high level of fault-tolerance

and to improve the system performance. However when replication is used, data becomes
susceptible to inconsistency problems. Therefore, a replica control protocol (RCP) is required
to “synchronize”concurrent read (query) and write (update) operations on replicated data.
To ensure one-copy equivalence1, a read and a write operation to two different replicas of
the same data should not be allowed to execute concurrently. Quorum systems2 are used by
these protocols which serve as a basic tool of achieving one-copy equivalence.

Given the importance of the topic, several replication protocols have been described in
the literature [1 − 11]. They differ according to various parameters such as the number of
replicas involved in a given operation (henceforth referred to as their communication cost

and ranges between 1 and total number of replicas n), their ability to tolerate replica failures
(also termed as their availability and ranges between 0 and 1), as well as the load (ranges
between 0 and 1) they impose on the system. Also, these protocols can be classified into
two categories: those that arrange logically replicas of the system into a particular structure

1 The fact of existing several replicas of a data should be abstracted as if there exists only a single replica.
2 A quorum system is defined as a set of subsets of replicas called quorums having pair-wise non-empty

intersections.
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[3 − 11] henceforth called structured RCPs, and those that do not impose any structure
on the replicas [1, 2] which we call non-structured RCPs. The difference between the two
categories is that the former has lower communication cost and system load than the latter,
whereas the latter has better availability than the former for read and write operations.

The motivation of this paper is to ask whether it is possible to provide a single protocol
that can be applied to any 2D structure and to afford optimal performance in terms of the
communication cost, availability and system load of its read and write operations.

We answer with the affirmative by proposing the A2DS protocol: a protocol which
assumes that replicas are logically arranged into any 2D structure based on its width w

and height h. Read operations are carried out on any single replica at every level of the
structure whereas write operations are performed on all replicas of any single level of the
structure. We provide several basic 2D structures and give each one’s performance in terms
of the communication cost, availability and system load of its read and write operations. We
also introduce the new idea of obtaining other 2D structures by the composition of several
basic ones. For mostly-read systems, we propose a structure that has the same performance
for its read and write operations as ROWA protocol [1]. When read and write operations
happen in equiprobable frequencies, we introduce two structures that provide near optimal
performance for both operations. Among the structured RCPs, the former has the best
combined read and write costs of 2

√
n and its operations induce the best combined loads of

2√
n

, whereas the latter has a cost of w for its write operations which is lower than those of

the existing structured RCPs and its operations induce near best combined loads of O( 2√
n

);
yet preserving comparable availability for its read and write operations. Finally, we propose
a new protocol that we call ReadTwoWriteMajority which provides better performance for
its write operations than those of the well known ROWA protocol [1] while still maintaining
similar performance for its read operations. The rest of the paper is organized as follows:
Section 2 provides a brief overview of the related work. Our protocol is introduced in section
3. We give a general comparison among the structured RCPs in section 4. Section 5 shows
the conclusion.

2 Related Work

For a system of n replicas, the well known ReadOneWriteAll (ROWA) protocol [1] has a read
cost of 1 and a write cost of n. Its read operations are highly fault-tolerant (an availability
of 1) and induce on the system a load of 1

n
. On the other hand, write operations have a very

low availability (reaches to 0) as an update cannot be performed in the presence of a single
replica failure or network partitions; they impose to the system the highest load of 1. The
Majority Quorum Consensus (MQC ) protocol [2] has read and write communication costs of
n+1

2 for an odd-sized number of replicas n and imposes to the system a load of at least 0.5.
It tolerates replica failures for read and write operations at the expense of increased read
costs with respect to those of ROWA. However, both ROWA and MQC protocols have a
high communication cost as well as system load, and are classified as non-structured RCPs.

By arranging replicas of the system into a logical structure, it is possible to reduce the
communication cost as well as system load further. Several protocols have been proposed in
the literature which make use of quorum systems and assume that the replicas are organized
logically into a specific structure: finite projective plane [3] , a grid structure [4] and [5], or a
tree structure [6], [7], [8], [9], and [10]. The load of these protocols was studied in [5] and it
was proven that for a system of n replicas, the least induced load is 1√

n
for any operation.

For a system of n = t2 + t + 1 replicas (t > 0), the Finite Projective Plane (FPP) protocol



R. Basmadjian and H. de Meer 159

[3] has read and write costs of 1+
√

4n−3
2 and induces on the system a load of 1+

√
4n−3

2n
. The

major drawback of this protocol is that when the number of replicas n > 100, the availability
of its read and write operations deteriorates gradually as it was shown in [12].

The Grid Quorum (GQ) protocol [4], for a system of n replicas, has a read cost of
√

n

and a write cost of 2
√

n − 1. Its read and write operations are fault-tolerant and induce on
the system a load of 1√

n
and 2

√
n−1
n

respectively. Note that all these results are based on the

fact that replicas are arranged logically into a square grid. For a system of n = 2d2 + 2d + 1
replicas (d > 0) arranged logically into a percolation grid, the read and write operations
of the Paths Quorum System (PQS) protocol [5] have a minimum communication cost of√

2n − 1, are highly available, and induce on the system a load of
√

2n−1
2n

.

In general, the tree-structured RCPs have a tight trade-off between the communication
cost and the load induced by their operations: a low cost results in inducing a high load and
vice versa. In [11], the Arbitrary Tree protocol was introduced and it was shown that its write
operations only induce on the system a load of 1√

n
with a cost of

√
n, which is lower than

state-of-the-art tree-structured RCPs, while preserving comparable write availability. On
the other hand, its read operations only induce a cost of

√
n which is lower than previously

proposed tree-structured RCPs with comparable load and availability. In this paper, we
adopt load related definitions, notations and propositions of section 2.1 of [11] as well as the
system model of section 2.2 of [11].

3 Our Protocol

Given a replication-based system of n replicas, we organize them logically into any 2-
dimensional structure of height h > 0. More precisely, let R(i, k) denote the ith replica of
the kth level of the 2D structure where the orientation is taken from left to right and top to
bottom respectively such that i ∈ [1, mk] and k ∈ [0, h], where mk denotes the total number
of replicas at level k.

3.1 The operations

We construct the set of read quorums R and write quorums W by respecting the definition
2.3 of [11] on Bi-coteries. Furthermore, we assign separate strategies of picking read and
write quorums using the definition 2.4 of [11] on strategies. More precisely, let wread and
wwrite denote a strategy for picking read quorums of R and write quorums of W respectively
where wread and wwrite are defined in subsequent sections. The availability computations are
carried out by taking the assumption that every replica is independently available with a
probability p = 1 − q > 1

2 , where q ∈ [0, 1
2 [ denotes the failure probability. In the rest of

this section, we use h > 0 to denote the height of the structure, whereas we use d and e to
denote respectively the minimal and maximal number of replicas among the levels of the 2D
structure such that d = min {mk | ∀k : 0 ≤ k ≤ h} and e = max {mk | ∀k : 0 ≤ k ≤ h}.

3.1.1 Reads

A read operation takes place by accessing all the members (replicas) of a read quorum
Rj ∈ R and retrieving the data of the replica whose timestamp has the highest version

number. In case several members of such a quorum Rj have the same highest version number,
then the data of the replica (among replicas with highest version number) whose timestamp
has the smallest identifier (RID) is fetched. A read quorum Rj is constructed by having as

KiVS’11



160 An Arbitrary 2D Structured Replica Control Protocol

its members any single replica of every level of the 2D structure:

Rj = {R(i, k) | ∀k : 0 ≤ k ≤ h ∧ ∃i : 1 ≤ i ≤ mk}

! FACT 3.1.1. Let R= {R1, R2, . . . , Rj} be the set of read quorums such that every read
quorum Rj is constructed as explained above. Then the number of read quorums (size) of R

is denoted by m(R) =
h∏

k=0

mk.

In order to compute the load of the system induced by this read operation, a strategy

wread =

m(R)∑

j=1

wread,j = 1 is taken that picks each read quorum Rj ∈ R with a probability of

wread,j = 1

m(R)
where j ∈ {1, . . . , m(R)}. The read operation of our protocol has:

A communication cost of RDcost = 1 + h

An availability of RDav (p) =
h∏

k=0

(1 − (1 − p)mk ) (3.1)

An optimal system load of LRD =
1

d
(3.2)

The proof of the optimality of the system load can be found in the Appendix of [11].

3.1.2 Writes

A write operation, after retrieving (from the replicas of a read quorum) the highest version
number of the data to be modified and then incrementing it by one, accesses all the members
of a write quorum Wj ∈ W in order to update their data with a new value and timestamp
(the new version number along with the write quorum’s first replica’s identifier).

A write quorum Wj is constructed by taking as its members all replicas of any single
level of the 2D structure:

Wj = {R(i, k) | ∃k : 0 ≤ k ≤ h ∧ ∀i : 1 ≤ i ≤ mk}

! FACT 3.1.2. Let W = {W1, W2, . . . , Wj} be the set of write quorums such that every write
quorum Wj is constructed as explained above. Then the number of write quorums (size) of
W is denoted by m(W) = 1 + h.

In order to compute the load of the system induced by this write operation, a strategy

wwrite =

m(W)∑

j=1

wwrite,j = 1 is taken that picks each write quorum Wj ∈ W with a probabil-

ity of wwrite,j = 1
m(W) where j ∈ {1, . . . , m(W)}. The write operation of our protocol

has a minimum communication cost of d, a maximum cost of e and an average cost of

WRcost =
h∑

k=0

mk × wwrite,k. Hence such a strategy wwrite of picking write quorums induces a

communication cost of n
1+h

. This operation has an availability of:

WRav (p) = 1 − WRfail (p) (3.3)

where WRfail (p) =
h∏

k=0

(1 − pmk ) and it imposes an optimal system load of:

LW R =
1

1 + h
(3.4)
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Figure 1 An example of our basic structures for n = 6, 7, 16, 12 and 15 replicas respectively.

The proof of the optimality of the system load can be found in the Appendix of [11].

3.1.3 The expected system load computations

The loads imposed by read and write operations of (3.2) and (3.4) respectively are computed
by assuming that all replicas of the system are fail-free. The load of the system induced by
these operations becomes higher as replicas of the system start to fail one after another. In
order to compute the expected load assuming that replicas are available with a probability
p > 1

2 , we use the following two equations expressed in terms of (3.1), (3.2), (3.3), and (3.4):

ELRD = RDav(p) × (LRD − 1) + 1 (3.5)

ELW R = WRav(p) × LW R + WRfail(p) × 1 (3.6)

We can notice from (3.5) and (3.6) that the expected load computations largely depend
on the availability of the operations: as the availability of the operations is high, the expected

load becomes close to the fail-free load and thus the system is classified as stable.

3.1.4 The intersection of read and write quorums

In this section, we demonstrate that our system is a bi-coterie i.e. any read quorum Rj ∈ R

has a non empty intersection with any write quorum Wj ∈ W . The proof is by induction on
the height h of the structure:
Basis Step: Trivial for a structure of height h = 0, because all replicas are placed at one and
only one level.
Induction Hypothesis: Assume that it holds true for a structure of height h > 0.
Induction Step: Consider a 2D structure of height h′ = h+1. Since any read quorum Rj ∈ R

intersects with any write quorum Wk ∈ W such that 0 ≤ k ≤ h (induction hypothesis step),
then it holds true because the fact of adding one new level i = h + 1 does not prevent any
read quorum Rj ∈ R to have a non-empty intersection with any write quorum Wk ∈ W

such that 0 ≤ k ≤ h. On the other hand, since any read quorum Rj ∈ R contains a replica
from the new level i and the new write quorum Wi contains all replicas of the level i, then
any read quorum Rj ∈ R has a non-empty intersection with this write quorum Wi. Hence
by induction, our protocol guarantees non-empty intersection of read and write quorums.

3.2 Basic structures

In this section, we introduce various basic 2D structures and give each one’s characteristics
in terms of the communication cost, availability and load of its read and write operations.
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3.2.1 Straight line

This is a special case of our 2D structures (h = 0) where n replicas of the system are arranged
logically into a straight line (see Figure 1(a)). Its read operation has a cost of 1, an availability
of 1 − (1 − p)n and induces on the system a load of 1

n
. The write operation of this structure

has a cost of n, an availability of pn and imposes to the system a load of 1. Note that such a
structure has the same characteristics of ROWA [1] and therefore is most appropriate for
mostly-read systems because it favors read operations over write ones.

3.2.2 Triangle

The illustrated structure of Figure 1(b) is constructed by arranging logically n = 2h+1 − 1
replicas into a triangle of height h > 0 such that mk = 2k at every level k ∈ [0, h]. Its

read operation has a cost of log(n + 1), an availability of
h∏

k=0

(1 − (1 − p)2k

) and imposes

on the system a load of 1. The write operation has a cost of n
log(n+1) , an availability of

1 −
h∏

k=0

(1 − p2k

) and induces on the system a load of 1
log(n+1) . The major drawback of this

structure is that its read operations always induce the highest load of 1 and these operations
are poorly available i.e. if the replica at level 0 fails, then no read operations can take place.

3.2.3 Square

The replicas of this structure (see Figure 1(c) ) are arranged logically into a square of height
h > 0 and width w = h + 1 such that the number of replicas n = w × (h + 1). Its operations
have a cost of

√
n, and induce on the system a load of 1√

n
. The read and write operations

have an availability of (1−(1−p)
√

n)
√

n

and 1−(1−p
√

n)
√

n

respectively. The major drawback
of this structure is that when n > 25 , its write operations become poorly available. Thus,
such a structure is most appropriate for systems having highly available replicas: p ≥ 0.90.

3.2.4 Trapezoid

The structure of Figure 1(d) is obtained by arranging logically n = sb × (1 + h +
h∑

i=1

i

sb
)

replicas into a trapezoid of height h > 0, small base sb > 1 and big base bb = sb + h such that
mk = sb + k at every level k ∈ [0, h]. Its read operation has a cost of −2sb+1+

√
4sb2−4sb+1+8n

2 ,

an availability of
h∏

k=0

(1 − (1 − p)(sb+k)), and imposes to the system a load of 1
sb

. The

write operation of such a structure has a cost of 2sb−1+
√

4sb2−4sb+1+8n
4 , an availability of

1 −
h∏

k=0

(1 − p(sb+k)), and induces a system load of 2sb−1+
√

4sb2−4sb+1+8n
4n

. In order to obtain

satisfactory results for both read and write operations at the same time, we fix sb = 2.

3.2.5 Rectangle

The replicas of this structure (see Figure 1(e)) are organized logically into a rectangle of
height h > 0 and width w > 1 such that the number of replicas n = w × (h + 1). The read
operation of this structure has a cost of n

w
, an availability of (1 − (1 − p)w)h+1, and induces a
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Figure 2 An example of our composed structures for n = 19 and 18 replicas respectively.

system load of 1
w

. Its write operation has a cost of w, an availability of 1 − (1 − pw)h+1, and
imposes to the system a load of w

n
. To obtain satisfactory results for both operations, we

set h > w such that w = 3 for 15 ≤ n ≤ 21, w = 4 for 24 ≤ n ≤ 48, w = 5 for 50 ≤ n ≤ 85,
w = 6 for 96 ≤ n ≤ 152, w = 7 for 154 ≤ n < 252 and w = 8 for 256 ≤ n < 408.

3.3 Composed structures

In this section, we introduce two composed structures and give the communication cost,
availability and system load of their read and write operations.

3.3.1 Hexagon

The replicas of this structure (see Figure 2(a)) are arranged logically into a hexagon composed
of two symmetric trapezoids, each of height h > 0 and small base sb > 1, joined at their

corresponding big bases bb = sb + h such that n = h × (2sb − 1) + sb + 2 ×
h∑

i=1

i. The read

operation of this structure has a cost of 1 − 2sb + 2
√

sb2 − sb + n, an availability of (
h−1∏

k=0

(1 −

(1 − p)(sb+k)) )
2

× (1 − (1 − p)bb), and induces on the system a load of 1
sb

. Write operations

have a cost of n×(2
√

sb2−sb+n+2sb−1)
4n−1 , an availability of 1 − (

h−1∏

k=0

(1 − p(sb+k)))
2

× (1 − pbb),

and imposes a system load of 2
√

sb2−sb+n+2sb−1
4n−1 . In order to obtain satisfactory results for

both operations, we set the small base sb = 3 for both trapezoids whenever n ≥ 30.

3.3.2 Octagon

This structure is obtained by organizing logically n = sb×(1+2h1+h2)+h1×(h2−1)+2×
h1∑

i=1

i

replicas into an octagon composed of two symmetric trapezoids, each of height h1 > 0, small
base sb > 1 and big base bb = sb+h1, which are joined to each other by means of a rectangle of
height h2 > 0 and width w = bb (see Figure 2(b)). The read operation of such a structure has

a cost of n−h1×(h1+h2)
sb

, an availability of (
h1−1∏

k=0

(1 − (1 − p)(sb+k)) )
2

×
h2∏

k=0

(1 − (1 − p)bb),

and imposes a system load of 1
sb

. Its write operation has a cost of n×sb
n−h1×(h1+h2) , an availability
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(b) Combined costs

Figure 3 The communication costs of read (RD) and write (WR) operations.

RD WR RD WR RD WR RD WR RD WR
0

5

10

15

20

25

30

35

14 <= n <= 18 29 <= n <= 36 58 <= n <= 66 115 <= n <= 127 250 <= n <= 266

RD/WR RD/WR RD/WR RD/WR RD/WR
0

5

10

15

20

25

30

35

40

45

Square Rectangle Octagon Hexagon TriangleTrapezoid

LD ELD1 ELD2 LD ELD1 ELD2 LD ELD1 ELD2 LD ELD1 ELD2 LD ELD1 ELD2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1





(a) Read operation

RD WR RD WR RD WR RD WR RD WR
0

5

10

15

20

25

30

35

14 <= n <= 18 29 <= n <= 36 58 <= n <= 66 115 <= n <= 127 250 <= n <= 266

RD/WR RD/WR RD/WR RD/WR RD/WR
0

5

10

15

20

25

30

35

40

45

Square Rectangle Octagon Hexagon TriangleTrapezoid

LD ELD1 ELD2 LD ELD1 ELD2 LD ELD1 ELD2 LD ELD1 ELD2 LD ELD1 ELD2
0,000

0,200

0,400

0,600

0,800

1,000

1,200

LD ELD1 ELD2 LD ELD1 ELD2 LD ELD1 ELD2 LD ELD1 ELD2 LD ELD1 ELD2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1





(b) Write operation

Figure 4 The system (LD) and expected system (ELD) loads for p = 0.7 and p = 0.9.

of 1−(
h1−1∏

k=0

(1−p(sb+k)))
2

×
h2∏

k=0

(1−pbb), and induces on the system a load of sb
n−h1×(h1+h2) .

To obtain satisfactory results for both operations, we fix sb = 3.

3.4 Comparison

When the number of replicas n > 20 (see Figure 3(a)), the Rectangle structure of width w has
the highest cost of n

w
for read operations and the least cost of w for write operations. On the

other hand, the Triangle structure has the fewest cost of log(n + 1) for read operations and
the worst cost of n

log(n+1) for write operations. Figure 3(b) demonstrates that the structures
have quite comparable combined read and write costs. However when n > 200, the difference
in combined costs of Rectangle, Octagon, Hexagon and Triangle structures becomes evident
with respect to those of Square and Trapezoid. The expected system load computations of
Figure 4 are carried out by using (3.5) and (3.6 ) such that we set p = 0.7 for ELD1 and
p = 0.9 for ELD2. We can observe in Figure 4(a) that the Square structure has the least
system load of 1√

n
for read operations and such a load diminishes as the number of replicas

n increases. Also, the expected system loads of this structure are close to the fail-free system
loads due to the high availability of its read operations. The Triangle structure has the
highest fail-free and expected system loads of 1 due to the fact that the single replica at
level 0 participates in every read operation. The Rectangle structure (see Figure 4(b)) has
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Figure 5 The RTWM vs ROWA protocols.

the least system load of w
n

for write operations. Also, this structure has the least expected
system loads either when p = 0.7 or p = 0.9 except for certain cases. The Triangle structure
has the highest system load of 1

log(n+1) , as well as the highest expected system load when
p = 0.9 for any number of replicas n. Note that, the Square structure has the worst expected
system loads when p = 0.7 due to the low availability of its write operations.

3.5 The RTWM protocol

In order to circumvent the drawbacks (see section 2) of write operations of the ROWA [1]
protocol and yet to preserve the advantages of its read operations, we propose a protocol
which we call ReadTwoWriteMajority. More precisely, for an even-sized number of replicas
n, we arrange the replicas logically into the Rectangle structure of section 3.2.5 such that
w = n

2 and h = 1. For an odd-sized n, we organize the replicas logically into the Trapezoid

structure of section 3.2.4 such that sb = n−1
2 , h = 1 and bb = n+1

2 . The read operation of the

RTWM protocol has a cost of 2, an availability of (1 − (1 − p)
n

2 )
2

if n is even, otherwise
1∏

k=0

(1 − (1 − p)(sb+k)), and induces a system load of 2
n

if n is even, otherwise 2
n−1 . On the

other hand, its write operation has a cost of n
2 , an availability of 1 −(1 − p

n

2 )
2

if n is even,

otherwise 1 −
1∏

k=0

(1 − p(sb+k)), and imposes a system load of 1
2 .

The RTWM protocol (see Figure 5) has much fewer communication cost (half), better
availability and smaller system load (half) for its write operations than those of the ROWA [1]
protocol, still preserving the advantages of read operations of this latter where our protocol
has one communication cost higher than that of ROWA, and has comparable availability
and system load especially for large number of replicas n.

4 General Comparison

In this section, we provide a general comparison among the most relevant existing structured
as well as our 2D structured RCPs in terms of the communication cost, availability and
system load of their operations. The “Square” configuration is set up based on the structure of
section 3.2.3 such that h = 3, 5, 7, 10, and 15. The “Rectangle” configuration is studied using
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(b) Combined costs

Figure 6 The communication costs of read (RD) and write (WR) operations.

the structure of section 3.2.5 such that h = 4, 8, 12, 19, and 31. The “FPP” configuration is
examined by taking the protocol of [3] such that the number of replicas n = t2 + t + 1 where
t = 3, 5, 7, 10 and 16. The “GQ” configuration is considered by studying the protocol of [4]
such that n = 16, 36, 64, 121, and 256 replicas. The “PQS” configuration is set up based on
the protocol of [5] such that n = 2d2 + 2d + 1 where d = 2, 3, 5, 7, and 11. Finally, the “AT”
configuration is studied by considering the Algorithm 1 of [11] such that n = 15, 31, 63, 127,
and 255 replicas.

4.1 Communication cost

The “Rectangle” of width w has the highest cost of n
w

for read operations and the least cost of
w for write ones (see Figure 6(a)). The configurations “Square”, “FPP”, and “GQ” have the
fewest cost of

√
n for read operations whereas “GQ” has the worst cost of 2

√
n − 1 for write

operations. We can observe in Figure 6(b) that the configurations “Square”, “Rectangle”,
“FPP” and “AT” have quite comparable combined read and write costs. Also, “GQ” and
“PQS” have the highest combined costs and that the difference in their combined costs
becomes evident with respect to those of the other configurations when n > 100.

4.2 Availability

All the configurations have similar availability for read operations when p = 0.8 and 0.9
(see Figure 7(a)). When p = 0.7, the configurations “Square”, “GQ” and “PQS” have quite
better read availability than “FPP” and “AT”. Note that the read availability of “Rectangle”
ameliorates gradually as the number of replicas n increases. Figure 7(b) illustrates that all
the configurations have similar write availability when p = 0.8 and 0.9 except for “Square”
and “GQ”. Both of these configurations have the worst write availability which degrades
gradually with increasing n. “PQS” has the best write availability when p = 0.7 especially
for large number of replicas n. Note that the read and write availability of “FPP” degrade
gradually when n > 100 and p = 0.7 due to the non-Condorcet property as shown in [12].

4.3 (Expected) system loads

The expected system load computations of read and write operations are carried out by
using (3.5) and (3.6) respectively such that p = 0.7 for ELD1 and p = 0.9 for ELD2. The
“Square” and “GQ” have the least system load of 1√

n
for read operations and such a load
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Figure 7 The availability of the operations for p = 0.7, 0.8 and 0.9.
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Figure 8 The system (LD) and expected system (ELD) loads for p = 0.7 and p = 0.9.

diminishes as the number of replicas n increases (see Figure 8(a)). Also, the expected system
loads of both of these configurations are close to the fail-free system loads due to the high
availability of their read operations. “AT” has the highest read system load of 0.25 when
n > 24. Also, this configuration has the highest expected system loads for 24 < n < 200.
Note that when n > 200 and p = 0.7, the “FPP” configuration induces the highest expected
system loads due to the fact that its read availability deteriorates gradually when n > 100.

Figure 8(b) illustrates that “Rectangle” of width w has the least system load of w
n

for
write operations. Also, this configuration has the least expected system loads either when
p = 0.7 or p = 0.9 except for certain cases. The “GQ” configuration has the highest write
system load of 2

√
n−1
n

which is quite similar to that of “PQS”. Also, the former configuration
has the highest expected system loads for any number of replicas n. It is worthwhile to note
that the configuration “Square” has quite comparable expected system loads with respect to
those of “GQ ” when p = 0.7 due to the low availability of its write operations.

5 Conclusion

In this paper, we proposed a structured replica control protocol that, unlike the previous
proposed ones, can be implemented using any logical 2D structure of height h > 0. We
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presented two structures that provide near optimal performance for their read and write
operations. The former has the best combined read and write costs of 2

√
n and induces

the best combined read and write loads of 2√
n

, whereas the latter has a cost of w for its
write operations which is lower than those of the existing structured RCPs and induces
near best combined read and write loads of O( 2√

n
); yet preserving comparable availability

for its read and write operations. We also proposed a new protocol which provides better
performance for its write operations than those of the well known ROWA [1] protocol while
still maintaining comparable performance for its read operations.
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Abstract

In distributed cooperation frameworks for completely autonomous agents, conflicts between the
involved agents can occur due to inconsistent data available to the agents. In highly dynamic
domains, such as RoboCup, it is often neccessary to accept a certain level of conflicts in order
to decrease reaction time of single agents, instead of relying on error-free, but extensive com-
munication. However, this may lead to situations in which unresolved conflicts linger and cause
cooperation to break down completely. In our cooperation framework, ALICA, we designed
and implemented a simple but effective approach to detect these cases and resolve them quickly
through a bully algorithm.

Keywords and phrases Agents, Multi-agent, cooperation, time critical, conflict resolution
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1 Introduction

Cooperation between autonomous agents acting in highly dynamic domains under time
constraints is an important and difficult challenge. As it becomes feasible to tackle increasingly
challenging scenarios using autonomous robots, such as search and rescue or exploration,
completely distributed approaches to teamwork become more important. In this light, central
points of failure need to be eliminated, and adaptability and robustness increased.

One prominent scenario in which such conditions are examined is the Middle Size League
of RoboCup1, where teams of five autonomous robots compete against each other. The
RoboCup domain has several key features common to many real world problems: Noisy

data: Data obtained from the sensors is very noisy due to the high speeds at which objects
move and unforseen confusing objects in the background, e.g., in the audience. Incomplete

information: The sensor range of a single robot covers only a fraction of the field’s size,
hence important objects such as the ball are sometimes not observed by any robot. Wireless

Communication: 802.11 wireless is used for communication, which is an unreliable, potentially
crowded medium, so packet loss and latency are relevant. Dynamic Environment: The game
is very quick, as robots move with up to 6m/s, i.e., 20cm per decision cycle (30 Hz). Full

Autonomy: During a game, there is absolutely no human interaction with the playing robots,
with the exception of the referee starting and stopping the game.

Hence, both highly reactive acting and coherent teamwork are needed. However, these
two goals interfere with each other, as reactivity forbids communication before acting, and
coherent teamwork requires communication, given noisy and incomplete sensor information.

Using RoboCup as a test scenario, we developed a modelling framework for cooperative
agents, called ALICA [8], which uses a completely distributed and autonomous way of decision
making. Although each robot informs its team about its actions and integrates received

1 www.robocup.org
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information into its decision making process, due to timing constraints a robot cannot afford
to wait for messages from its team members before it decides and acts. While this approach
guarantees swift reactions, it can cause inconsistent decisions. This is most pronounced if the
sensory data are very noisy, or even diverge completely. In most cases, these inconsistencies
are momentarily and are solved within a few decision cycles [8], however in some cases, the
problem can persist and cause the teamwork to break down for a significant period of time.
Requiring sensory data to be of sufficient quality to avoid this problem is unrealistic. Instead,
we deem a more explicit handling of the conflicts in question necessary. In this paper, we
present a simple method extending the teamwork approach of ALICA, which solves the
problem of persisting conflicts.

In the next Section, we briefly discuss related work, focussing on approaches in similar
domains. In Section 3, we explain the fundamental notions of teamwork within ALICA.
Section 4 explains how persisting conflicts can be detected and handled in detail. Finally,
Section 5 shows evaluation results on real robots and concludes our discussion.

2 Related Work

Plenty of teamwork approaches use a central processing unit to either guarantee consis-
tent data, or to make the team-relevant decisions. Among them, several are employed in
RoboCup [6, 1, 2]. In these approaches, perceived data is sent from the robots to a central
processing unit which either returns commands or fused sensory data, thus guaranteeing
consistency. These approaches are robust and easy to implement, however they lack the
flexibility to scale up to larger teams or to teams operating in unreliable communication
environments with real-time constraints. Furthermore, a central processing unit always
presents a single point of failure.

Other teamwork approaches, such as STEAM [9], rely on explicit communication before
acting. In particular an extension to STEAM, CONSA (COllaborative Negotiation System
based on Argumentation) [5, 4], allows the involved agents to present arguments to each
other when confronted with a conflict.

Although the requirement of explicit communication is partially alleviated by a decision
theoretic estimation of the risk of not communicating, we deem this approach not suitable
for very dynamic domains. In particular, in domains such as robotic soccer, the situation
changes too fast for argumentation to take place. Moreover, it is unclear how local data can
be used in an argument, when sensor fusion has already failed to avoid the conflict.

Some approaches, such as [3], follow a related line of thought, by basing argumentation
on belief revision operators, focussing on how arguments are understood and what kind of
agreements can be achieved. These approaches are not suitable for fast paced domains, where
it is more important to act immediately than it is to make the ideal choice.

3 Teamwork in ALICA

The central notion within ALICA are plans. Intuitively, a plan is a recipe, describing how a
certain goal can be achieved by a set of robots. More specifically, a plan contains a non-empty
set of finite automata, each labelled with a task. If a team of robots is to execute a plan,
the robots have to allocate themselves to these tasks and hence each executes one finite
automaton. A task allocation is defined by a set of believes of the form In(a, p, τ, z), denoting
that agent a takes on task τ within plan p, and currently inhabits state z.

Figure 1 shows a simple plan, with the two tasks Attack and Defend. Attack contains
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Play

z1 z3z2Attack (1 . . . 1) Defend (0 . . . 2)

DribbleGetBall ProtectGoal

Figure 1 A simple ALICA plan

two states, one for obtaining the ball, one for dribbling towards the opponent’s goal. Defend
contains only a single state, in which agents should protect the goal. Each task can be
executed by multiple agents, restricted by a cardinality, denoted ξ(p, τ). Here, exactly one
robot must execute the task Attack, while up to two can execute the task Defend.

The task allocation problem is subject to several restrictions, namely said cardinalities,
potential preconditions the plan might have, formulated in first order logic, and role restric-
tions, which can forbid robots with certain roles to take on specific tasks. For instance, a
robot designated as goalie should not take on the task Attack.

Although these restrictions potentially rule out plenty of allocations, there are usually
a vast number of valid allocations for a given situation and plan. For each plan, a utility
function maps the currently believed situation, including a potential allocation, onto the real
numbers. Each robot chooses the task allocation which maximises this function. The utility
of the plan can depend on arbitrary conditions reflected in a robot’s belief base, ranging from
the roles a robot is assigned to highly dynamic properties such as distances to other robots,
the ball, or the goal. Hence, each participating robot calculates the allocation individually.

In ALICA, plans occur grouped in plan types, such that each plan within such a plan type
represents an alternative solution to the given problem. In order to execute a plan type, a
single plan together with a task allocation needs to be picked by the executing robots. Thus,
task allocations for different plans are evaluated and compared, adding a further dimension
to the task allocation problem.

Accommodating the dynamic environment, each robot constantly recalculates the best
achievable allocation and adopts it if a small hysteresis criteria is met. This is called
reallocation. In the example above, a suitable utility function could maximise if the robot
closest to ball takes on the task Attack. If an opponent kicks the ball, the robots can
switch tasks immediately. Calculating an allocation and acting upon it is done completely
autonomously by each robot. Since the involved beliefs are noisy, conflicts arise. ALICA
assumes that the robots communicate periodically their chosen tasks, thus most conflicts
are dealt with automatically by reallocation. If however, their beliefs regarding the decision-
relevant data do not tend to converge, these conflicts can persist. For example, our current
ball detection algorithms tend to underestimate small distances and overestimate large
distances. Thus, if two robots are very close to the ball, each will perceive it as being closer
to itself. In this situation, a persistent conflict can occur.

4 Dealing with Conflicts

Our approach to deal with persisting conflicts is divided in two parts: Detection and reaction.
In the following, we will present an indicator of such conflicts and afterwards discuss a simple
solution based on bullying to resolve these conflicts. Firstly, we discuss how conflicts can be
detected. The decisions which are subject to potential conflicts are called task allocations.

! Definition 1 (Task Allocation). (Slightly simplified from [7]) A task allocation for a plan
type pt is a conjunction of the form In(a1, p, τ1, z1) ∧ In(a2, p, τ2, z2) ∧ . . . ∧ In(an, p, τn, zn),
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such that plan p belongs to pt. A task allocation C for a plan p is valid wrt. belief base F iff

F ∪ C |=(∀τ ∈ Tasks(p))(∃A)(∀a) (a ∈ A ↔ (∃z)In(a, p, τ, z)) ∧ (1)

(∃n1, n2) ξ(p, τ) = (n1, n2) ∧ n1 ≤ |A| ≤ n2 (2)

(∀τ ∈ Tasks(p))(∃n1, n2) ξ(p, τ) = (n1, n2) ∧ n1 ≤ |A| ≤ n2 (3)

F ∪ C |= In(a, p, τ1, z1) ∧ In(a, p, τ2, z2) → τ1 = τ2 ∧ z1 = z2 (4)

F ∪ C |= Pre(p) (5)

Up(F ∪ C) ≥ 0 (6)

Where Tasks(p) denotes the set of tasks of plan p, ξ(p, τ) the cardinality of a plan-task pair
and Pre(p) indicates the precondition of p.

Since each agent maintains its own task allocation, it is possible for the team to disagree
on the allocation. In this case, the team is in conflict. Each agent periodically broadcasts all
plan-task-state triples it executes, enabling the team to detect inconsistent allocations. We
call these messages plan messages. When an agent receives a plan message, it updates its
allocation accordingly, trusting the sender completely.

While this treatment of conflicts enables the team to react swiftly [8], it can cause
reoccurring conflicts. If the underlying data is inconsistent within the team, it is possible
for two or more agents to consider conflicting allocations as optimal. Reallocation can then
cause them to continuously inform each other about the outcome of their decisions, while
reallocating the respective other agents. This can go on until an external event stops the
loop or the data becomes consistent. In the remainder, the specific state an agent inhabits
given a plan and task is irrelevant, we will thus write In(a, p, τ) instead of In(a, p, τ, z).

! Definition 2 (Conflict). Two allocations C1 and C2 are in conflict, if and only if they are
for the same plan type pt, and, for some agent a, In(a, p, τ) ∈ C1, but In(a, p, τ) *∈ C2. Two
agents a1 and a2 are in conflict wrt. plan type pt iff they believe in conflicting allocations.
We say In(a, p, τ) is a cause of the conflict. Note, there can be multiple causes for a conflict.

! Proposition 1. If two agents a1 and a2 are in conflict wrt. plan type pt, caused by In(b, p, τ),
then there is a conflict between one of them and agent b.

This property guarantees that the robot, which needs to change its actions, is in conflict
with at least one robot and thus has a chance to detect it. In order to devise a detection
mechanism, we examine how allocations are modified over time. An agent’s allocation for a
plan type pt can change due to: Reallocation: the agent adopts a new allocation to improve
the utility. Messages: the agent receives a message informing it about the state of another
wrt. pt. Leaving: the agent leaves the plan and thus no longer tracks its allocation. Deletion:
the agent has not received a message from another agent for a predetermined time. In this
case the agent is removed from the team and thus from all task allocations.

Deletion is done to account for agents breaking down. We will not consider the deletion
event further, as it can be seen as an empty plan message. We will also not consider agents
leaving a plan, this event terminates the local agent’s tracking of the plan and is visible
to other agents by message events. These are able to detect a conflict arising by an agent
entering and leaving a plan repeatedly. Conflicts which endure for a longer period of time
cause a temporal pattern to appear in allocations believed by the involved agents. We
therefore define formally how allocations change over time.

! Definition 3 (Allocation Event). An allocation event e is a tuple (ϑ+, ϑ−), consisting
of allocation additions ϑ+ and allocation subtractions ϑ−, both sets of atoms of the form
In(a, p, τ), such that ϑ+ ∩ ϑ− = ∅.
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! Definition 4 (Allocation Event Composition). Let e1 = (ϑ+
1 , ϑ−

1 ) and e2 = (ϑ+
2 , ϑ−

2 ) be two
task allocation events. Then their composition is defined as:

e1 ◦ e2
def
=

(

(ϑ+
1 \ ϑ−

2 ) ∪ (ϑ+
2 \ ϑ−

1 ), (ϑ−

1 \ ϑ+
2 ) ∪ (ϑ−

2 \ ϑ+
1 )

)

This composition allows to reason about results of multiple events independently of the
allocations they apply to. Note, allocation events form an abelian group under event
composition. If an agent a receives a plan message from another agent b, this causes an
allocation event for every plan type agent a is executing. There are four cases to distinguish:

a agrees with b on its allocation, hence the allocation event is empty and can be ignored.
a does not believe that b participates in the plan type, but b does, this yields the allocation
event ({In(b, p, τ)}, ∅) for some p and τ .
a believes that b executes a different plan or task than b actually does, yielding the event
({In(b, p, τ)}, {In(b, p′τ ′)}) such that p *= p′ ∨ τ *= τ ′.
a wrongly believes that b participates in the plan type, causing (∅, {In(b, p′, τ ′)}).

By Proposition 1, these are the only cases we need to consider. If a now reallocates and
the composition of both events contains no statement about b, a cycle occurred.

! Definition 5 (Allocation Cycle). Let em be a non-empty allocation event due to a plan
message sent by agent b to agent a, and let er be the next allocation event after a receives
the message. If em ◦ er = (A, B) such that (∀p, τ) In(b, p, τ) *∈ A ∪ B), a cycle occurred.

Hence, a cycle occurs, if an agent reverts its allocation with respect to a message by
reallocation. An agent can easily monitor its allocation events and thus detect such cycles.
Of course, a cycle does not necessarily entail a conflict, it might well be that the cycle just
reflects a very quickly changing situation. However, if multiple cycles occur subsequently,
this becomes more and more unlikely to be a proper reaction to the changing conditions.

Given this detection scheme, we can devise a reaction to arising conflicts. The cycle
length depends on the frequency with which the robots communicate and deliberate. In
our case, messages are sent every 100ms and the deliberation loop takes 30ms. Thus, the
duration of two subsequent cycles is in average 115ms. It is improbable that during this time
frame the situation requires the team to change its allocation back and forth twice. Thus,
we set a limit n ≥ 2 on the number of subsequent cycles which may occur before an agent
acts upon them.

In order to resolve the detected conflicts, we use a bully algorithm, where one agent forces
the others into the allocation it deems best wrt. to the relevant utilities. The bullying agent
assumes authority on the corresponding task allocation for a fixed time period. This time
interval should be large enough to overcome the cause of the conflict, yet as small as possible
so the team can return to its more dynamic and adaptive state as quickly as possible. Once
the interval passed, all agents resume normal operation. An agent detecting n subsequent
cycles will trigger the bully algorithm by broadcasting its allocation, triggering all involved
agents to either respond or assume the proposed allocation. The leader is determined using
unique ids for each robot. Only those agents which execute the corresponding plan type
participate, not the whole team. Thus, the conflict is dealt with locally.

5 Evaluation & Conclusion

We evaluated our solution on a team of real robots, with both lab experiments and observations
of the behaviour during real tournament situations. In all our experiments, we set the number
of subsequent cycles to four and the bullying duration to two seconds, as mentioned above.
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Fighting for the ball: In cases, where two robots moved very close to the ball, persistent
conflicts become most apparent. Previously we observed cases, in which a conflict persisted
for several minutes. The presented approach reliably detected and solved this conflict.

Phantom ball: Another typical scenario where conflicts can occur, is if at least one robot of
the team detects a phantom ball far from the actual ball position. This can be due to an
object looking similar to the ball appearing in the audience (e.g., an orange t-shirt), or
an actual second ball on the field. In this case, depending on where the phantom ball is
seen, the conflict will cause either two robots to pursue the ball, or none at all. Again,
the conflict could be reliably detected and solved, however the solution to the conflict is
arbitrary, as the team will react to the hypothesis of the robot with the highest id.

Tournament situations: We employed our approach during real tournament situations at
RoboCup German Open 2010. Although we could not gather enough data for a rigorous
statistical analysis, it can be said, that during one hour of playing, bullying occurred on
average twelve times. In all cases, there was an actual conflict, which needed to be solved.
In one third of the cases, the solution to the conflict was incorrect, due to the bullying
robot not being correctly localised. In the remaining cases, the solution was acceptable
and lead to teamwork being reinstated quickly.

In conclusion, our simple, yet efficient conflict resolution method deals well within teams of
agents, extending the ALICA framework for cooperation. During real matches, the robotic
team was able to detect and repair conflicts quite reliably.

The drawback of our approach is that the solution to a conflict is only as good as the
data, the bullying robot bases its decision on. Hence, the robot with the best data should
take precedence, which could be indicated by confidence values of the sensory information.
However, since these confidence values vary over time and are possibly similar among
the participating agents, this bears the danger of being another source for disagreement.
Argumentation based methods, as in [5], might help to identify which team member should
take lead, using confidences, or geometric arguments such as line-of-sight.
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Abstract

The rapid miniaturization and integration of sensor technologies into mobile Internet devices com-
bined with Online Social Networks allows for enhanced sensor information querying, subscription,
and task placement within People-Centric Sensing networks. However, PCS systems which ex-
ploit knowledge about OSN user profiles and context information for enhanced service provision
might cause an unsolicited application and dissemination of highly personal and sensitive data.

In this paper, we propose a protocol extension to our OSN design Vegas which enables secure,
privacy-preserving, and trustful P2P communication between PCS participants. By securing
knowledge about social links with standard public key cryptography, we achieve a degree of
anonymity at a trust level which is almost good as that provided by a centralized trusted third
party.

Keywords and phrases People-Centric Sensing, Online Social Networks, P2P, Privacy, Trust
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1 Introduction

The increasing spread of powerful mobile Internet devices like smartphones or tablets,
accompanied by their rich set of integrated sensing facilities, already allow for numerous
mobile and context-enriched applications. Induced by those technical innovations, People-
Centric Sensing (PCS), a recently emerging research area in the field of Wireless Sensor
Networks, attracts increasing attention. PCS focuses on the collection of user-generated
sensor data as well as its application-oriented aggregation and utilization at Internet-scale.
In contrast to traditional sensor networks, PCS heavily builds on sensor information which
is generated by a user’s personal sensing environment [3, 5, 7]. Triggered by the rocketing
number of Online Social Network (OSN) users and the imminent integration of several mobile
sensor devices into personal sensing environments, recent research attempts to combine PCS
environments and OSNs [1, 8]. Knowledge derived from social graphs and OSN user profile
information can significantly improve the process of sensor information querying, sensor data
subscription, and sensor task placement.

A well-known problem of PCS environments and sensor data context information gen-
eration emerges from the insufficient compliance with user privacy and security demands.
Prevailing concerns stem from the possibility that any other subscriber could infer user profiles
from continuous tracking information in order to e.g. perform unsolicited advertisement or
even personal attacks. Despite recent efforts to incorporate privacy and security features into
PCS systems [3, 5, 7] and OSNs [2, 4], present architectures still do not provide adequate
precautions to fulfill all related privacy and security demands. On the one hand, experiences
from the operation of location-based services have shown that a widespread utilization of
such systems suffers from inadequate anonymization. The same problem arises in association
with PCS networks as users contribute sensing data comprising personal information which
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must not be publicly available. On the other hand, integrity of sensor data originating
from PCS networks must be guaranteed. At present, the only possibility considered secure
consists in the application of a trusted third party for the generation and assignment of
public key certificates for each PCS network participant. However, a trusted third party
cannot guarantee user anonymity as there is at least one party which is able to map users,
their messages, and their content to one and the same identity.

In order to avoid the need for a trusted third party, we consider a protocol extension
for our P2P-based OSN architecture Vegas which allows for secure and privacy-preserving
information querying inside PCS networks.

In the remainder of this paper section 2 gives a short overview of Vegas and details the
proposed protocol extension. Section 3 discusses our extension focusing on performance,
privacy, and security aspects. Work which is closely related to our approach is presented in
section 4. Section 5 concludes the paper.

2 System Architecture

In the following, we review parts of our OSN architecture developed in previous work before
we present our P2P-based overlay query routing extension which allows for privacy-preserving
sensor task, subscription, and query distribution.

2.1 Vegas Design Principles

Our proposed P2P design Vegas builds on an architecture currently developed at the Ludwig-
Maximilians-University Munich. The architecture focuses on privacy and security aspects
within a P2P-based OSN. Vegas complies with a set of requirements that we consider
inevitable for a secure and privacy preserving OSN. These requirements encompass a user’s
informational self-determination, strong trust relationships between friends, anywhere and
anytime profile availability, and transparent mobility support [6].

Vegas represents a highly restrictive OSN as it does not support communication between
participants that are not directly connected by an edge of the underlying social graph. This
restriction is motivated by a problem we termed social network pollution. To give but a few
examples of social network pollution, present OSNs offer the possibility for search operations
on its social graphs, provide unsolicited friendship recommendations, and offer support for
non-authorized linkage of a friend’s friends. This leads to a multitude of unwanted friendship
establishments i.e. links in the social graph which not necessarily represent a real friendship.
Although this design choice disallows some appealing and beneficial applications, we consider
this fact as an acceptable trade-off in order to guarantee a high degree of privacy and security.

2.2 Vegas Operation

In a nutshell, Vegas functions as follows: Any two users A and B who maintain a friendship
in Vegas own a public key pair i.e. a link-specific key pair for each other. As user A holds a
unique key pair K−

A→Xi
/K+

A→Xi
(i ∈ 1, . . . , n) for each of his n friends X1, ..., Xn, a key pair

represents nothing else than a directed edge in the overall social graph. For the remainder
of this paper, we always mean link-specific keys when we talk about keys and key pairs.
The notion of a key K [−|+]

A→B means that this key is a private/public key generated by A
for exclusive communication with B. A utilizes B’s public key K+

B→A to encrypt messages
intended for B. In addition, A’s public key K+

A→B is included into each message in order to
map the originator of a message to its content. It should be stressed that, for the purpose
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of signing, the application of A’s private key K−
A→B is restricted to messages addressed to

B. Since a key pair represents an edge of the social graph, removal of such an edge – which
equals to the cancellation of a friendship – is performed by the deletion of the matching key
pair. This allows for easy key revocation as the application of keys is limited to two friends.

In order to allow for delay-tolerant offline communication, we build on an asynchronous
message exchange scheme based on a concept presented in [13]. Vegas relies on well known
services like email, SMS, or instant messaging which can be exploited to simulate the
exchanger component. An exchanger represents the abstract concept of a message queue
which may be used to transmit messages or any other kind of content. Any two Vegas friends
A and B are aware of one or more such exchanger addresses of each other. In case A wants
to send a message to B, A applies B’s public key K+

B→A to encrypt the message content.
After signing the message with K−

A→B , A sends this message to one of B’s exchangers. Now
B can fetch this messages and identify sender A through his attached public key. It should
be stressed that B is the only user that knows about the mapping of the included public key
to the identity of user A. In case A considers the mapping of a public key to B’s identity
to be compromised, A can trigger a key refresh operation in order to replace all former key
pairs shared with B.

2.3 Vegas Extension for Sensor Querying

Vegas represents a highly restrictive P2P OSN as it disallows communication between users
that do not share an edge in the underlying social graph. Since P2P-based PCS applications
require multi-hop (i.e multi-edge) communication we developed a protocol extension which
allows for the application of Vegas for highly anonymous and trustful sensor information
communication. In this paper we focus on the utilization of Vegas for sensor querying i.e.
we provide an answer to the question how to figure out one or more OSN users that a)
support the discovery of sensor information, b) allow for sensor subscription, and c) facilitate
sensor task placement. Figure 1 illustrates this forwarding process in detail. Information
from the OSN domain gives access to all properties and preferences from all OSN users that
represent a friend. For instance, in case a user A wants to figure out other OSN users which
could support querying sensor-related information, A can issue a sensor query to friends
X1, . . . , Xm (1 ≤ m ≤ n, n denotes the total number of A’s friends) whose profiles match A’s
query content. Dependent on the kind of available sensors and user defined access policies
a user Xi (i ∈ 1, . . . , m) can respond to such a sensor query. To benefit from Xi’s social
relationships, we introduce a mechanism which allows for trusted and privacy-preserving
forwarding of queries to users that do not share an edge with the query originator. Queries are
tuples of the form (operation, sensing properties, task properties). An example
query for measuring the temperature in a certain area might look like this:

Q(i) = (put_task,(type=temp,frequency=1),(location={x,y},radius=r,time={t1,t2}))

At first, A attempts to locally match all profiles of his friends with the constraints of request
Q(i). Considering the request Q(i) a matchmaking process could be based on one or more
heuristics that operate on the properties location and time. This restricts positive matches to
users who not only support the requested sensor type and its properties but also visit places
close to the provided location with a certain frequency and during certain periods of time.
Since we do not limit requests to a predefined set of properties it could also be necessary to
apply reasoning operations to reduce/increase the set of positive matches. After A finished
the refinement process, he sends a request message Q(i) to all friends Xi (i ∈ 1, . . . , m) whose
profiles indicated a match. This message includes an exchanger addresses of A. A recipient,
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Figure 1 Schematic illustration of a query routing path. Messages are labeled with the corre-

sponding exchanger utilized for transmission. Sending a message via exchanger Ti includes message

encryption and signing with the corresponding key pairs.

in this example Xi1, who does not fulfill the requirements of Q(i) may decide to forward
the query to all his friends whose profiles indicate a potential match for Q(i). The decision
whether to respond and forward a query depends on user preferences (either set by policies
or manual interaction). This process repeats until Q(i) cannot be forwarded any longer or
arrives at user Z who is able to setup the specified task. As we attach an exchanger address
and a temporary public key of sender A to Q(i), Z can send an encrypted response R(i) to
A notifying him about a successful task setup. Due to our privacy demands, we enable Z
to anonymize his identity by relying R(i) via one of his randomly selected friends Yj1. To
increase the degree of anonymity, we allow for a dynamic configuration of the number of
edges R(i) has to traverse before it may reach the originator of the request. Dependent on
the degree of anonymity, Yj1 does not directly respond to A but randomly selects one of his
friends Yj2 as the next relay, and so far. Therefore, even multiple, successive responses are
not delivered by the same user concealing a relation among those messages.

3 Discussion

Our approach represents a trade-off between support for efficient query routing inside PCS
networks and the assurance of a high degree of anonymity and trust. This section provides
some considerations regarding these aspects.

3.1 Routing Aspects

P2P networks can be separated into structured and unstructured systems. While unstructured
systems suffer from query routing inefficiency due to their flooding approach, structured
networks are susceptible to churn. The idea to infer query routing paths from OSN user
profile information has recently been proposed for Pastry [10]. Our approach does not utilize
the concept of DHTs but allows for simple forwarding based on preferences and capabilities
of OSN participants. In essence, our design represents a trade-off since the application of
OSN knowledge is expected to perform better than flooding but worse than DHT-based
query routing. It should be mentioned that our proposed extension focuses on delay-tolerant
networks. Although one could imagine scenarios which suffer from such a best effort approach,
an asynchronous implementation is motivated by our demand for a high degree of anonymity
and trust. In addition, this restriction can help to obtain a larger result set as users can
forward requests even in case a recipient is currently offline.
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3.2 Privacy Aspects

Although Vegas profiles are publicly available, by default, they are always encrypted with a
friend’s link-specific public key. Furthermore, all messages sent between two friends A and B
are encrypted based on the corresponding public key. As long as direct messaging is limited
to friends, Vegas adheres to all requirements listed in [6]. The proposed query extension
for Vegas introduces a routing process which involves OSN users that do not share an edge
with the query originator. However, our stringent privacy requirements are still fulfilled:
Considering the query path of a sensor information request, the only information disclosed
by the originator is one of probably multiple exchanger addresses. Dependent on the desired
degree of anonymity, a sensing node may decide on the number of utilized exchangers as well
as the frequency for exchanger refreshes. To increase the anonymity of a responding user,
our extension allows him to specify the minimum number of edges a message has to pass
before it can arrive at the originator of the request. Certainly, our extension cannot guard
against protocol attacks like routing, storage, sybil, and eclipse attacks that all structured
P2P networks suffer from. For instance, it takes no effort to replace an exchanger address to
forward responses to another user. However, assuming trustful friendships, our extension
cannot be exploited for security attacks targeting at message integrity or disclosure of user
identities.

3.3 Trust Aspects

Vegas does not support unsolicited friendship establishment. Due to the introduction of
multi-edge query routing, this stringent restriction becomes relaxed as private information
disseminates over the boundary of the personal friendship domain. However, even in case
a user observes hostile behavior of his friends, it necessitates a simple key pair deletion to
cancel any association with such a friend. The degree of trust achieved by our design is
not equivalent to that offered by a single trusted third party. However, compared to the
application of a web of trust solution, our extension allows for much better trust relations
between users that do not share an edge in the social graph. In summary, our trust model
must be considered as a serious alternative to a trusted third party solution as it achieves
complete informational self-determination in a decentralized way.

4 Related Work

A lot of research has been published with concepts focusing on privacy, security, and integrity
aspects in PCS networks. The key idea of PriSense [11] is to slice data and send it via
several different nodes, instead of sending it at once and directly to a server. Thereby, it
conceals the data sensed by the individual users; however, it is still known which users
participated. Our solution conceals the identities of participating users to allow for a real
anonymous participation. Another approach is to add noise to sensed data, which can be
subtracted in a later stage. In PoolView [7] measured time-series data is superimposed with
a noise model, which is shared within the community. It preserves recently sensed values
as well as their changes with time. Instead of perturbing measurements, AnonySense [3]
employs several anonymization components, such as Tor and MIX networks, to obscure a
user’s identity. k-anonymity is ensured through a registration authority. An orthogonal
approach is to actively engage users to decide on what to reveal to whom, and to learn what
kind of data can be shared without compromising the user’s privacy [12]. However, this
concept simply retains sensitive data which results in a smaller amount of useful information.
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Due to our fully anonymous communication, our solution also allows for sharing of sensitive
data. An important research field represents privacy protection in OSNs. Some related
work already proposes the application of P2P concepts to allow for privacy-preserving social
networking [4, 2]. OSNs have also been combined with PCS networks but merely to enable
new applications [8, 9] and not to enhance privacy. To the best of our knowledge, our
approach is the first that uses an OSN to ensure privacy and trust in PCS networks.

5 Conclusion and Future Work

We proposed a protocol extension to our OSN design Vegas which achieves a high degree
of anonymity and trust for delay-tolerant PCS networks. Our solution does not rely on a
trusted third party but achieves trust by exploiting knowledge about the social graph. As
our extension circumvents the spread of social network pollution and therefore complies with
our requirement for perfect informational self-determination, we achieve a higher degree of
trust than with a decentralized solution like the web of trust. In our future work we intend
to perform several user studies to gain knowledge about the applicability of our approach
in real world settings. In parallel, we will conduct intense simulations of typical protocol
attacks identify the requirements for important system parameters like the minimum number
of friends necessary to achieve a sufficient degree of anonymity and trust.
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Abstract

The problem of localizing nodes without GPS based on a small fraction of anchor nodes which are
aware of their positions is considered to be an important service for applications in wireless ad
hoc networks. With an adversary trying to mislead nodes about their estimated locations, several
approaches aiming to defeat attackers by means of robustness instead of cryptographic measures
have been proposed in the past. Nevertheless, these robust techniques focus on single-hop based
localization. Hence, we investigate the impact of employing the well-known Least Median of
Squares (LMS) algorithm in the context of the multi-hop based DV-hop approach. We argue that
in this case LMS is no longer able to meet its requirements. We examine the source of this behavior
and show that LMS leads to more accurate results when using the median to obtain average hop
lengths in DV-hop. Furthermore, we investigate the feasibility of performing lateration using
the l1-norm instead of the typically employed l2-norm, as well as the possibility of enhancing
the robustness of LMS using lateration based on the l1-norm. Contrary to our expectations,
the l1-norm only results in a slight, neglectable advantage compared to the computationally less
expensive l2-norm lateration.

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.182

1 Introduction

Wireless Ad Hoc Networks offer a wide variety of applications ranging from environmental
monitoring to intrusion detection or battlefield surveillance. An important service for these
applications is the localization of the participants without relying on GPS. Thus the problem
of localizing nodes using only a small fraction of anchor nodes which are aware of their
positions has gained much attention from researchers in the past. While these mechanisms
usually assume cooperative behavior among the participants, certain applications demand
the deployment of nodes in an adversarial environment. In order to prevent an adversary
from misleading nodes about their locations, a variety of secure localization schemes have
been presented the last few years [5]. Yet most of these approaches require single-hop
communication between nodes and anchors to conduct distance measurements. In contrast,
multi-hop based schemes only rely on a few anchors to measure the distance between nodes
and anchors. A well-known example is the DV-hop approach, where anchors broadcast
small beacon messages holding their locations [3]. Nodes receiving such a message increment
a contained hop count value and broadcast the adjusted message, assuming it provides a
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shorter path to the respective anchor. Once a node has received the messages from at least
three anchors, it is able to perform lateration to obtain its coordinates using the according
set of references (xi, yi, di), where (xi, yi) is the position of the anchor and di the respective
measured distance. In order to obtain a distance measurement di, the number of hops of
the shortest path to the respective anchor is multiplied with an average hop length value.
Anchors estimate this hop length by calculating the sum of the euclidean distances to the
other known anchors and dividing it by the sum of the number of hops of the shortest
paths to the according anchors. Then, the hop length is broadcast in a separate message or
piggy-backed with a beacon message sent out at regular intervals. Finally, nodes receiving
these estimates from several anchors calculate the mean to obtain an aggregated hop length.

Based on these observations, this work provides the following contributions: First, we
investigate the influence of employing the Least Median of Squares (LMS) approach in the
multi-hop based DV-hop scheme. We show that LMS is unable to defeat a basic attack in
the originally described DV-hop algorithm. Second, we show that estimating an average
hop length using a slightly modified technique based on the median enables LMS to again
provide robustness against this attack. Finally, we investigate the feasibility of the l1-norm
in contrast to the widely-used l2-norm, as well as the possibility of enhancing the robustness
of LMS by employing the l1-norm.

2 Linear Least Squares Lateration

Given the set of N references (xi, yi, di), a node would ideally reside at the point of intersection
of at least three circles with center (xi, yi) and radius di. Hence, assuming no distance
measurement errors, it would be sufficient to find this point of intersection by solving a system
of non-linear circle equations [2]. In reality, however, these circles usually do not intersect
at a specific location (i.e. the system of equations is not solvable). In this case, a least

squares approach minimizing the sum of residue squares can be used to estimate a position.
However, this involves solving a non-linear optimization problem, which is usually considered
too expensive as it requires methods of global optimization. Therefore, the result of the
non-linear least squares approach is approximated by using the Linear Least Squares (LLS)
technique which is based on the following non-linear optimization problem [2]:

(

x̂

ŷ

)

= arg min
x

‖Ax − b‖p A ∈ R
(N,2), x ∈ R

2, b ∈ R
N (1)

Here, ‖·‖p is the lp-norm (p ≥ 1 is a parameter which may be chosen to fit a specific
application) and Ax = b is the matrix form of a system of linear equations. This system of
equations is obtained by subtracting the mean of all left and right parts of the system of
non-linear circle equations from each equation according to [2]. Furthermore, it is easy to see
that (x̂, ŷ)T is a solution of MIN

x

‖Ax − b‖p if and only if it is a solution of MIN
x

‖Ax − b‖p
p.

Usually, the l2-norm (p = 2) is used to estimate a location. This is due to the fact
that, for p = 2, a location can be estimated by simply solving a system of linear equations
using QR-factorization for example. Nevertheless, while employing the l2-norm (p = 2)
is considered to be the most feasible approach, it is known to be vulnerable to malicious
references forging the location or the distance to an anchor [2].

The LLS approach may also be applied to fit a function to a given set of data points.
In this case, compared to the l2-norm, the l1-norm is generally less vulnerable to outliers
contained in the data, e.g. caused by measurement errors. Therefore, we are interested in
whether using the l1-norm instead of the l2-norm might increase the robustness of lateration
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against attackers. Employing the l1-norm, the position of a node is estimated by solving the
following optimization problem:

(

x̂

ŷ

)

= arg min
x

‖Ax − b‖1 = arg min
x

{

N
∑

i=1

|aix − bi|

}

(2)

This problem can be formulated as a linear optimization problem by introducing a vector
h = (h1, h2, . . . , hN ) ∈ RN of auxiliary variables hi ≥ 0, ∀i ∈ {1, . . . , N}:

MIN
x

{

N
∑

i=1

|aix − bi|

}

⇔ MIN
x,h

{

N
∑

i=1

hi

∣

∣

∣

∣

∣

− h ≤ Ax − b ≤ h

}

Hence, we obtain:

MIN
x,h

{

(0T
, 1

T )

(

x

h

)
∣

∣

∣

∣

(

A −E

−A −E

) (

x

h

)

≤

(

b

−b

)}

where E is the identity matrix of dimension N , 0 = (0, 0)T ∈ R2 and 1 = (1, 1, . . . , 1)T ∈ RN .
Depending on the norm, we refer to the respective estimation technique as l1-LLS or l2-
LLS. While l1-LLS is computationally more expensive than l2-LLS, a potential increase in
robustness might justify solving a simple linear optimization problem.

3 Threats and Countermeasures

There are a variety of attacks which aim at deceiving nodes about their locations [5]:
Impersonation attack, sybil attack, wormhole attack and location reference attack. It should
be noted here that while a Denial-of-Service attack (e.g. jamming) might also disrupt the
process of localization, an adversary is usually assumed to try to unnoticeably mislead nodes
about their whereabouts. Several mechanisms aiming to defeat one or more of the above
mentioned threats have been proposed. They can be divided into prevention, detection and
filtering (i.e. robust) techniques [5]. In the past, several robust location estimation schemes
have been proposed. Within this work, we only consider the well-known Least Median of
Squares (LMS) filtering approach [2], focusing on possible advantages of performing lateration
using the l1-norm instead of the commonly used l2-norm, as well as its behavior in the context
of the multi-hop based DV-hop scheme. In addition, we only focus on the colluding location
reference attack where a number of malicious anchors broadcast beacon messages with false
coordinates. These coordinates are shifted into a certain common direction away from the
true positions. This threats is also known as false beacon location attack and very popular in
terms of evaluating the robustness of location estimation schemes [2, 5].

LLS employing the l2-norm is not robust against outliers [2]. Li et al. therefore propose
to minimize the median instead of the sum of residue squares based on the method described
in [4]. Finding the exact solution of this non-linear optimization problem is computationally
expensive. Thus, the authors present the following algorithm as an approximate solution [2]:

1. Randomly draw M = 20 subsets of size 4 from the set of given references.

2. Estimate a location for each subset j = 1, . . . , M using l2-LLS and calculate the median
of the estimation residuals r2

ij to each anchor i = 1, . . . , N .

3. Define m = arg minj medi

{

r2
ij

}

(least median of all medians of each subset).

4. Calculate s0 = 1.4826(1 + 5
N−2 )

√

medir
2
im.

5. Assign a weight wi to each reference, where wi = 1 if | ri

s0
| ≤ 2.5 or 0 otherwise.

6. Compute a weighted least squares of all given references using weights wi. This corresponds
to estimating a position using l2-LLS with only the references with weight wi = 1.
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4 Evaluation

To evaluate the impact of employing LMS in DV-hop, as well as investigating the suitability
of using the l1-norm instead of the l2-norm, we implemented DV-hop using OMNeT++
(http://www.omnetpp.org/) as follows: Each anchor broadcast a beacon message with a
sequence number containing its location in a total of 3 rounds separated by intervals of
roughly 60 seconds to provide the network with enough time to distribute the messages.
So far, we did not incorporate a mechanism to limit flooding, since this might result in
different contamination ratios at different nodes. Anchors receiving beacons from other
anchors calculated a hop length estimate following either the original DV-hop approach or
the median variant and included this information in the message to be sent out in the next
round. Additionally, nodes kept the most recent hop length estimate announced by the
corresponding anchor. Finally, after finishing the 3 rounds, nodes estimated their locations by
choosing a hop length from their list of available estimates and running each of the location
estimation schemes on their respective set of references. When selecting a hop length, nodes
employed the mean or the median according to the technique currently in use by the anchors.

For communication among nodes, we incorporated the radio model provided by the
MiXiM framework (http://mixim.sourceforge.net/). Apart from evaluating the original
LMS approach using l2-LLS in step 2 and 6 of the algorithm which from now on we will
refer to as l2-LMS, we also consider a new variation of LMS employing l1-LLS which we
refer to as l1-LMS. We implemented and compared l1-LLS, l2-LLS, as well as both LMS
variants. In order to obtain a location using l1-LLS by finding a solution to (2), we employed
lpsolve (http://lpsolve.sourceforge.net/). Furthermore, regarding l2-LLS, we used lapack++
(http://lapackpp.sourceforge.net/) to estimate a position by solving the respective system of
linear equations with QR-factorization. We randomly placed 300 nodes and N = 20 anchors
on a 1000 m × 1000 m field using the uniform distribution. The field size was chosen
according to a density required to prevent the partitioning of the network and to the applied
transmission power of 110 mW, which roughly corresponds to an interference range of 140 m.
In our scenario, the mean number of incoming connections at a node is about 12, which is a
stable value above the critical threshold of 9 determined by Langendoen and Reijers [1]
with a mean of about 7 hops on the shortest paths between nodes and anchors.

Regarding the false beacon location attack where anchors announce a false position, out
of N anchors, (N · ε) were randomly selected to be malicious. The contamination ratio
ε was varied from 0 (no attacker) to 0.4 in steps of 5%. Malicious anchors forged their
location by adding a vector defined by a common direction and specific length to their actual
coordinates. The length of this vector which is from now on referred to as forged distance

was set to 500 m and 1500 m to examine different strengths of the attack. To measure the
influence of the attacking anchors, we used the mean estimation error which corresponds to
the mean of the euclidean distance between the actual and the estimated location over all
nodes. Furthermore, it should be noted here that the following figures all show the mean of
30 repetitions including the confidence intervals at a confidence level of 99 %.

We first evaluated the robustness of the location estimation schemes when employed in
the original DV-hop approach. Figure 1a shows the estimation error for a forged distance of
1500 m. Here, l2-LLS shows the expected non-robust behavior, suffering from an increasing
number of malicious anchors. Furthermore, according to our assumptions, for ε < 0.2, l1-LLS
is able to provide a decrease of the error compared to l2-LLS. However, contrary to our initial
expectations, the difference between the estimation error of l1-LLS and l2-LLS becomes
neglectable for ε ≥ 0.2. This may be based on the fact that the system of non-linear circle
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(a) Original DV-hop approach
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(b) DV-hop using median
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Figure 1 Evaluation of LMS in DV-hop (false beacon location attack).

equations is linearized by subtracting the mean of all equations according to [2]. Therefore,
malicious references may still be able to influence the resulting system of equations Ax = b,
preventing the l1-norm from providing a clear advantage for an increasing forged distance.

To understand why LMS is unable to provide the expected robust behavior as shown
in figure 1a, it is necessary to explain the effect of attackers exploiting honest nodes and
anchors to support the attack. Malicious anchors increase the euclidean distance computed at
benign anchors, while the number of hops between the anchors remains the same. Therefore,
when estimating the hop length by summing up the euclidean distances and dividing it by
the sum of the number of hops, an attacker is able to cause benign anchors to announce
increased hop length estimates. Computed at a benign anchor, while still being influenced by
malicious distance measurements, we call such a hop length estimate polluted. Consequently,
in the original DV-hop algorithm, with the number of hops of the shortest paths being
multiplied with the hop length estimate, a polluted hop length resulting from forged anchor
locations affects all distance measurements obtained at a node. With the median being able
to ignore outliers up to 50 %, it seems reasonable to aggregate hop length estimates using
the median in order to only incorporate references from other benign anchors (which should
be a majority). Zeng et al. shortly state this assumption and propose to employ the median
when aggregating hop lengths at the anchors [6]. However, they do not mention the effect of
benign anchors increasing the strength of the attack. Furthermore, while they provide no
evaluation, we are able to confirm their assumption according to the estimation error shown
in figure 1b. Here, anchors and nodes aggregate the respective hop lengths using the median,
enabling LMS to yield its expected robust behavior. This decreases the estimation error
from over 800 m at ε = 0.4 in the original DV-hop to about 400 m when using the median. It
should be noted here that the assumption of benign anchors supporting the attack is also
confirmed by the estimation error of the non-robust l2-LLS approach decreasing from roughly
1000 m (figure 1a) at ε = 0.4 to about 750 m (figure 1b) when using the median in DV-hop.

Accordingly, while employing the l1-norm reduces the estimation error for ε < 0.2, LMS
does not benefit from using l1-LLS (figure 1a and 1b). This may be based on the fact that for
ε < 0.2, the original l2-LMS approach is already able to filter out the majority of malicious
references. Hence, in terms of LMS, we conclude that employing l1-LLS instead of the
computationally less expensive l2-LLS approach does not provide a clear benefit.

In order to obtain a better understanding of the actual filtering ability of the median
regarding polluted hop lengths resulting in an increased strength of the attack, we investigated
the local contamination ratio. At a node, the local contamination ratio describes the ratio of
malicious references among all given references. To obtain this ratio, we tagged each beacon
message with a contamination field in our simulation. Hence, this field allowed to determine
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whether a beacon contained a false location or a polluted hop length. While the local
contamination ratio usually corresponds to the global contamination ratio ε, transforming a
number of hops to a distance by multiplying it with a polluted hop length can result in a
local contamination ratio of 1 (i.e. all references are affected by the attack). Figure 1c shows
the mean local contamination ratio over all nodes. According to our expectations, when using
the original DV-hop approach, all references are either malicious or affected by a polluted
hop length at a forged distance of 500 m. In contrast, using the median allows to filter the
majority of polluted hop lengths. For a forged distance of 500 m, the median is unable to
filter all polluted hop lengths due to noise in the benign hop lengths. However, with an
increasing forged distance of 1500 m, the median is able to almost filter out all polluted hop
lengths. This may be based on the fact that in this case polluted hop lengths are larger than
the noise among the benign hop lengths. We therefore conclude that employing the median
should be considered mandatory in DV-hop.

5 Conclusions and future work

In this work, we evaluated the robustness of LMS when employed in the multi-hop based
DV-hop approach. We showed that LMS is already unable to provide the expected robust
behavior for a simple anchor-based attack. However, when estimating a hop length with a
slightly modified approach based on the median, LMS shows the expected robust behavior.
Thus, in terms of secure localization, using the median based technique in DV-hop should
be considered mandatory. Furthermore, we employed the l1-norm instead of the l2-norm
to perform lateration. Contrary to our expectations, the l1-norm which is typically more
robust against outliers, only provided a slight, neglectable benefit when employed in LMS.
We assume that this behavior is based on the subtraction of the mean of all equations from
each equation (i.e. the linearization of the system of equations) according to [2]. Therefore,
we recommend using the computationally less expensive l2-LLS approach.

In our future work, we aim at providing an extensive comparison of the performance of a
wider variety of robust location estimation techniques employing the median-based DV-hop
algorithm in a three-dimensional, multi-hop based environment.
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Abstract

Intrusion Detection Systems (IDS) offer valuable measures to cope with today’s attacks on com-
puters and networks. But the increasing performance of networks and end systems and the
growing complexity of IT systems lead to rapidly growing volumes of observation data and large
signature bases. Therefore, IDS are forced to drop observations in high load situations offering
chances to attackers to act undetectable. We introduce an efficient dynamically adaptable, dis-
tributed approach for a multi-step signature based IDS. Finally, we discuss initial performance
evaluations of a prototype implementation and motivate future work scopes.
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1 Motivation

Intrusion Detection Systems (IDS) have been proven as important instruments for the
protection of computer systems and networks. IDSs consist of sensors and analysis units.
Sensors are either network-based or host-based. Host sensors monitor the activities of
applications and the operating system on observed hosts (e.g. system calls). Network Sensors
monitor network traffic at mirror ports of routers and switches. The sensors capture security
relevant activities from these observations and continuously output a stream of audit events
which is passed to an analysis unit. IDSs apply either pattern anomaly or misuse detection.
Misuse detection searches for traces of security violations in captured observations (audit
data), using known attack patterns – the signatures.

A challenge that all intrusion detection systems are facing today is the increasing per-
formance of both networks and end systems. This leads to a rapid growth of audit data
volumes to be analyzed. On the other hand, the growing complexity of the IT-systems causes
novel vulnerabilities and offers new possibilities for running attacks so that the number of
signatures to be analyzed increases as well. Already today intrusion detection systems are
forced to drop audit data in high load situations. Thus, countermeasures become impossible.
This provides the attackers also the possibility to apply a "be patient"-attack-strategy which
portions their malicious activities over several days to exploit the fact that overloaded IDS
discard detection results regularly, due to limited memory resources.

To cope with this situation several approaches have been proposed, e.g. the detection of
intrusions based on an analysis of more compact, less detailed network log data [3]. But all
these approaches aim at optimizing the non-distributed, single threaded signature analysis.
The Gnort approach in [7] utilizes the massive parallel computing capabilities of expensive,
high end graphic processors (GPUs), but it only doubles the analysis throughput compared
to the sequential Snort tool. In contrast to today’s highly loaded IDS, extensive spare
computing resources are available on cheap desktop machines in every network. Therefore,
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a distributed signature analysis is a possible way to overcome this issue. So far, today’s
network-based IDS only apply primitive means to parallelize packet analysis by load balancing
mechanisms [1]. There are also almost no approaches to parallelize host-based audit data
analyses [2].

2 Efficient Distributed Intrusion Detection

Today, most IDS used in practice use a centralistic approach and apply misuse detection (e.g.
Snort [6]). The implementation and configuration of misuse detection systems are simpler and
allow for a significantly higher detection accuracy compared to anomaly detection. Typically,
single step signatures are applied to detect attacks by analyzing a single audit event (e.g.
network packet). In contrast to single step signatures, multi-step signatures allow for a
fine-grained modeling of attacks. They specify more detailed characteristic attack traces,
their dependencies, and the chronological order of the steps. Many semantic aspects of
multi-step attacks cannot be modeled by single-step signatures or only insufficiently, which
results in an increased false alarm rate (false positives). Therefore, in the following we focus
on misuse detection based on the analysis of multi-step signatures. Our approach bases on
an existing non-distributed IDS, which applies multi-step signatures defined in the Event
Description Language (EDL) [5]. The state/transition approach EDL uses a Petri net like
description principle.

2.1 EDL Signatures

EDL descriptions consist of places and transitions connected by directed edges. Places
represent relevant system states of an attack. Hence, they characterize the attack progress.
Transitions describe state changes triggered by audit events from the audit data stream
recorded during an attack. An example of an EDL signature with four places (P1 – P4) and
three transitions (T1 – T3) is depicted in Fig. 1. Ongoing attacks are represented by tokens
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Figure 1 EDL Signature Example

on places. Tokens can be labeled with values like colored Petri nets. A place defines zero or
more features which specify the properties of tokens located on this place. EDL distinguishes
four place types: initial, interior, escape and exit. Initial places are signature’s starting
places which are marked with an initial token at start up. The exit place represents the
completion of an attack instance. Thus, a token reaches this place implies that an attack has
been detected. Escape places indicate that events occurred in the audit data stream which
make the completion of an attack instance impossible. Therefore, tokens reaching places of
this type are discarded. All other places are interior places.

A transition that is triggered by an event of a certain type can also contain a set of
conditions. As shown in Fig. 1, these conditions can specify constraints over certain features
of the triggering event (e.g., host=webserver) and token values (e.g., P3.userID=1066). The
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evaluation of these transition conditions requires CPU time depending on the complexity of
the conditions and the frequency of the evaluation, which is determined by the number of
occurring events in the audit data and the number of tokens on input places of a transition.

2.2 Distributed Analysis

In order to cope with overload situations, which often forces today’s IDS to drop audit data,
the required analysis effort can be distributed among a set of cooperating analysis units on
different hosts or multiple CPU cores. Primitive load balancing mechanisms, assigning audit
events to some analysis units cannot be used for multi-step signature-based IDS, because an
attack consists of a chain of distinct attack traces (audit events). Instead, the signature base
of the IDS can be split up into a number of distinct subsets which are assigned to different
cooperating analysis units. But this requires to transmit each audit event many times (from
the sensor to each host that runs an analysis unit). Therefore, a more sophisticated signature
distribution, which minimizes the need to duplicate captured audit events is desirable. This
can be achieved by identifying fine grained minimal parts in each multi-step signature that
can be independently assigned to different analysis units. This allows to optimize the required
communication effort for distributing and duplicating captured audit data for each distributed
analysis unit. By pooling minimal signature parts which analyze the same type of audit
events and assigning them to the same analysis unit, events of this type only have to be
sent to a subset of the analysis units. As an example, we consider an EDL signature that

Figure 2 Minimal parts of SUID example signature

describes the SUID (set user ID) script attack on a former version of the Solaris OS, which
is depicted in Fig. 2. Without explaining the attack in detail, the attacker tries to gain
administrative privileges by exploiting a vulnerability of the extended file access rights.

The gray shaded spheres in Fig. 2 represent the three minimal parts, this signature can
be partitioned into. These parts cannot be partitioned further, because the transitions have
to evaluate the tokens on their input places. Therefore, a transition and its input places have
to be assigned to the same signature part. Now, if signature parts are assigned to different
analysis units, a token forward mechanism is required. In Fig. 2, the execution of transition
T2 from signature part prt2 requires to place a token on the output place P3 which belongs
to different signature part prt3. If prt2 and prt3 are assigned to different analysis hosts the
token has to be forwarded via a communication channel between both analysis hosts.

The basic concept of a prototype implementation of our approach is depicted in Figure 3.
A sensor logs audit events and classifies them into different event types (e.g. network protocol,
port, specific system calls). The signature base is splitted up into minimal signature parts
(prtij) and each part is assigned to one analysis unit (AU), which allows for many different
assignments of the signature base to avaliable analysis units. A configurable filter, knowing
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Figure 3 Distributed IDS Overview

the current signature partitioning, discards non-relevant audit data and transmits only those
event types to each analysis unit, which are analyzed by them to limit the communication
effort. The distributed analysis units examine incoming audit events by evaluating the
transition conditions of assigned signature parts. If a transition is activated and a token has
to be placed on an output place, which was assigned to a remote analysis unit, then this
token is transmitted to the responsible analysis unit. The results of the distributed analysis
are aggregated and evaluated by a security administrator.

3 Initial Evaluations

The distribution strategy described in the previous section has been implemented and
evaluated using a distributed Intrusion Detection System, which bases on EDL multi-step
signatures [4]. We modified and extended our existing Intrusion Detection tool SAM (signature
analysis module) according to Figure 3 to convert it into a distributed IDS. SAM sensors
forward audit events to a configurable number of analysis units over network connections
(sockets). Each SAM analysis unit possesses a configurable set of EDL signatures. This
implies that a configurable set of minimal signature parts is assigned to each analysis unit.
The analysis units exchange state information (tokens) between each other also over network
connections. We choose three example signatures and calculated all possible partitions
(assignments) of the contained signature parts to three analysis units. We evaluated each of
these 965 partitions on three parallel running SAM analysis units. These partitions include
very efficient distributions as well as completely inappropriate, inefficient ones, causing badly
balanced loads of the analysis units. Because of limited space, only two of the used signature
examples are explained in the following.

The first example describes the SUID (set user ID) script attack that already has been
introduced in the previous section. Another used signature example, consisting of 8 places
and 15 transitions, which is not depicted here due to lack of space, describes the link shell
attack which exploits a vulnerability of a former version of the Solaris OS. The attack exploits
a specific shell function as well as the SUID (set user ID) mechanism. If a link refers to a
shell script and the scripts filename starts with a hyphen "-" then an attacker can get an
interactive shell having the access rights of the script owner (e.g. root) by executing the link.

In order to evaluate the analysis efficiency of our distributed system we first used a generic
set of audit data. The data set was created by capturing system calls of a host while the
described attacks were executed. Afterwards, all logged system calls, which do not belong
to the executed attacks have been discarded manually. Therefore, the audit data set only
contains relevant attack traces of the applied signatures. Concerning the required analysis
effort, this represents the worst case scenario, demanding for the maximum computation
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effort for analysis. Additionally, the captured attack traces have been duplicated to create
a sufficiently large audit data file of 6,000 events (system calls). The experiments were
conducted on four separate machines (Intel Xeon, 2.66 GHz, 512 KB L2 cache, 2 GB RAM)
which are connected by switched Fast Ethernet links. One machine executes the sensor; the
others each run an analysis unit. At first we applied the generic audit data set and evaluated,
that even assigning the three example signatures to different analysis units, without splitting
them into parts, leads to a runtime improvement. We measured the run time separately for
each analysis unit. Then, we evaluated if further runtime improvements can be achieved, by
fine grained assignment of signature parts to different AUs and which signature partition
turned out to be efficient. Therefore, we evaluated all 965 possible different distributions of
our signature examples to three analysis units. The Table 1 contains runtime evaluations for
some selected signature distributions. The sensor runtime is related to the slowest analysis
unit, as the sensor terminates after transmitting the last audit event (to the slowest AU).
The first row (id 0) represents the non-distributed case. Thus, only one analysis unit (client)

distribution Sensor Client 1 Client 2 Client 3

id. real [s] real [s] user [s] real [s] user [s] real [s] user [s]

0 47.953 47.625 46.89

96 29.625 37.718 28.672 29.328 9.828 32.390 7.844
302 110.641 110.656 108.469 116.343 33.891 113.718 19.313
626 19.719 19.750 17.948 25.437 18.078 23.453 17.969

Table 1 Selected runtimes for different signature distributions

is used, which gets all signatures assigned. This is the benchmark for any optimizations by
signature distribution. The second row (id 96) represents the obvious distribution, which
assigns each of the three example signatures completely to a different analysis unit (clients).
Thus, the signatures are not split up into parts and no state information (tokens) have to
be exchanged between different analysis units. The runtime evaluation shows a relevant
improvement for the distributed case. The real runtime of the sensor, which captures and
sends the audit data decreases by roughly 60 %. That means the distributed analysis run
completes 60 % faster than the non-distributed run. But the really consumed CPU time
(user time) of the three clients indicate that the analysis distribution is not well balanced.
Client 1 (28.672 sec) consumes significantly more CPU time than the other clients (9.828 sec,
7.844 sec). Further, the last row shows the signature distribution (id 626) requiring the least
runtime to complete, which is significantly more efficient than the distribution (id 96). Here,
parts of a signature are fine-grained assigned to the different AUs and the sensor requires
only half of the runtime compared to the non-distributed case. Further the required CPU
times (user time) of the clients indicate a well balanced signature distribution among three
clients. Finally, the third row (id 302) shows runtime results of the expected worst suitable
analysis distribution requiring the maximum runtime (110 sec). Thus, by choosing a bad
signature distribution, where signatures are split up poorly, the distributed analysis can
take substantially longer compared to the non-distributed case (id 0). The evaluation of all
possible 965 different partitions of the signature base shows that there are many efficient
signature partitions offering short run times as well as some completely unsuitable partitions.

An efficient distributed IDS applying EDL signatures has to choose one of the partitions,
requiring a low overall runtime. Therefore, it is necessary to introduce, resp. create a
metrics which maps features of the audit data characteristics (e.g. number of occurred
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specific audit events), monitored by the sensor, as well as the statistics maintained by the
analysis units (detailed logs of spend communication and computation effort) for the currently
used signature distribution to a metrics value M . This metrics then should be applied to
continuously predict suitable assignments of signature parts to available analysis units. The
distributed IDS then can use the metrics predictions to dynamically adapt the analysis
configuration to the ever changing characteristics of the captured audit data, as well as
changing available analysis resources, by reassigning signature parts to other analysis units.
But even without a predicting metrics our approach is not useless. A suitable, resp. efficient
initial partition can always be achieved by simply equally assigning whole signatures (without
splitting them) to the analysis units in a round-robin manner (e.g. id 96 in Table 1).

4 Summary and Future Work

We presented an efficient approach for distributed IDS, which aims at balancing the compu-
tation load of complex signature-based IDS across multiple analysis units. The approach is
not limited to EDL signatures and thus can be adapted to any multi-step signature based
IDS. A prototype implementation was used to initially examine the achievable performance
improvements by distributing the audit data analysis to a number of parallel running analysis
units. We applied a set of three example signatures, split up into minimal signature parts.
Then, we evaluated the analysis performance for the non-distributed case (as a benchmark)
and all possible, different assignments of signature parts to three distinct analysis units.
Evaluation shows many suitable signature partitions, which run significantly faster, but also
worse ones, requiring much more run time, compared to the non-distributed baseline. Further
work to create a metrics which predicts expectable computation and communication effort for
different signature partitions based on audit data characteristics is in progress. The metrics
should enable a distributed IDS to dynamically reconfigure its analysis distribution in order
to adapt to changing analysis effort and available resources.
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Abstract

Hop-count based weighted centroid localization is a simple and straightforward localization algo-
rithm, which uses anchors with known positions and the hop count to these anchors to estimate
the real position of nodes. Especially in sensor networks, where energy restrictions prevent more
complex algorithms, this fast and simple algorithm can be used. Unfortunately the localization
error of the algorithm can hinder the practical usage.

In this paper we will improve the weighted centroid algorithm for hop count based localization
by adding the node degree on the paths to the referenced anchors into the weights. After an
analysis to obtain theoretically optimal coefficients we will show by means of simulation that for
longer hop counts to the anchors and areas with different node degrees the proposed ND-WCL
algorithm outperforms the known hop count based weighted centroid localization algorithm.

Keywords and phrases Localization, Weighted Centroid

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.194

1 Introduction

Fast and adaptive algorithms for distributing messages are needed in ad hoc networks, as
these may be mobile, fast changing or even partially disrupted[6]. Geographic Routing
may be one of the enabling technologies to ensure communication in these networks [2][4].
Unfortunately Geographic Routing is based on the knowledge of real location information.
GPS equipment is expensive as well as energy consuming and relies on line of sight to the
GPS satellites. The Ad Hoc Positioning System [5] extended GPS on a hop by hop behavior
for usage in networks where only a fraction of nodes have the capability to detect their
real location. A novel approach was made in [7] to construct virtual coordinates and use
these as base for geographic routing. The proposed algorithm managed to construct virtual
coordinates without any knowledge of the real coordinates of the network nodes. But still all
nodes need to have a logical position assigned to work with geographic routing.

Our paper will improve the known general centroid algorithm (CL) [3] as well as the hop
count based weighted centroid algorithm (WCL) [1]. The aim is to improve the performance of
the localization in terms of localization error without using decentralized or global information
or introducing additional communication messages for gathering data. The proposed novel
algorithm ND-WCL will use the average node degree on the shortest paths to the anchors in
the network, which is an easily obtainable information.

The remainder of this paper is organized as follows: Section 2 analyses the theoretic
connections between node degree, distance between node pairs and n-hop-neighborhoods in
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ad-hoc networks with uniformly distributed nodes. Supported by simulations we obtain in
section 3 approximations for the average distance between n-hop-neighbors, which are used
in section 4 to define a novel node degree based weighted centroid algorithm for localization.
Simulation in section 5 show the performance of the novel algorithm in relation to already
known centroid algorithms.

2 Analysis of n-hop-Neighborhoods

For the analytic investigation we assume a static two dimensional plain scenario with N
random uniformly distributed nodes which leads to a constant average node degree. Each
node uses the same wireless communication module with a fixed unidirectional communication
range. Nodes within the communication range R may communicate with each other and are
denoted as 1-hop-neighbors. For the analytic investigation we place one node as central node
(Node Zero) in the middle of the observance area.

Node density ND in the scenario is strongly linked to the node degree deg(N), which is
the number of neighbors.

ND =
deg(N)

π · R2
(1)

Two nodes are denoted as n-hop-neighbors, if the shortest communication path, by means of
shortest hop count, is equal to n.

In the following we observe the probability Pn(d) of a random node pair with distance d
to each other to be n-hop-neighbors. We also observe the mean distance d̄n between n-hop-
neighbors. As all nodes are independently and randomly placed with a uniform distribution
the mean value of the distance of all possible n-hop-neighbors and the expected distance of
randomly chosen n-hop-neighbors is the same. The communication range R will be set to 1
(distance unit) as simple scaling, resulting in a unit-disc-graph.

The probability P1(d) that two nodes with distance d to each other are 1-hop-neighbors
is

P1(d) =






0 for d ≤ 0

1 for 0 < d ≤ 1

0 for d > 1

(2)

as two nodes are 1-hop-neighbors if and only if they have a positive distance less equal to
the communication range.

The average distance d̄1 between 1-hop-neighbors can be computed and simplified as

d̄1 =
1

A

∫

A

P1(d)ddxdy =
2

3
(3)

with A being the unit circle as all nodes in the unit circle around Node Zero are a 1-hop-
neighbor of it. For 1-hop-neighbors d̄1 is independent of the node degree.

Two nodes with a distance d equal less to 1 are already 1-hop-neighbors. If the distance
d is greater than 2 no common neighbor can be found for the node pair. Therefore only
node pairs with a distance 1 < d ≤ 2 are potential 2-hop-neighbors. The probability P2(d) is
equal to the probability to find a third node to establish a 2-hop-neighborhood. This third
node must be placed in the intersection area A of the communication range circles of the
first two nodes. This area A can be computed for communication range r = 1 as

A = 2 arccos(
d

2
) −

d

2

√
4 − d2 (4)
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Figure 1 2-hop-neighbors

The probability p2(d) that one random but specific neighbor node is placed in the
intersection of the two communication areas is

p2(d) =
A

πr2
for 1 < d ≤ 2 (5)

and P2(d) can be computed as

P2(d) = 1 − (1 −
2 arccos( d

2 ) − d
2

√
4 − d2

π
)deg(N) (6)

The probability for two nodes with distance d to be 2-hop-neighbors is shown in Fig. 1 for
different average node degrees. Note that even in scenarios with an average node degree less
than 1 a small probability exists to find a third node for establishing a 2-hop-neighborhood.
As expected a high node degree offers more possibilities to find a third node and an increased
probability to find this third node even for node distances d close to the maximum of 2.

The average distance of 2-hop-neighbors can be computed using polar coordinates again

d̄2 =
1

A

∫

A

P2(d)ddxdy =
2

3

∫ 2

r=1
(1 − (1 −

2 arccos( r
2 ) − r

2

√
4 − r2

π
)deg(N)r2dr (7)

which is unfortunately not independent of the node degree.
For node degrees close to infinity we may assume that all nodes within an annulus with a

large radius R = n and a smaller radius r = n − 1 are n-hop-neighbors if they are not placed
on the inner circle. For example all nodes within the centered annulus A1,2 with r = 1 and
R = 2 are 2-hop-neighbors of the central node at (0, 0). Therefore the probability P̂n(d) of 2
nodes with distance d to be n-hop-neighbors for high node degrees is

P̂n(d) =






0 for d ≤ n − 1

1 for n − 1 < d ≤ n

0 for d > n

(8)

The average node distance d̄n for an almost infinite high node degree can be computed
as

d̄n =
2

3

n3 − (n − 1)3

n2 − (n − 1)2
(9)

which equals 2/3 for n = 1 as expected and converges to n − 1/2 for n → ∞.
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Figure 2 n-hop-neighbors

3 Simulation of n-hop-Neighborhoods

For higher n-hop-neighborhoods we used simulations to achieve information about the average
distance between n-hop-neighbors. We simulated up to one million random scenarios for
different node degrees. Therefore nodes were randomly placed with a uniform distribution
around the Node Zero. The observance area was larger than the maximum observed hop
count to prevent border effects. The average distance of n-hop-neighbors is shown in Figure
2 as well as the previously theoretically found boundary values for infinite node degrees.
Note the insufficient simulation results for a node degree of 1, as with an average of just one
neighbor per node, long paths between nodes are only to obtain by very long or rare event
simulations.

To achieve one simple formula for the average distance of n-hop-neighbors we made linear
approximations. The achieved linear coefficients can be also linear approximated for node
degrees from 1 to 10 with an additional cut off at the theoretical values of node degrees
towards infinity. This cut off is necessary as the linear approximation exceeds the theoretical
bounds for higher node degrees. This approximation is used to achieve the average distance
of n-hop-neighbors

d̄n(deg(n)) = (0.0391 · deg(N) + 0.3338) ∗ n + −0.1108 · deg(N) + 0.9917 (10)

for n ≥ 2. For n = 1 we assume a node degree independent d̄1 = 2
3 .

4 Node Degree based Weighted Centroid Localization Algorithm

As base for our improvement we assume that a node Ni in a network, which wants to localize
itself, has only chances to send messages to its direct neighbors. By flooding a localization
request with a hop counter through the network all anchors are reached. These send back
their position as well as the hop count from Ni to the anchor. After receiving this messages
from the anchors, Ni may use different localization algorithms.

In our improved algorithm ND-WCL the average node degree ¯deg(N) on the shortest
path to an anchor is also send to node Ni. This information is easily obtainable, as all nodes
know through neighbor detection and listening to hello messages it’s own node degree, which
is the number of direct neighbors. No additional message is needed here.
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As first reference algorithms we used the centroid algorithm (CL) [3], taking the mean of
the positions of the n anchors to estimate the own position. The second algorithm observed
is the weighted centroid localization algorithm (WCL) [1], taking the weighted mean of
the positions of the n anchors to estimate the own position. The weight for each anchor is
computed as the reciprocal of the hop count to the anchor.

Our algorithm uses the reciprocal of the formerly computed average distances to the
anchors based on hop count and node degree as weights wi.

wi =
1

d̄HopCounti
( ¯deg(n))

(11)

PosND−W CL =
1∑n

i=1 wi

n∑

i=1

wi · PosAnchor(i) (12)

This algorithm is easily implementable and does not need any further messages. It can be
computed locally on the node to localize as only one additional step with a linear equation
must be computed. The computation complexity is close to the normal hop count based
weighted centroid algorithm.

5 Simulation of Localization

To compare the performance of the new algorithm with the two existing ones we used
extensive simulations in MATLAB. Up to 1000 nodes were placed in a two dimensional
square of 50x50m with 4 or 9 anchors. Simulation details are shown in the left part of Table
1 with the number of nodes, communication range and number of placed anchors. To have
paths to anchor nodes with rather different node degrees, we shifted half of the nodes from
one side of the simulation area to the other in the even numbered scenarios, producing
unbalanced scenarios with a balancing of 3 to 1. As the anchors are placed in the corners of
the simulation area and at least three anchors are taken for the centroid algorithm, at least
one path to an anchor has a quite different node degree than the other two paths.

The main evaluation metric is the localization error LEr [1] as distance between the
exact real position and the estimated position of a node.

We computed and compared for all non anchors in a scenario the localization error for
centroid, weighted centroid and node degree based improved weighted centroid algorithm.
As expected the weighted centroid algorithm outperformed the simple centroid algorithm
tremendously. Therefore we only compare the two weighted centroid algorithms here.

The localization error was averaged for all non anchors in each randomly generated
scenario. The minimum, maximum and mean improvement in percent over 1000 scenarios
using the node degree approach is shown in Table 1. Negative values show that some
randomly generated scenarios had a better average performance for the normal weighted
centroid algorithm. Nevertheless in all scenarios the mean localization error is reduced using
node degree based improved weighted centroid. It performs better with longer routes in
scenarios V to X with shorter communication range and more nodes. It also performs better
with less anchors to choose, resulting also in longer and more different long paths to anchors.
The most increase in performance was obtained with the unbalanced scenarios leading to
paths with rather different node degrees.

The overall best performance of the node degree based improved weighted centroid
localization algorithm was obtained in scenario X with the longest paths to the four anchors
and an unbalanced scenario.
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Table 1 Simulation Scenarios and Localization Error Improvement

Scenario
No. of

Range R
No. of

Balancing
LEr Improvement in %

Nodes N Anchor Nodes Min Max Mean

I 100 10m 4 none -3.92 6.39 1.38

II 100 10m 4 3:1 -8.37 15.04 4.45

III 100 10m 9 none -2.43 3.16 0.25

IV 100 10m 9 3:1 -5,15 7,45 1,06

V 400 5m 4 none -1,49 5,20 2,55

VI 400 5m 4 3:1 -0,11 8,78 3,05

VII 400 5m 9 none 0,19 5,11 2,76

VIII 400 5m 9 3:1 1,51 8,57 4,07

IX 1000 3m 4 none 0.97 3.92 2.91

X 1000 3m 4 3:1 5,43 14,87 8,64

6 Conclusions

In this paper we improved the weighted centroid algorithm for hop count based localization.
With the small functional addition of counting the node degree on the paths to the referenced
anchors we could improve the performance of hop count based localization. Simulations
showed that for longer hop counts to the anchors and areas with different node degrees the
proposed algorithm outperforms the known hop count based weighted localization algorithm.
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The automated transfer of flight logbook information from aircrafts into aircraft maintenance
systems leads to reduced ground and maintenance time and is thus desirable from an economical
point of view. Until recently, flight logbooks have not been managed electronically in aircrafts or
at least the data transfer from aircraft to ground maintenance system has been executed manually.
Latest aircraft types such as the Airbus A380 or the Boeing 787 do support an electronic logbook
and thus make an automated transfer possible. A generic flight logbook transfer system must
deal with different data formats on the input side – due to different aircraft makes and models
– as well as different, distributed aircraft maintenance systems for different airlines as aircraft
operators. This article contributes the concept and top level distributed system architecture of
such a generic system for automated flight log data transfer. It has been developed within a joint
industry and applied research project. The architecture has already been successfully evaluated
in a prototypical implementation.
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1 Introduction and Problem Description

Ground and maintenance time is costly for aircraft carriers, thus they try to minimize them
for economical reasons. Today’s still mostly manual transfer of flight logbook data from
an aircraft into the operator’s maintenance systems should be automated to get closer to
achieving this goal. This will eventually reduce information transfer time and is also likely
to be less error prone. Thus in total it should result in reduced maintenance time and cost.

A generic automated flight log data transfer system needs to support the differently
structured flight log information from different aircraft types and manufacturers on one
side. On the other side different aircraft maintenance systems used by different operators
have to be supported. Technically, all these systems are very likely distributed, even though
typically in a common network within a single organization. Moreover, fault tolerance and
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(transactional) persistence to prevent data loss are required. Performance demands however,
are not very critical due to a limited amount of log data per flight in practical applications.

To support those requirements, a generic transfer system for flight logbooks into main-
tenance systems needs to be designed and implemented. In a joint industry and research
cooperation (Verbundprojekt) the eLog system has been designed and prototypically im-
plemented by the University of Applied Sciences Hannover in cooperation with Lufthansa
Technik AG and edatasystems GmbH. Technically this system supports different – currently
XML-based, but with heterogeneous XML schemata – versions of different aircraft flight
log systems on the input side. On the output side different airline systems are supported
which may have different data models. As an example a relational DBMS with tables is used,
that map (almost) 1:1 to the data structures of the output system. The output system is
Lufthansa’s core aircraft maintenance system.

The resulting eLog system offers a generic distributed system architecture for the integra-
tion and mapping of the mentioned different XML-based flight log input data formats to
different output aircraft maintenance systems. The mapping itself is flexibly configurable
as well. Initial tests of the prototypical implementation already validated the practical
usefulness of the concept. Only very few logbook data transfer systems exist. Those that do
exist are flight operator internal and/or aircraft type and maintenance system specific.

Although concepts and approaches for application/data integration in general of course
do exist ([4, 7, 6, 5, 2]) their application to flight logbook data is a novelty. To the best
of our knowledge a generic flight logbook data transfer system has not been implemented
before and is thus the key contribution of our work.

The remainder of this article gives a high level eLog system overview and discusses some
technical aspects in detail. Due to space constraints a discussion of related work is omitted.
The paper ends with a conclusion and outlook.

2 eLog: System Overview

The designed generic flight log data transfer system is based on ideas frequently found in
extract transform load (ETL) processes in data warehouse systems [5]. Note though that
the implementation itself is not based on data warehouses but rather uses a transactional
DBMS-based approach [3]. Next we explain the data flow within the eLog system followed
by some selected eLog design decisions.

2.1 Data flow within eLog

The data flow within eLog follows several steps to map XML input data to arbitrary output
aircraft maintenance systems on the conceptual level. Figure 1 shows the high level flow of
input data from the flight logbook system until it is procured to the maintenance system.

An input reader component – where different implementations for different source data
formats may exist – uses in step 1 polling to check whether new XML files have been delivered
by aircrafts as electronic logbooks. Polling is implemented by frequently checking a predefined
directory on a dedicated server for newly added files. The data is validated against the XML
schema (step 2) of the particular aircraft’s electronic logbook format, e.g., against different
XML schema versions like those that are defined in [1]. If the data is formally valid, it is
transferred into a buffer database (step 3), where it is stored in its original format in an
XML-type attribute. Else an error handling takes place. As long as aircrafts provide source
data in XML format a single database schema is sufficient for the buffer database.
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Figure 1 Generic eLog data flow

Again using polling, a mapping component checks for newly arrived source data (step 4)
in the buffer database. It utilizes a flexibly configurable sequence of conversion functions to
map the input data to a specific output target system (step 5). The output data is stored in
a database (Out DB) again (step 6). It closely resembles the data structure of the relevant
airline operator’s maintenance system.

Consequently for each maintenance system there will be an individual schema in the
output database. Options in the mapping configuration file include checks for already present
dependent source data, flexible mapping to one or more new entities in the Out DB for every
input entity as well as features to update already existing entities in the Out DB.

Eventually another upload component transfers data from the Out DB (step 7) into the
airline maintenance system (step 8) whenever a meaningful entity of the maintenance system
has been assembled in the Out DB from one or more input entities. Amongst other options,
the airline maintenance system used here provides a Web services interface for access.

2.2 Selected eLog design decisions

To give an idea how the overall eLog architecture and design was established, we explain
selected eLog design decisions:

Error checking and handling is added to all components of the system. For example,
schema errors in input documents are logged in the underlying database and an appropriate
message is sent to the eLog system operator.

Throughout the conversion steps DB transactions are utilized to ensure data consistency.
In combination with operating system based fault tolerance (automated process restarts),
a high degree of fault tolerance of the overall system is thus achieved.

Technically the system is designed according to the ETL paradigm and it is implemented
with different Java processes which together provide the tasks from figure 1. They are
combined with a relational DBMS, that also allows for XML data storage (Oracle).
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3 Conclusion and Outlook

3.1 Conclusion

So far the concept and prototypical implementation have proven to be very promising. The
implementation already covers a single exemplary input and also output system. It includes
entities that require almost all possible mapping options between input and output systems.
The mapping configuration is defined in an XML file which is of a proprietary structure.
The implementation employs several XPATH expressions to navigate in input files in order
to select the information to be mapped. The output DB resembles the simple relational
structure of most airline maintenance systems.

Both mapping configuration as well as input and output data formats are sufficiently
generic in order for the system to be easily adjusted to specific data formats. The overall
modular design of the system by decoupling input and output system leads to a highly
scalable overall architecture.

3.2 Outlook

By now only a brief evaluation of the first eLog prototype took place. This evaluation mostly
included general tests of the eLog system architecture (based on the prototype), some XML
database performance tests based on realistic data volume assumptions, tests with different
generated flight log data sets, and some error handling / restart experiments. All conducted
tests with the final eLog prototype showed very promising results for further development.

Future work includes evaluation of eLog in a production environment. Since only selected
representative entity types from [1] are currently with eLog processable, the remaining ones
have to be added. Moreover, additional different aircraft log file source systems and target
airline maintenance systems shall be connected to eLog.

The former will provide additional proof for the scalability and reliability aspects. The
latter will lead to the definition of a universal XML schema for the mapping configuration in
order to overcome the currently proprietary XML format used.

In summary the generic integration of flight logbooks that has been implemented in this
project shows the potential for reduced transfer times of maintenance information coupled
with increased correctness when compared to the current manual process. This will eventually
lead to reduced maintenance times for aircrafts and thus increase profitability of the airline.
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Abstract

Railway interlockings are dominated by highly proprietary systems. We present the development
project Alister 2.0 – an interlocking system based on industry-proven standard components:
Safety PLCs in distributed nodes communicate over safe network protocols. This enables a highly
productive and highly maintainable fail-safe interlocking system for centralised traffic control.
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1 Introduction

About 1000 railway interlocking systems in Germany reach the end of their life-cycle within
the next years, most of them controlling regional lines. Furthermore, the DB Netze AG as
operator faces increasing cost pressure and wants to raise its competitiveness. Hence, it is the
defined aim to perform the modernisation of these interlocking systems with cost-effective,
standardised and modular components, while still meeting the requirements and the railway
standard CENELEC EN 50126[1], EN 50128[2] and EN 50129[3]. Among other things these
standards impose a development process and safety requirements for the hard- and software.
Consequently the Functional Specification ESTW-R (Electronic Interlocking for Regional
Lines) was published, which encouraged a strongly modularised structure that consists
of industry-proven common off-the-shelf products (COTS). This implicates a new system
architecture and at the same time offers the chance of opening the separated market to new
competitors. In summer 2006 Funkwerk Information Technologies GmbH was commissioned
to equip the regional line connecting the cities of Kiel and Flensburg with a new interlocking
system. With this innovative approach, the development project entered the phase of safety
approval at the end of 2009. This was the first time COTS products were deployed in a
interlocking system using a distributed architecture.

2 System Concept and Architecture

Although the regional line between Kiel and Flensburg is more than 50km long, it is monitored
and controlled by just one control centre. This overall architecture is depicted in Figure
1 and will be explained now. The distributed computing nodes at the stations are called
local ESTW-R. They are redundantly connected to the control centre via standard ethernet
connection over optical fibre. The signalman operates the line from the control centre
with one technical procedure-protected workstation running under Linux. Supported by
train describer and train routing functionality, the signalman sends commands to set the
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Figure 1 Network architecture of the development project Alister 2.0

train routes correctly. In the local ESTW-R computation is done by industry-proven safety
Programmable Logic Controllers (PLC). PLCs follow a model of successive cycles, where
each cycle consists of three sequential phases: read input, compute, write output. The PLCs
communicate with so called decentralised I/O-modules via TCP/IP protocol over safeethernet.
Safeethernet is a certified safety protocol, based on standard Ethernet technology IEEE 802.3.
It is developed by the company of HIMA1. The I/O-modules drive the adaption modules,
which in the end control the trackside elements, e.g. points, signals or level crossings.

2.1 Local ESTW-R — Interlocking logic with safety PLCs

A single local ESTW-R is composed of two safety PLCs, whereby every PLC is internally
based on a 2oo2-architecture (“2-out-of-2”). Therefore, if one failure is detected by one
of the PLCs, the PLCs will switch to a safe state – this is an integral requirement for
safe railway operations. The PLCs are programmed in Function Block Diagram language
(FBD), corresponding to the IEC 61131-3 Standard. IEC 61131[4] describes the standard
use of PLCs, including general information, equipment requirements, communication and

1 safeethernet is a registered trademark of HIMA Paul Hildebrand GmbH + Co KG, http://www.hima.de



Reiner Saykowski, Elferik Schultz, and Joachim Bleidiessel 207

standardised programming languages. Furthermore, to meet the requirements of the railway
CENELEC standard only a subset of the FBD language is used, e.g. to avoid infinite loops.
To set up train routes from one local ESTW-R to the next local ESTW-R, both communicate
over safeethernet. Thus, data corruption, loss of data and data sequencing problems in
communication between the nodes are detected. The decentralised I/O-Modules, which get
their commands over safeethernet from the PLCs, are connected in a ring-structure, due to
availability-considerations. The time to switch the direction of access in the ring-structure
after a problem occurred is less than the minimum cycle-time of a PLC. Therefore, a switch
in the flow of information will not interrupt the system. The I/O-modules drive the adaption
modules. In turn these are not limited to actuate typically trackside elements. Because of
their configurable and open communication interface, they can also actuate arbitrary digital
in- and outputs, like axle counters.

2.2 Technically procedure-protected workstation

The complete route between Kiel and Flensburg is controlled by the technically procedure-
protected workstation. At each point in time it presents an up-to-date process image on the
workstation of the signalman. The integrity of the process image is secured by a patented
image signal comparing system. The incoming image signal is received via two independent
channels and compared twice a second. Single failures in communication or single components
will be detected by the system and lead to a safe state. In this state only standard operations
are allowed.

3 Outlook

With its maximum number of 10 distributed interlocking nodes already today the ESTW-R
Alister 2.0 is based on industry-proven, highly maintainable COTS components and industry
protocols. Hence, the railway interlocking market has been opened for innovation and
sustainable components which are already proven and tested in automation and process
industry. A new trend has started that will lead to further cost reductions and great efficiency
enhancements.
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Abstract

This paper introduces an architectural approach to access the Web via a virtual Web browser
executed within a secure Cloud environment.
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1 Introduction

The Web has become an indispensable prerequisite of everyday live and the Web browser is
the most used application on a variety of distinct devices. The content delivered by the Web
has changed drastically from static pages to media-rich and interactive Web applications
offering nearly the same functionality as native applications, a trend which is further pushed
by the Cloud and more specifically the Cloud’s SaaS layer. In the light of this development,
security and performance of Web browsing has become a crucial issue.

From a security perspective, Web browsers superseded other attack targets like email [1]
and are more and more the gate for installing malware on victims computer [2]. No matter
if malicious or reputable Web sites, both may contain manipulated active content. In the
most dangerous form—the so-called drive-by downloads—the malware is downloaded and
installed to the visiting client without knowledge and notice of the user.

Another problem of Web browsing is the “memory” of the browser. Browser cookies
and histories can lead to privacy breaches and especially becomes a problem if recognition
can be performed between different Web sites. A well known attack of this type is called
history stealing allowing a Web site to access the user’s history using JavaScript and CSS
[3]. In an advanced form this attack even allows to identify a user—i.e. learning his name,
address etc.—by analyzing the sites a user has visited [5]. And even if a user disables or
cleans his cookies and browser history, recent published techniques are still able to store
re-identification data [4].

Further, performance issues arise from the increased complexity of Web applications
running inside the browser. Nearly all functionalities of native applications can nowadays be
found in the browser part of Web applications. These programs—most commonly written in
JavaScript—require high memory and processing resources. This makes JavaScript engines
and specifically their efficiency the most promoted feature for new browsers or browser
versions. In addition to JavaScript also CSS rendering or DOM access are resource consuming
and can become an execution bottleneck [6].
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This paper contributes and discusses an architectural approach towards faster and more
secure Web browsing taking into account contemporary attack vectors and adhering to the
demands of the SaaS era.

2 Browser as a Service

The basic underlying idea of the proposed architecture is to provide access to a remote
Browser as a Service (BaaS, see Figure 1). The remote browser is executed in a secure cloud
environment for a very limited lifetime. The interaction with the remote browser takes place
with a locally installed browser. In contrast to the current “standard” scenario, the locally
installed browser does not execute any active content, besides the one required to capture
user inputs and events as well as to display the graphical output the remote browser has
rendered and sent.
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Figure 1 BaaS Architecture

The server-side runs a virtual machine containing a Web browser instance denoted as
Virtual Browser. Such an instance runs an up-to-date Web browser engine which includes all
state-of-the-art extensions required to consume services and applications in the Web. The
lifetime of the instance is transient. It does not save any state and is only available during
the actual session of the user. Henceforth, any malicious code eventually installed to the
virtual browser while surfing the Web with this particular instance will be destroyed as well.

The client-side still requires a Web browser to access and use a virtual browser. The
virtual browser appears within the local browser’s output area as a Web application (browser
in a browser). When the user interacts with the virtual browser within the local browser, the
inputs and events are captured by the local browser and then send to the virtual browser. It
then triggers the related actions and renders the associated output accordingly. This includes
the execution of active content which is performed exclusively within an isolated environment
on the remote server. Thus, a possible infection will harm the proxying virtual browser
instance, but not the acting end-user client, as the virtual browser does only transmit the
rendered output to the client.

Additionally, such an approach has positive effects on the performance of executing the
client-side portion of Web applications. Since this part is increasing steadily—especially in
SaaS-based applications—the demands in terms of local computing resources are increasing
in the same way. This is mainly caused by the trend to offer Web applications with a similar
user-experience like in standalone programs. The proposed BaaS approach off-loads the
execution of complex and large JavaScript programs to the virtual browser, which enables
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the usage of resource-demanding Web applications also for restricted devices such as thin
clients, netbooks and smart phones.

3 Conclusion and Open Issues

Performance of complex Web applications, privacy breaches and malware vulnerabilities are
major problems of today’s Web usage. The presented idea for a virtual browser running “in
the cloud” has the potential to provide a solution for these issues. However, a number of
issues and questions have to be solved for realizing BaaS. The main problem is the protocol
for accessing the virtual browser. Standard remote desktop protocol (like RDP or RFB)
might be sufficient for office applications or online shopping but probably not for video
applications. In any case, parameters like responsiveness, rendering quality and network
traffic must be studied intensively.
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The present paper presents a model driven generative approach to the design and implementation
of destributed business applications, which consequently and systematically implements many
years of MDSD experience for the software engineering of large application development projects
in an industrial context.
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1 Introduction

MDSD (Model-Driven Software Development) is a generic term covering methods and
techniques used to automatically generate executable software or other software related
artefacts from formal models [4].

The MDSD platform b+m gear Java (gear) is the result of many years of experience
with enterprise application development using various MDSD tool chains. gear supports the
classical 3 tier architectural layers, i.e. entity, service and front end, and also a workflow
partition similar to the BPMN (Business Process Modeling Notation). gear focusses on
business software and in particular on client/server applications, and it is designed to support
several non functional and technical requirements like e.g. safe distributed transaction
handling or business driven historization. b+m gear Java is based on the Eclipse Modeling
Project [2] and the well known generator framework openArchitectureware [3], which has
originally been initiated and founded by the b+m Informatik AG. Since 2003 it is an open
source framework and it is now part of the Eclipse Modeling Project.

2 Model Driven Development Using b+m gear Java

A comprehensive description of MDSD can be found in [4]. In the talk we will discuss the
model driven software engineering approch and its maturity and state of the art in more
detail. In the paper we want to focus on modeling and some technical advantages of the
architecture centric generative software development process. Figure 1 depicts the so far
supported DSL partitions and underlying platforms of gear:

Entity is used to model the persistence layer. OR mappers (like e.g. Hibernate) are used to
generate database schemata and access code. The entity partition declaratively supports
historization (cf. below).

Service is used to model business services and entity access. The service partition guarantees
safe distributed transactions and uses the Java Transaction API (cf. below).

Frontend is used to model screen flows, which are coupled synchronously or asynchronously.
From screen flow models, JavaServer Faces (JSF) and Spring WebFlows are generated.
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Workflow is used for business service orchestration. It also organizes persistent tasks
and their user and rôle assignments. For Workflow, the underlying jBPM platform is
supplemented by task management, distribution strategies and enhanced by concepts like
delegation, escalation, resubmission, task forward.

Figure 1 DSL partition map and underlying platforms in gear

Workflow and its formal and orthogonal modeling and generative support, as well as of
business rules and underlying rule engines, become increasingly important. gear supports
workflow. The present development for b+m gear Java aims at the BPMN 2 standard [1],
and the integration of a rule engine is planned in the future as well. Modeling is supported
by grafical editors within the Eclipse IDE; the syntax resembles UML (Unified Modelking
Language). However, for practical and pragmatical reasons we prefer a more light weight
approach using specifically tailored domain specific languages.

We want to illustrate technical advantages of the MDSD approch using some examples:
Historization is often used in order to guarantee, that software systems e.g. in the finance
or insurance domain are audit-proof – often required by law. Every transaction has to be
plotted, which requires additional history tables for entities, and complicated write access has
to be weaved horizontally into the entire code. In gear, historization is a simple annotation of
entity definitions, and weaved generatively. An equally prominent example is transaction

safety, necessary for distributed client/server applications with persistent data. In gear, the
service partition uses the Java Transaction API. In both cases, sophisticated and concise
architectural enhancements for DSL and generator support the mastery of potentially complex
horizontally weaved code aspects. Quality and implementation efficiency are improved.
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Abstract

Simulation is a fundamental means for evaluating mobile applications based on ad-hoc networks. In re-
cent years, the new breed of social mobility models (SMMs) has risen. Contrary to most classical mobility
models, SMMs model the social aspects of human mobility, i.e. which users meet, when and how often.
Such information is indispensable for the simulation of a wide range of socially-aware communication
protocols mostly based on delay-tolerant networks, including opportunistic ad-hoc routing and data dis-
semination systems. Each SMM needs a model of the relations between a set of relevant people (called
social network model – SNM) in order to simulate their mobility. Existing SMMs lack flexibility since
each of them is implicitly restricted to a specific, simplifying SNM.

We present GeSoMo (General Social Mobility Model), a new SMM that separates the core mobility
model from the structural description of the social network underlying the simulation. This simple and
elegant design principle gives GeSoMo generalizing power: Arbitrary existing and future SNMs can be
used without changing GeSoMo itself. Our evaluation results show that GeSoMo produces simulations
that are coherent with a broad range of empirical data describing real-world human social behavior and
mobility.

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.215

1 Introduction

In recent years, powerful mobile devices with short-range wireless network interfaces have become
widely used that leverage the idea of mobile ad-hoc networks. Connectivity between mobile nodes is
created sporadically and highly depends on the movement of the users carrying those devices. This
human movement is strongly influenced by social relations [13, 16]: We do not meet other people on
a purely random basis; instead, we meet some people more frequently and regularly than others, e.g.
friends, colleagues, family. We call the network of social relationships of a larger group of people a
social network.

Since the social network directly influences the mobility of people (and therefore those peoples’
devices), many protocols and distributed algorithms, mostly in the area of opportunistic networks,
exploit the structural properties of this underlying social network [2, 5, 15, 16]. To evaluate such
approaches, several social mobility models (SMMs) have been proposed recently [3, 8, 11, 17]. The
general task of a SMM is to simulate the encounters between mobile users such that they meet
according to their social relationships. A SMM is always (possibly implicitly) based on a social

network model (SNM) defining the structure of the relations between mobile users. The existing
SMMs, however, have drawbacks. Each of them is tightly integrated with a specific SNM. Thus, by
selecting an SMM, the SNM is fixed and cannot be changed. This is disadvantageous since there are
a number of competing SNMs, and the selection of the right SNM is scenario-dependent and can
be subject to debate. Furthermore, the used SNMs are quite simplistic which can have significant
consequences on the evaluation results of applications simulated on top of it. SNMs with more
realistic properties (e.g. [19]) are not used by existing SMMs. Also note that social network research
is still a young discipline such that the SNMs are not yet established and improved models will be
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proposed in the future. Finally, none of the existing SMMs models group mobility, i.e. the fact that
humans tend to move in groups because of their social relations.

This paper provides an overview of our work in [6]. We introduce GeSoMo (General Social
Mobility Model) [7], a new SMM that generalizes a number of existing models by separating the
social mobility model and the social network model on which the SMM is based. GeSoMo receives a
social network as input and creates a mobility pattern simulating a series of encounters between the
users in this network. Thus, arbitrarily structured social networks can be used without changing the
simulation model. Additionally, a number of parameters may be used for tuning GeSoMo to different
scenarios. We show that GeSoMo produces realistic mobility patterns by comparing its characteristics
to real measurements of human mobility.

2 Spatio-temporal Characteristics of Human Mobility

Apart from the fact that human mobility is influenced by the underlying social network, the investiga-
tion of real human mobility traces has shown several omnipresent spatio-temporal characteristics that
a realistic SMM should capture:

Inter-contact times, i.e. the time intervals between two successive contacts (connectivity) of two
nodes, are of particular interest since they strongly influence the speed of relaying information in
the social network and, thus, in any communication network resulting from it. Independent of
the investigated trace, the inter-contact distribution is characterized by a dichotomy: There is
a power-law up to an inter-contact time of about half a day, thereafter followed by an exponential
decay [4, 14].
The probability that individuals return to previously visited locations after a certain time t is
characterized by distinct peaks at multiples of a day [9]. This temporal regularity confirms the
intuition behind human habitual behavior.
Spatial Regularity: Individuals have a strong preference for a small number of locations while
visiting all other locations only with low probability [9].
Frequently, humans do not move independently of each other from location to location, but rather
move as a group. Group mobility is a realistic human characteristic that is already exploited by
existing mobile applications [18], e.g. by identifying groups and using their combined resources.

3 The General Social Mobility Model

In this section, we first introduce our idea of how the simulated mobility should conform to the
underlying social network. Subsequently, we give a brief overview of the concepts to realize a
mobility model which both exhibits a high conformance and realistic spatio-temporal characteristics.

3.1 Conformance

The general idea behind GeSoMo is show in Figure 1. It takes an arbitrary social network as input.
A social network is essentially a graph where nodes represent people and weighted edges represent
social relationships. The weight is an indicator of the strength of the social relation. Two people
having a social relation are called social acquaintances. Social networks can be generated by a
number of social network models (SNMs), e.g. [10, 19, 20] describing different typical structural
properties (e.g. scale-free node degree, high clustering, . . . ). GeSoMo then translates the static social
network into realistic spatio-temporal mobility characteristics described by a mobility trace. This
trace can be used as input to a simulation tool such as ns2 [1]. Such simulation tools determine
at which time two nodes have connectivity resulting in a connectivity graph. At the moment, we
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Figure 1 Dependencies between social network and simulated mobility

know that important structural properties of the input social network are mapped to the connectivity
graph [13,16] and the frequency and duration of contacts between social acquaintances is typically an
order of magnitude larger than unrelated node pairs [16]. However, so far, social studies do not show
how exactly the strength of social relations relate to the number of contacts (i.e. times of connectivity)
between nodes. Hence, we define conformance as follows: The number of contacts between nodes

should be proportional to the strength of the relationship. Note, however, that this interpretation can
be adjusted in an arbitrary way, without changing GeSoMo, as soon as corresponding future results in
social studies are known (for details, see [6]).

3.2 Outline of the General Concepts

For each node in the input social network, GeSoMo simulates a mobile node (or short: node) assuming
that the corresponding user carries a single mobile device. Social interactions take place at so-called
anchors which are an abstract representation of real locations (e.g. a bus stop or a coffee shop). Nodes
move between anchors, and if a node reaches an anchor, it stays there for a specific duration, before it
starts to move towards the next anchor. The movement between anchors can be performed by several
nodes together in order to simulate group mobility. GeSoMo allows to configure the frequency of
such group movements.

The probability that a node chooses a certain anchor as its next desination is proportional to its
anchor attraction which consists of three additive components: First, anchors themselves exert a
time-varying attraction on nodes: Nodes are attracted to a subset of anchors leading to a spatial

regularity and this attraction is periodic which creates a temporal regularity. Second, nodes are
also attracted by other nodes currently traveling to or residing at certain anchors. This node-based
attraction depends on the strengths of the social relations in order to yield frequent meetings between
social acquaintances. Third, in cases where nodes do not have a social relation with each other, it is
necessary that nodes are repulsed (i.e. negatively attracted) by each other. Both node-based types of
attractions (positive and negative) are necessary in order to yield a high conformance.

Influences such as different travel-times between anchors may lead to less or more meetings
between some pairs of social acquaintances than required by the conformance criterion. To achieve
strong conformance independent of such disturbances, we propose a feedback control mechanism:
If too many meetings between two nodes have been produced, their social attraction is decreased.
Conversely, if too few meetings have been produced, their social attraction is increased. Hence, after
the adjustment, less (or more) meetings between them will occur, such that GeSoMo yields a robust

conformance despite physical effects such as heterogeneous speed/anchor distributions, obstacles, or
streets.
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SNM Caveman Toivonen Holme-Kim

Percentage Matched 99.91% 99.89% 99.90%

95% Conf. Int. 0.15% 0.11% 0.11%

Table 1 Results of the conformance metric (standard parameters)

4 Evaluation Results

In this section, we show that GeSoMo conforms to arbitrary structural properties of the input social
network with high accuracy and still produces realistic spatio-temporal properties. We show the
latter by evaluating several known omnipresent characteristics of human behavior (cf. Section 2) and
comparing them to results of real measurements. We used three different SNMs (Caveman model [20],
Holme-Kim model [10], Toivonen model [19]), for generating input social networks to show that
the results detailed in this section are independent of the concrete SNM (and hence, their structural
properties). The detailed simulation setup can be found in [6].

4.1 Conformance

We proposed the following metric to measure the conformance to the input social network: Assume
a node u has a social relation with node v and node w, and the strength of the relation with v is
signficantly stronger than the relation with w. Then, based on the conformance criterion, we expect
that u has more contacts with v than with w after a simulation runtime of sufficient length. The
percentage of node pairs for which this was true is shown in Table 1 for different input SNMs.

The results clearly show that the conformance is very high independent of the SNM used to
generate input social networks. Furthermore, we have performed simulations with a broad range of
parameters (see [6, 7]) and report that the conformance exceeds 99% in all cases with each of the
three used SNMs. This shows that GeSoMo is characterized by a high conformance independent of
the concrete parameters of our model. Among others, this good result is mainly due to the proposed
concept of robust conformance.

4.2 Inter-contact Characteristics

In the following, we compare the inter-contact distribution of GeSoMo to the Infocom-trace [12]. This
mobility trace is one of the few available direct-contact traces that has a high number of representative
contacts. At the same time, its power-law/exponential decay dichotomy is representative for many
other traces. Figure 2 shows the complementary aggregated inter-contact CDF of GeSoMo for three
different SNMs in comparison to the Infocom-trace. Independent of the used SNM, we observe
a distinct power-law (straight line in a log-log plot) followed by an exponential degradation after
about half a day (≈ 40000s) in all cases. These results correspond to the omnipresent dichotomy
found in real human mobility traces [4, 14]. GeSoMo exhibits this characteristic for a broad range of
parameters [6, 7] .

4.3 Spatial and Temporal Regularity

In order to investigate the characteristics of spatial regularity, Gonzales et al. have analyzed the
reappearance of humans at specific locations in the trajectories of 100000 mobile phone users [9]. For
each location, they ranked the number of visits where rank L represents the L-most visited location.
They report that the probability of finding a user at a location of rank L is well approximated by
P (L) ∼ L−1 independent of the total number of locations a user has visited. We have performed
a similar measurement for GeSoMo in order to conduct a comparison. Figure 3 shows the average
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visiting probability over all nodes for each anchor rank in comparison to the approximation of
Gonzales et al. The good fit shows that nodes in GeSoMo have a preference for a small subset of
anchors which they visit with high probability, very similar to real-world mobility behavior.

The evaluation GeSoMo’s temporal regularty shows the tendency of users to periodically return
to certain locations with high probability (see [6] for details). Very similar characteristics were also
reported for existing real traces of human mobility.

5 Conclusions and Outlook

We have presented GeSoMo, a new social mobility model that can be used to evaluate applications for
people-based delay tolerant and opportunistic networks. GeSoMo generalizes a number of existing
social mobility models by leveraging the elegant and simple concept of separating the simulation
model from the structural description of the simulated social network. GeSoMo builds on the
principle of conformance: an arbitrary input social network is simulated such that the connectivity
graph produced among the simulated mobile devices conforms to this input network as closely as
possible. This enables researchers to use any existing social network model that is appropriate to their
scenario and also the (more realistic) ones that will be discovered in the future without changing the
mobility model. This is a major step forward compared to the existing social mobility models which
build on specific simplifying social network models and, thus, limit the flexibility of a simulation
severely.

In our evaluation which is based on a broad range of empirical observations and data of real user
behavior, we have shown that GeSoMo creates simulations that behave realistically with respect to 1.
inter-contact distribution, 2. spatial characteristics, and 3. temporal characteristics of human behavior.
Furthermore, we have shown that the conformance is very high for all used SNMs. Hence, it is the
first SMM which shows all these omnipresent characteristics of human mobility. It is also the first
SMM that incorporates group mobility. All these results are independent of the model parameters.
We conclude that GeSoMo is a major step forward in the field of social mobility models due to its
flexibility and generalizing power over the used SNM.
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Abstract

Privacy on the Internet is becoming a concern as an already significant and ever growing part of
our daily activities is carried out online. While cryptography can be used to protect the integrity
and confidentiality of contents of communication, everyone along the route on which a packet is
traveling can still observe the addresses of the respective communication parties. This often is
enough to uniquely identify persons participating in a communication. Anonymous communica-
tion is used to hide relationships between the communicating parties. These relationships as well
as patterns of communication can often be as revealing as their content. Hence, anonymity is a
key technology needed to retain privacy in communications.

This paper provides a very brief overview of my doctoral dissertation “Anonymous Communi-
cation in the Age of the Internet” [2] and then concisely focuses on one randomly selected aspect,
namely, the attack on the anonymization concept called Crowds.

Keywords and phrases Security, privacy, anonymity, anonymous communication, confidentiality

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.221

1 Introduction: Brief Thesis Overview

The goal of the thesis “Anonymous Communication in the Age of the Internet” [2] is to
enhance the state-of-the-art in the field of anonymous communication and to contribute to a
broader understanding of the topic and its primitives within the community of researchers as
well as to create solid fundamentals for future designs of the systems empowering users with
tools for strengthening their privacy protection on the Internet.

We first propose a practical attacker model for risk analysis in anonymous communication.
We justify the applicability of the model by an analysis of the strength of anonymizing
techniques compared to each other as well as some widely known attacks on them. We then
present the design and evaluation of a novel lightweight anonymization protocol based purely
on open standards. It significantly outperforms other existing approaches for anonymization
while only slightly sacrificing the level of provided protection. We next propose and analyze
two innovative approaches for scalable distribution of information about anonymization
networks. They have security properties similar to a centralized directory, but scale gracefully
and do not require trust in any third party. We use analytical models and simulations to
validate our approaches. We also consider performance issues of anonymization networks.
To this end we develop and evaluate path selection metrics for performance-improved onion
routing. The results show that applying our methods, users can obtain a significant increase
in performance without harming their anonymity. Alternatively, users can get a dramatic
performance boost with little sacrifice in anonymity. We provide a practical approach to
empirically analyze the strength of anonymity different methods of path selection provide
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in comparison to each other. Finally, we investigate several attacks against anonymous
communication systems. Most notably, we present a traffic analysis attack against encrypted
HTTP streams sent through different anonymizers with surprising results showing the
effectiveness and ease of website identification in encrypted channels transferred through
the commonly used anonymizers. Moreover, we show under which conditions and how
innocent-looking application layer data can be used to speed up traditional attacks that are
targeted at the network layer identification of a user’s communication partners. We also
propose and analyze different countermeasures hampering these attacks.

2 Crowds

Crowds [5] is a peer-to-peer system for anonymous web browsing. It is based on a simple
randomized routing protocol, in which all participants forward messages on behalf of other
users as well as their own. Crowds provides security by means of increased path length and
was meant to be a trade-off between performance and security. The main idea of Crowds is
to hide each user’s communications by routing them randomly within a group of similar users
(“blending into a crowd”). When a user requests a web page, he sends the request to another
(randomly chosen) crowd member (called a jondo). Upon receiving such a request, this jondo
(and, if any, all consecutive) decides whether to forward the message to the final destination
or to another randomly chosen jondo by making a biased coin toss. More formally, the
message is forwarded to its final destination with probability 1 − pf , or to some other random
participant with probability pf . Communication between jondos is encrypted, however each
of them sees the content of passing messages, including the address of the final destination.
The final request to the server is usually sent in plain.

3 Predecessor Attack on Crowds

Due to the fact that the message initiator always forwards messages to a randomly chosen
node, but all consecutive nodes only with a certain probability, there exist an information
leakage in the system: the one who forwards a message to a colluding jondo is more suspicious
to be the message initiator than any other honest jondo. In the following we will show how
to make use of this information leakage in order to deanonymize the users.

Let n + c be the size of the crowd, c is the number of colluding jondos and pf is the
probability of forwarding in the system as defined in [5]. n + c and pf are system parameters
known to everyone, while c is known only to the adversary.

Let ph denote the probability that a colluding jondo receives a message directly from the
path initiator1. Let pl denote the probability for one honest jondo, which is not the initiator,
to forward the message to a colluding jondo (note that ph + (n − 1) · pl = 1). The interested
reader is referred to [2, 3] for the details how to calculate the probabilities ph and pl.

Because of the information leakage mentioned above, ph > pl for all admissible parameter
values [2]. This fact can be used by an attacker to make precise statements about the users’
peers. We assume that the attacker participates in the crowd with c jondos (c ≥ 1) and,
without loss of generality, only stores the passing communication to a single external entity,
namely Bob. In this section we will show how to estimate the amount of communication that
each honest user initiated with Bob. The estimation can be performed with an arbitrary
precision [2].

1
h stands for “high”, l for “low”
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Figure 1 Information flow for the attacker: matrix M

From the adversary’s point of view, there are n jondos that are sending messages to
Bob, each with its own average rate λi ≥ 0 per time interval. We model these as Poisson
processes Ai = Pλi

for i ∈ 1 . . . n. This kind of arrival distribution is in our opinion a fair
trade-off between the analytical complexity and realism. Herewith we want to provide a first
approximation which can be further refined by modeling arrivals in a more sophisticated
manner. The colluding entities observe on average the following number of messages to Bob
per time interval from the i-th system member:

E[msg to Bob from i] = ph · λi +
1 − ph

n − 1
·

n
∑

j=1,j !=i

λj (1)

With the help of the following matrix M , we can model the number of messages Oi

arriving at the attacker from jondo i to Bob:

M =











ph pl · · · pl

pl ph · · · pl

...
...

...
pl pl · · · ph











(2)

Oi =
∑n

j=1 Pmi,jλj
(3)

The observations can be seen as a vector of messages (each element is the number of
messages received from the corresponding jondo by colluding members and addressed to
Bob), which is a product of the vector of actually sent messages with the matrix M (see
Figure 1). The thickness of the line corresponds to the sending rate of the corresponding
user (the thicker it is, the higher is the sending rate). Note that the missing line from one
of the users on the right-hand side means that he does not send own messages, but rather
only forwards some on behalf of the others (which corresponds to the thin line pointing to
colluding users). Since Oi is a sum of the Poisson processes, it is also a Poisson process with
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the following properties:

Oi = Pωi
for ωi =

n
∑

j=1

mi,jλj (4)

E[Oi] = V [Oi] = ωi (5)

Because the cardinality of ωi depends on the value of the λi, from the observations of Oi

it is possible to draw conclusions about the λi (for t → ∞):

(ω1, . . . , ωn) = M(λ1, . . . , λn) (6)

⇐⇒ (λ1, . . . , λn) = M−1(ω1, . . . , ωn) (7)

Indeed, the matrix M is invertible to M−1 because Crowds is unable to provide perfect
security (ph (= pl), thus:

M−1 =











p̃h p̃l · · · p̃l

p̃l p̃h · · · p̃l

...
...

...
p̃l p̃l · · · p̃h











(8)

p̃h = n+ph−2
nph−1 (9)

p̃l = ph−1
nph−1 (10)

Under the common values for pf , n, and c (0 < pf < 1, n ) c) the following inequalities
hold: p̃h > 0 and p̃l < 0.

Having observed ωi, it is thus possible to calculate an estimation for the λi, namely λ̃i,
as follows:

λ̃i =
n

∑

j=1

m−1
i,jωj (11)

Using Chernoff style bound for the probability that a Poisson process deviates from its
mean, it is even possible to calculate the number of observations needed in order to estimate
sending rates λi with any desired precision. The interested reader is referred to [2] for further
details.

4 Predecessor Attack Speed-Up: Cross-Layer Attack

The classical predecessor attack presented above aims to identify a user’s peer partners at
the network layer only. We will show in this section that finding a user’s peer partners by a
predecessor attack can be sped up by building an extensive user profile on the application
layer in parallel, i.e., identifying values of different communication attributes.

While a user typically communicates with many arbitrary peers, his application layer
profile (set of accepted languages, browser version, etc.) remains usually the same. The
required number of observations to confirm (identify) with arbitrary precision user Ai’s peer
partner B proportionally depends on the message rate from Ai to B observed by colluding
users [2]. The same is valid for the application layer profile. Therefore, an attacker will
discover the application layer profile of his victim much faster than the communication profile.
If the attacker is using a statistical attack on the network layer, he can then use information
from the application layer to bias the input for the network layer attack, e.g., by filtering out
improbable combinations or in general, messages that do not fit to the victim’s profile.
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Figure 2 Cross-layer information flow

Figure 2 illustrates how the attack works: at first a user’s application layer profile is
built applying the classical predecessor attack – but rather on application layer data. This
information is further used in order to refine the classical attack on the network layer: the
feedback is given to improve the observations which are used as an input to the attack on
the traffic layer [2, 4].

After the profiles of users are built, it is possible to use the same data in order to identify
the user’s peer partners. Actually, even during the process of building the application layer
profile, the calculations for the network layer can already be adapted on the fly. We propose
two attacks using application layer data that work as follows:

combined attack: the classical predecessor attack (as described in the previous section) is
applied only for messages matching the profile;

cross-layer attack: same as above, but additionally pnew
h and pnew

l are used instead of ph

and pl. pnew
h is the probability that Ai is the originator of the message, given that the

message is received from Ai by an attacker and that it has a corresponding application
layer attribute. Similarly, pnew

l = 1−pnew
h

n−1 .

In order to evaluate the effectiveness of the new attacks we have performed simulations.
The simulations are done as follows: every honest user has exactly two random communication
peers. These two peers do not change during the whole simulation run. In each round every
honest user sends between 0 and 3 messages to each of his communication peers. On the
application layer, we used a single attribute with 7 possible values of the attribute in the
communication profile (e.g., accepted languages in an HTTP request).

Figure 3 shows the simulation results including 95% confidence intervals in the 2D plot.
Both of the introduced attacks are significantly more precise than the original network
layer attack. We found out that the advantage of our attacks is higher for networks with a
lower fraction of colluding members. For the considered scenario the accuracy is improved
by a factor of 3. An interesting finding is that up to the forwarding probability of 0.86
the cross-layer attack is more precise than the combined one. However, for pf ≥ 0.86 the
combined attack is more accurate. These results can be observed in Figure 3a.

5 Discussion and Conclusion

We showed how the information leakage in Crowds can be used in order to deanonymize
its users. We also showed that enriching network layer information with innocent-looking
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Figure 3 Cross-layer attack: simulation results

application layer data (e.g., browser strings in HTTP requests) can be used to significantly
increase accuracy and speed up traditional attacks targeted at the network layer only. It is
naïve to think that an attacker would not make use of all the information which is available.
Hence, information from both network and application layer has to be considered in future
research in order to provide usable and realistic metrics for anonymity.

The attack speed-up can be circumvented if the filtering system on the application layer
would substitute the identifying information from the browser with the known statistical
distribution of the browser data like, e.g., [1]. To be even more unidentifiable, one could
observe the communication of the others as an attacker does, and calculate this statistic on
his own. This is due to the reason that distribution of identifying information among the
users in anonymizing networks may be different from those on the Internet in general.

The network layer attack itself, however, cannot be circumvented completely. Crowds leaks
routing information under any admissible parameter values [2]. The number of observations
needed to determine the sending rate of the users in the crowd precisely enough can be
relatively small [2]. This rises a reasonable doubt on the possibility of using the system for
strong anonymity in an open environment.

For more information about this and other topics around anonymous communication, the
interested reader is referred to [2].
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Abstract

Communication is crucial to the coordination and efficient operation of public transport systems.
However, deployment of infrastructure based communication systems is expensive, esp. due to
long-term operational costs. Delay tolerant vehicular networks are a promising alternative since
only very few infrastructure elements are required. This paper presents a DTN routing algorithm
for urban public transport systems which exploits the knowledge about system characteristics and
node mobility to improve the routing performance. Various DTN routing schemes are compared
with the presented algorithm. Moreover, the impact of disturbances on the routing performance
is examined.

Keywords and phrases DTN, Routing, Public Transport, RUTS, The ONE

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.227

1 Introduction

Communication systems have a large impact on the efficiency and user-friendliness of public
transport. Vehicle dispatching, traffic management, arrival prediction, dynamic passenger
information and dynamic rerouting are just a few examples for processes that require
communication. The increasing integration of information technology into the management
and operations of public transport leads to a growing demand of wireless data transfer.
Cellular data services provide sufficient range but relatively low data rates. Furthermore,
the deployment and operation of a dedicated cellular infrastructure require relatively high
investments. For the operator of public transport, permanent cellular access costs might
be inhibiting. An alternative is direct vehicle-to-vehicle communication based on IEEE
802.11a/b/g/n/p. These WLAN technologies are capable of significantly higher data rates
but also have a lower range, so it is unlikely that each vehicle is constantly in the radio range
of other vehicles. This problem could be solved by roadside infrastructure, which would again
require high investments. A delay tolerant network (DTN) is a more economical approach
since for many applications a (slightly) delayed delivery of data can be accepted.

In a DTN, end-to-end connections are not required. Instead, the protocol data units,
referred to as bundles, may be stored until a connection with the next hop is available. Then,
the bundle is forwarded and stored again, and so on, until it finally reaches its destination.
Choosing the ‘right’ sequence of next hops to minimize delay and maximize reliability is
the routing algorithm’s task. The proposed DTN routing algorithm takes advantage of the
characteristics of public transport systems to improve the efficiency. In the next section the
characteristics of contacts in public transport systems are analyzed. Based on this, the design
of a specialized routing algorithm is described. In the evaluation, the routing algorithm is
compared with various common DTN routings.
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2 Analysis and Characteristics

This paper focus on urban public transport systems with vehicles operating on surface
infrastructure. Buses and trolleys running on roads or rails are the most common vehicles in
such transport systems. These vehicles move on lines with stops. The arrival and departure
time at each stop is defined by a timetable, which also defines the frequency of service on
a given route. Usually, the frequency of service changes several times a day, according to
a static plan based on the average number of passengers at a given time. For example,
the frequency of service may be five minutes during rush-hour and 30 minutes during the
late evenings. It should be noted that timetables are hard to maintain since unpredictable
disturbances may happen such as traffic congestion, vehicle failures, traffic accidents or
blocked roads.

Figure 1 Left: intersection, Right: overlapping segments

A possible contact occurs whenever two vehicles are in each other’s radio range. Vehicles
move on lines and follow a timetable with potential contacts being roughly predictable.
However, there are always minor variations, e.g. caused by traffic lights or changing numbers
of passengers getting on and off at stops. In certain situations, these minor variations make
the contact prediction very difficult. For example, a variation of just a few seconds can
prevent a potential contact between vehicles of two different lines crossing at an intersection.
For this reason, it is important to assess the probability and the duration of a possible
contact. Currently, the routing differentiates between two situations which are shown in
figure 1. The first situation is the crossing of two lines in an intersection in which the driving
direction is insignificant. The contact probability and duration for this case is typically low.
The other situation is where contacts overlaps in segments of the lines. In this case, lines
overlap on a section of the map where vehicles can drive next to each other or one after
another. The length and the direction are relevant for the contact probability and duration.
Finally, combinations of these contact types are possible.

3 DTN-Routing in Urban Public Transport Systems

The goals in the design of Routing in Urban Public Transport Systems (RUTS) are resource-
friendliness as well as timely and reliable delivery as far as possible in a public transport
vehicular DTN. As mentioned before, there are some specific characteristics, e.g. timetables
and network maps, which can be exploited for routing. If this context information is available
on each DTN node, an efficient routing is possible. First, the possible contacts between the
vehicles are determined and stored in a routing-graph. Based on this routing-graph, different
ways from the sender to the receiver can be identified. Each way represents a possible routing
path for a bundle. Due to external disturbances and local conditions, contacts have different
performances and probabilities. Therefore, every contact involved in the routing paths has
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to be evaluated. This result is a rating for every possible routing path. Now, the bundle can
be passed on to the most suitable path. Multiple copies of a bundles can be used to increase
the delivery probability and to reduce latency. After the routing path for a bundle has been
determined, it is stored in the bundle. Now, the routing path can be followed unless there is
a discrepancy which occurs when a planned contact fails. Only in this case a new path has
to be calculated.

3.1 RUTS Routing

At first, the number of bundle copies has to be determined which can increase the delivery
speed and rate. As a result of unpredicted disturbances, it could happen that not every
bundle can be routed on its calculated path. Therefore, n is defined as the number of bundle
copies to be issued plus the original bundle. n is usually small and ≥ 1. For each new bundle,
the transmitting node sets the initial value of n into an additional field in the bundle to save
storage and transmission capacity for ‘real’ copies. As long as n > 1, the bundle may be split
by a DTN node to follow a previously calculated path for each bundle copy. This means
that a bundle is transmitted with an adjusted value of n to another node, whereby multiple
transmissions can be saved. Now, both nodes have the same bundle and the sum of available
copies of both parts corresponds to the value before. Over the whole bundle lifetime, it must
be ensured that the number of copies in the DTN network is always ≤ n. In addition to the
splitting, it is still possible to forward bundles to follow the calculated paths.

In order to send the bundles and their copies on different routing paths, the different
possibilities have to be detected. For this, k routing paths must be identified where typically
k > n to get a higher choice because each routing path can have a different quality. To find
the necessary paths, RUTS uses the available timetables and the network map from the
urban public transport system. This context information can be used to calculate possible
contacts between vehicles. Each possible contact is stored in a special routing-graph. In the
first step, the search starts from the sender DTN node. All possible contacts are inserted
into the routing-graph. Now, the search will be resumed for all nodes contained in the
routing-graph. The search is iteratively continued and is stopped if at least k potential paths
are available. This routing-graph is explained in more detail in [1] and [2].

Now, the k fastest paths from the transmitter to the destination must be found in the
routing-graph. As already mentioned, the paths vary in quality such as different contact
probability and duration between the vehicles. Therefore, the paths are evaluated and the n

best ways are selected for forwarding. In addition, a score value for each of the k-paths is
calculated. It reflects the estimated time required for the transport from the sender to the
receiver, the number of required hops and the line characteristics for each DTN node. All of
the data can be obtained from the routing-graph and the available context information. The
score for each k-path is determined as follows:

Scorek = Time Difference +
∑

(Contact-Rating)
Number of Bundle Transmissions

(1)

The time difference indicates the maximum transmission time of all paths minus the
transmission time of the current examined path. For the rating of the contacts, the length
of the overlapping or rather a fixed value for intersections is used. Each parameter can be
parameterized to control its impact on the score. In addition, the rating models for the
possible DTN node transmissions are interchangeable. After each of the k paths has been
rated, the bundles are sorted according to the scores and distributed on the most suitable
paths.

KiVS’11
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4 Evaluation

The RUTS routing was implemented for ‘The ONE’ [3], a DTN simulator featuring several
previously proposed routing protocols which are used for performance comparison. For the
simulation, realistic mobility traces with the real lines and timetables from the urban public
transport system in Braunschweig are used. The studied scenario has been simulated for 5
hours, has 54 stops and 13 lines which are defined by a series of stops. For each line, one
or several vehicles are assigned so that 28 vehicles are simultaneously on the lines. For the
data exchange between nodes, the simulator generates a bundle each 5 seconds. Source
and destination are random but are equal in each run. The RUTS uses a local copy of the
timetables and the network map on each vehicle. In addition to the original bundle, two
additional copies are used (n = 3). In the routing-graph five possible paths (k = 5) are
determined.

4.1 Simulation Results

For the evaluation, various performance criteria are used to compare the different routing
protocols. First, the number of successfully delivered bundles is considered as well as
the bundles that never reached their destination because all bundle copies were discarded.
Moreover, bundles may exist that have not yet been delivered because the simulation was
terminated.

The next criterion is the average memory consumption at the nodes over the entire
simulation. This value has an impact on the number of discarded bundles and the number of
transmitted bundles. Furthermore, the average time to transport a bundle from the source
to the destination is investigated. The number of delivered bundles has a direct influence on
this value. Hence, these values must be examined jointly.

In figure 2, the successfully delivered bundles are illustrated as well as the lost bundles
and the bundles remaining in transit at the end of the simulation. In the comparison of all
routing protocols, RUTS can deliver the most bundles and also causes the lowest bundle
loss. Figure 3 shows that RUTS occupies less storage capacity than nearly all other routing
protocols. Only FirstContact uses slightly less memory in the simulation because it uses no
additional bundle copies. However this causes a low delivery rate.
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Figure 2 Lost, remaining and delivered bundles
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Figure 4 compares the transmission times of successfully delivered bundles. Due to the
random selection of the source/destination pairs, it is possible that bundles are generated on
nodes which are in contact with the destination. These bundles can be delivered immediately,
so that the minimum transmission time is very low. Average and maximum transmission
times can only be calculated for bundles which are delivered before the simulation ends.
Therefore, transmission time can only be interpreted in relation to the amount of delivered
bundles because a higher number of delivered bundles increases the probability that bundles
with high transmission times are included. In this context, RUTS achieves a low average
transmission time, although it has the best delivery ratio.
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Figure 4 Transmission time (min/avg/max)

To investigate the impact of disturbances in the public transport system, several variations
in the scenario were generated. 20% of the vehicles are chosen at random and are assigned a
random delay of 1-5 minutes. Thereafter, the result is calculated as the average of several
simulations. Figure 5 shows the differences between the previous results and the average
results with random delays. Here, the differences are less than 1%.
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Figure 5 Impact of disturbances

The performance of RUTS is very promising taking into account all performance criteria.
In all investigated areas, RUTS is at least similar to the best performing routing protocol.
In most cases it archives the best results. Moreover, through the usage of some bundle
duplicates, which are routed via another path, it is robust against disturbances.

5 Conclusion and Future Work

In this paper, the RUTS routing was presented which exploits the characteristics of urban
public transport systems. The results show a low resource utilization, low latencies and
high delivery rates. This is also the case if delays or breakdowns occur. In the future,
major scenarios should be studied and simulated, e.g. the urban public transport systems in
Chicago [4]. In addition, the scoring functions are further optimized.
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Abstract

Wireless systems based on Orthogonal Frequency Division Multiple Access (OFDMA) multiplex
different users in time and frequency. One of the main problems in OFDMA-systems is the
inter-cell interference. A promising approach to solve this problem is interference coordination
(IFCO). In this paper, we present a novel distributed IFCO scheme, where a central coordinator
communicates coordination information in regular time intervals. This information is the basis
for a local inner optimization in every basestation. The proposed scheme achieves an increase
of more than 100% with respect to the cell edge throughput, and a gain of about 30% in the
aggregate spectral efficiency compared to a reuse 3 system.

Keywords and phrases 3GPP LTE, 802.16e, OFDMA, WiMAX, beamforming, graph coloring,
interference coordination, scheduling

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.233

1 Introduction

IFCO has been an active topic especially in the 3GPP standardization body. It is a
promising approach to solve the problem of inter-cellular interference in a reuse 1 scenario.
Most activities have focused on local schemes operating on local state information in every
basestation. These schemes are often based on power regulation [4] or Fractional Frequency
Reuse (FFR) [3]. A number of FFR-based schemes was compared in [14] and [13]. Another
local scheme was proposed by Xiao et al. in [15]. Kiani et al. propose a distributed scheme
based on local measurements [7]. The authors measure the increase in the overall network
capacity, but do not consider fairness issues, such as the throughput at the cell edge. In [8], Li
et al. propose a distributed scheme by formulating a local and a global optimization problem,
thus being able to include global state information in the coordination process. They consider
one strongest interferer and do not consider fairness issues. However, fairness is crucial since
it is easy to sacrifice cell edge throughput in favor of overall network throughput [12].

In this paper, we present a novel distributed interference coordination scheme. We
explicitly consider the performance at the cell edge compared to the aggregate throughput
as a fairness metric. A central coordinator solves an outer optimization problem based
on global information collected from the basestations, and the basestations solve a local
inner optimization problem based on local state information. The communication with
the central coordinator can be in intervals in the order of seconds. The performance is
significantly increased compared to Coordinated FFR [10] and pushed further towards the
(theoretical) performance of a globally coordinated system. In particular, the presented
scheme outperforms a frequency reuse 3 sytem by more than 100% with respect to the cell
edge throughput while increasing the aggregate throughput performance by more than 30%.
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2 Overview of Cellular 802.16e System Model

We consider a cellular 802.16e-system [6], focusing on the Adaptive Modulation and Coding
(AMC) zone in the downlink subframe. We consider the AMC 2x3 mode, which defines
subchannels of 16 data subcarriers by 3 OFDM-symbols. Our scenario consists of a hexagonal
cell layout comprising 19 basestations at a distance of dBS = 1400 m with 120◦ cell sectors.
The scenario is simulated with wrap-around, making all cells equal with no distinct center
cell. All cells were assumed to be synchronized on a frame level. Every basestation has 3
transceivers, each serving one cell sector. The transceivers are equipped with linear array
beamforming antennas with 4 elements and gain patterns according to [9].

3 Graph-Based Interference Coordination

In [9], we introduced a scheme for global interference coordination based on an interference
graph. In this graph, the vertices represent the mobile terminals, and the edges represent
critical interference relations between them. It is constructed by evaluating the interference
that a transmission to one mobile terminal causes to any other terminal. For each terminal,
we first calculate the total interference that the mobile receives from other basestations
within a radius of dic. We then block the largest interferers from using the same set of
resources by establishing a relation in the interference graph. This is done such that a desired
minimum SIR DS is achieved. Note that if dic = 0, only interference from other sectors of
the same basestation is considered, whereas if dic ≥ 1 inter-cellular interference from other
basestations is considered as well. For more details, please refer to [12].

Resources need to be assigned to the mobile terminals such that no two mobile terminals
are assigned the same resources if they are connected in the graph. This is equal to coloring the
graph if the resources correspond to colors [12]. Resources may be mapped to colors ck,i ∈ C

as shown in Fig. 1. Every AMC zone is subdivided into a certain number Np of resource
partitions. Several AMC zones in subsequent MAC frames form one virtual frame such that
the total number of resource partitions in the virtual frame corresponds to the number of
required colors during the coloring process (precisely: to the next larger multiple of Np).

4 Distributed Interference Coordination

In this section, we present a novel scheme for distributed IFCO. The scheme uses a central
coordinator which is responsible for the coordination of neighboring basestations based on a
global interference graph with dic ≥ 0. At the same time, every basestation creates a local
interference graph with dic = 0 to coordinate the transmissions in its three sectors. The
scheme takes a formal approach by formulating an inner optimization problem, which needs
to be solved by every basestation. This inner optimization problem is subject to constraints
delivered by the outer optimization problem, which is solved in the central coordinator.

4.1 Outer Optimization Problem

The outer optimization problem is solved by the central coordinator based on an interference
graph with dic ≥ 1. This graph creation may be based on measurements obtained from the
mobile terminals and collected by the central coordinator which is out of the scope of this
paper. The goal of the outer optimization problem is to find a set of colors Ci ⊆ C (i.e., a
set of resource partitions) for every mobile terminal mi such that there is no conflict between
any combination of colors in the sets. This problem is known as fractional graph coloring. An
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example for a possible coloring is shown in Fig. 2. Fractional graph coloring is NP-hard. We
take the following approach to solve the outer optimization problem. We first color the graph
by means of the sub-optimal heuristic Dsatur [5]. Next, we traverse all mobile terminals in a
random order and assign a second color to every mobile terminal where possible. We repeat
this step until no more extra colors can be assigned to any mobile terminal.

4.2 Inner Optimization Problem

The goal of the inner optimization problem is to assign every mobile terminal to one or
more resource partitions ck,l of the respective cell sector. This means that every mobile
terminal is assigned a set of colors Ri ⊆ Ci on which it is served. That is, Ri must be chosen
from the color set Ci assigned to mobile terminal mi by the coordinator. To formulate the
optimization problem we introduce for every mobile mi the matrix (xi,k,l), which describes
the resource allocation for a particular cell sector:

xi,k,l =

{

1 if mobile mi is served in resource ck,l

0 if mobile mi is not served in resource ck,l
. (1)

This means that Ri can be defined as

Ri = {ck,l | xi,k,l = 1} . (2)

We further define a utility ui for every mobile terminal mi. ui is a real number and
denotes the utility if the mobile terminal is scheduled in a MAC frame.

The objective function of the inner optimization problem for basestation b then is

max

(

∑

mi∈Mb

∑

k

∑

l

uixi,k,l

)

, (3)

where Mb contains all mobiles mi which are served by any of the three transceivers of
basestation b. Note that eq. (3) maximizes the utility sum for one virtual frame. Hence, the
resource allocation problem has to be solved at the beginning of every virtual frame.

The inner optimization problem is subject to a number of constraints.
1. Every mobile mi has to be served using one color from Ci assigned by the coordinator:

∀ {xi,k,l | xi,k,l = 1} : ck,l ∈ Ci . (4)

2. Every mobile terminal has to be served at least once in every virtual frame:

∀i :
∑

k

∑

l

xi,k,l ≥ 1 . (5)

3. Every mobile terminal must not be served more than once per MAC frame:

∀i∀k :
∑

l

xi,k,l ≤ 1 . (6)
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4. The constraints of the local interference graph have to be met:

∀ {(i, j) | eij = 1} : Ri ∩ Rj = ∅ (7)

The optimization problem formulated by equations (3)–(7) is a binary integer linear program
(BILP), which is NP-hard. BILPs can be treated by standard optimization packages for
integer linear programs (ILPs), but represent a particularly difficult class of ILPs.

4.3 System Architecture

The system architecture comprises a central coordinator which creates the interference graph
and solves the outer optimization problem. All basestations communicate the necessary data
to the central coordinator, as shown in Fig. 3. The set of colors is then communicated from
the central coordinator to the basestations, which periodically solve the inner optimization
problem. Communication with the central coordinator takes place with an update period tC,up.
The delay tC,delay contains all signalling delays, processing delays and synchronization delays.

5 Solution of Inner Optimization problem with Genetic Algorithms

The inner optimization problem can be solved by means of genetic algorithms. Genetic
algorithms are based on generations of solutions. Every generation contains a number |P | of
possible solutions to the optimization problem, which are called genomes. Every genome
is evaluated and assigned a fitness value. This fitness value is usually a real number and
indicates how “good” the solution is. For details about the applied genetic algorithm see [11].

The genetic representation of a solution is problem-specific and often not obvious. For our
problem, we choose a list representation as detailed in [11]. The list contains references to the
mobile terminals along with the colors Ci that were assigned during the outer optimization.
The order of the mobile terminals in the list determines the assignment of resources to each mo-
bile terminal. To assign resources, a placement algorithm traverses the list and assigns the first
possible and free resource partition to the mobile terminals. The resource partitions must not
yet be occupied, and the assignment must not be in conflict with the inner interference graph.

The placement algorithm takes care that constraints (4), (6), and (7) are fulfilled.
Constraint (5) is taken into account during the subsequent evaluation of the genome by
counting the number nu of mobile terminals that have not been assigned resources. The second
factor during the evaluation is the number no of occupied resource partitions (i.e., the resource
utilization). Finally, we set ui = 1 for all mobiles mi. Hence, the number of scheduled mobile
terminals will be maximized, i.e., it will be attempted to schedule a mobile terminal in every
resource partition. The overall fitness of a genome is then calculated as Fitness = no − nu .

6 Performance Evaluation

6.1 802.16e scenario and simulation model

We consider a system with a bandwidth of 10 MHz and a MAC-frame-length of 5 ms. The
AMC zone was set to 9 OFDM-symbols with 48 · 3 subchannels. AMC was applied from
QPSK 1/2 to 64QAM 3/4. This results in a max. raw data rate of 6.2 Mbps in the AMC zone.

The system model was implemented as a frame-level simulator using the event-driven
simulation library IKR SimLib [1] with a detailed physical layer model as described in [11].
Throughput measurements were done on the IP-layer in downlink direction with greedy
traffic sources, capturing all effects of SINR- and BLER-variations, retransmissions by ARQ
and HARQ with chase combining, and MAC overhead.
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We consider two mobility scenarios. In the static scenario, Monte-Carlo-like simulations
are performed, where N = 9 terminals are randomly replaced for every drop. The drops
have a duration of 4 s with full event-driven simulation. In the mobile scenario, each cell
sector contains N = 9 fully mobile terminals moving at a velocity of 30 km/h, which are
restricted to their respective cell sector (see [9]). The Monte-Carlo runs were used to explore
the parameter space, since they are much faster to perform, whereas a fully time-continuous
simulation was performed in the mobile scenario to achieve final performance values.

The considered throughput performance metrics are the aggregate system throughput,
which is proportional to the overall spectral efficiency, and the 5% quantile of the individual
throughputs of all terminals, which correlates with the throughput of terminals close to the
cell edge [2]. Hence, the 5% quantile is a very good fairness indicator.

6.2 Convergence and Complexity of genetic algorithm

The convergence behavior is shown in Fig. 4. Plotted is the overall resource utilization
and the average number of unserved terminals after a certain number of generations Ngen.
A higher resource utilization leads to a larger aggregate throughput, while the number of
unserved terminals affects the fairness. In particular, terminals in unfavorable positions
at the cell edge will most likely be unserved for small Ngen, thus decreasing the cell edge
performance. From Fig. 4 we can see that as few as Ngen = 10 generations bring the number
of unserved terminals below one. For Ngen = 100, the algorithm already comes close to its
optimum performance. The graph also shows that the aggregate throughput, which is mainly
determined by the resource utilization, depends much less on the number of generations than
the cell edge throughput. This also holds for the population size |P |.

The computational complexity is mainly proportional to Ngen · |P |. Figure 5 plots the 5%
throughput quantile depending on Ngen and |P |. The chart shows that the best performance
for a particular computational effort can be achieved for |P | ≈ 2Ngen. Figure 5 further shows
that it requires only a small computational effort to achieve near optimal results.

6.3 Comparison with existing IFCO schemes

Figure 6 compares the performance of the proposed distributed coordination scheme with an
uncoordinated frequency reuse 3 system (also with beamforming antennas), and a system
with FFR, which is locally coordinated based on local state information in every basestation
(see [13]). Furthermore, the chart contains reference curves with global coordination according
to [9] and [10]. All results in Fig. 6 were obtained in the mobile scenario with only Ngen = 20.

The performance of the proposed distributed IFCO scheme is plotted for different values
of tC,up and tC,delay. The results show a big performance increase compared to the reference
frequency reuse 3 system, and the cell edge performance compared to a locally coordinated
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FFR system is greatly increased. Even for update periods and delays in the order of seconds
the IFCO schemes achieves a large performance gain. Note also that in a nomadic scenario,
which is a realistic use case for 802.16e networks, the performance gain will be mostly
independent of tC,up and tC,delay, hence the performance gains will even be larger compared
to the mobile scenario when tC,up and tC,delay are in the order of seconds.

7 Conclusion

We efficiently solved the problem of IFCO by separating the initial global optimization problem
into two separate problems, namely the inner and the outer optimization problem. We
presented efficient approaches to solve these problems based on graph coloring heuristics and
genetic algorithms. The complexity is well manageable, since the genetic algorithm converges
after very few generations, allowing for efficient hardware-based real-time implementations.
We evaluated the performance in a fully mobile scenario. The proposed scheme outperforms
a reference reuse 3 system by more than 30% with respect to the aggregate spectral efficiency,
and by more than 100% with respect to the cell edge throughput.
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Abstract

Trustworthy applications in fully decentralized systems require a trust anchor. This paper de-
scribes how such an anchor can be implemented efficiently in p2p systems. The basic concept is
to use threshold cryptography in order to sign messages by a quorum of peers. The focus is put
on advanced mechanisms to secure the shares of the secret key over time, using proactive secret
sharing. This mechanism was researched in context of the token-based accounting scheme.
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1 Introduction

Trustworthy applications require an trust anchor, a trustworthy foundation that security
mechanisms can employ. Typically in IT systems a trust anchor is a trusted entity with
its associated public and private key. This key pair is used as focal point with which the
security of a mechanism can be checked.

In p2p systems a single trusted entity does not exist by definition. Thus, if a p2p
application requires trust, an alternative is to use a group of peers as the trust anchor. Such
a so called quorum delivers trust to the application by probability - the probability that in
the quorum fraudulent behavior will not prevail. E.g., in a quorum requiring unanimous
judgment a quorum size of 17 guarantees trust with a probability of 99.999%, if there are
up to 50% fraudulent peers in the system [7]. Therefore, threshold cryptography has been
researched as a way to implement such unanimous quorum judgment. This would build a
decentralized trust anchor.

A successful implementation of threshold cryptography in a p2p system consists of several
elements. Threshold cryptograhy splits a secret key s into n shares and requires only t shares
to create a signature of a message. This is called a (t, n)-threshold scheme.

The focus of this paper is on mechanisms that secure the key shares over time. Peers get
compromised over time and their key shares get know to fraudulent peers. If a fraudulent
peer collects the knowledge of t shares it can forge system signatures. Proactive Secret
Sharing (PSS) was invented to deal with this issue. It introduces time periods and invalidates
all key shares at the end of a period by updating them and recovering shares for peers that
have been corrupted.

Within the token-based accounting scheme (TbAS) [7, 8] PSS has been employed to
ensure the system’s long term trustworthiness. However, updating a complete p2p system
seems prohibitive expensive. Among other things, this is the reason for introducing so called
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trusted peers in TbAS. This is a subset of peers that have been selected as share owner due
to their trustworthiness using a reputation mechanism.

This paper proves by example of the TbAS that PSS is not prohibitive expensive for
applying it to p2p systems in order to build a decentralized trust anchor.

2 Related Work

Threshold cryptography has been suggested to be used in p2p systems by several authors.
In [14, 15, 13] the costs of applying threshold cryptography in p2p systems is evaluated;
however, focus is on the signature process. The costs of maintaining a distributed secret
over time is not shown. In [2] the application of PSS to MANET is discussed but not
evaluated. In [11] a DRM system based on PSS is presented, however a thorough evaluation
of the created traffic by the PSS mechanism is missing. An evaluation of PSS for up to 100
peers is given presented in [10], assuming that all peers are updated.

3 Cryptographic Background

In order to allow building a trust anchor threshold cryptography (see e.g. [3, 6, 17, 4]) offers
the required mechanisms;

3.1 Threshold Cryptography

When selecting a threshold cryptography scheme attention must be paid to the secret sharing
mechanism. In additive secret [6] a secret s is split into n shares, and share sn is computed
from the other n − 1 parts. When a secret key is created and shared among peers, all shares
have to be created at the same time. Additional shares cannot be created later. Therefore,
additive secret sharing is not applicable to p2p system, where membership is dynamic. In
[16] Shamir presented polynomial secret sharing, that does not have this drawback. Here,
the shares are calculated by using a polynomial f(x) of degree t − 1, where the secret key
is s = f(0). Accordingly, only threshold schemes based on polynomial secret sharing are
considered for building a distributed trust anchor.

There are several challenges to overcome in order to apply threshold cryptography to
p2p systems (see [8]); The URSA scheme[9] and BLS scheme [1] are build on polynomial
secret sharing and fulfill all remaining requirements.

3.2 Proactive Secret Sharing

This paper focuses Proactive Secret Sharing (PSS) [5] applied in p2p systems. PSS schemes
were introduced to protect long-lived shares of cryptographic keys. The principle of PSS is
to introduce time periods. In each time period the shares of the shareholders are updated by
adding new polynomials g(x) with g(0) = 0. That is, all key shares change with an update
period, however the secret key remains unchanged. Further, peers with corrupted shares
can be recovered; that is a new share for the new sharing polynomial is calculated for them
is a distributed fashion by a group of k updated peers. Using recovery, also new peers in
the system can get assigned a new share. For details about the protocols used in the TbAS
see [8].

Both considered schemes, Threshold BLS and URSA, require the same message flow for
a share update or a share recovery. When the shares are distributed, each peer requires an
individual share. Accordingly, updating large systems seems to be expensive traffic-wise.
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Table 1 Experiments for System-key Maintenance

L = 99, 99% L = 99, 999%

# T t β # T t β

1.1 100 13 26 2.1 100 15 30

1.2 500 14 28 2.2 500 17 34

1.3 1000 14 28 2.3 1000 17 34

1.4 2000 14 28 2.4 2000 17 34
Legend: T : Number of trusted peers, t: quorum size, β: Size of update group

In [8] different update strategies are evaluated. In [9] a scheme is suggested where only a
specific ratio of peers is updated and the remaining peers recover their share. This has the
advantage that the knowledge of all trusted peers’ IDs is not required (see [8]). However,
an evaluation for large p2p systems was not performed. In context of TbAS this Limited
Update and Self-Initialization mechanism was evaluated with the target of building highly
trustable p2p mechanisms.

4 Simulation of Key Management Traffic

In order to simulate key management, two parts of proactive secret sharing, namely the
update phase and the recovery phase were implemented in PeerfactSim.KOM [12]. The
objective of this simulation was to assess the traffic created when all trusted peers receive
an updated key share of the system-wide private key.

4.1 Experiments

When the proximity group B is found the update shares have to be distributed among the
peers in this group. This traffic is fully deterministic, because only direct communication
between the group members is applied. Therefore, the general concept of the experiment is
to perform the update using only one update polynomial by one peer. This allows an exact
analysis of the created traffic that can be easily extrapolated to the use of more update
polynomials.

the proximity group B’s size β must have at least the size t in order to enable recoveries
by that group. Within the simulation, the update group size β is set to β = 2t in order to
achieve redundancy.

In order to evaluate the scalability of the update and self initialization scheme, different
numbers of peers between T = 100 and T = 20001 to be updated and recovered as well
as different Trust Levels L (determined by the threshold t) will be simulated2. Table 1
summarizes the executed experiments. In all experiments we use a key length of 1024 bit.

1 Within TbAS scheme threshold cryptography is executed by a subgroup of peers that are called trusted
peers. Even for very large p2p systems a number of T = 2000 trusted peers is sufficient. See [7, 8].

2 The computation of required threshold depending on the desired system’s Trust Level L, number of
peer T , and ratio of good peer pg was presented e.g .in [7, 8]. For the experiments a ratio of good peer
pg = 0.5 is assumed.
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Figure 1 Durations for update and self-initialization

4.2 Results

The update and self initialization mechanism is a very deterministic process. The simulation
does not require any probability distributions. Accordingly, the confidence intervals are very
small and cannot be seen in the figures.

4.2.0.1 Duration of Update and Self initialization Process

First, the time required for completely updating the trusted peer system is looked at. Figure
1 a shows the processes’ duration.3 The discovery of the initial update group requires
between 1.16 seconds and 1.36 seconds. The difference is due to message transmission
delays. The update phase required a bit less time and needed between 0.98 seconds and 1.18
seconds. the reason is that lookup messages might require several hops on the way towards
the peer, where update requires direct communication. The recovery phase required 2.58
seconds for systems with T = 100 trusted peers and a quorum size of t = 13 and 68.3 seconds
for a system size of T = 2000 and a quorum size of t = 14 trusted peers. The average time
for a quorum size of t = 17 trusted peers is here a bit lower, which indicates that the quorum
size has no influence on the duration of the recovery process. The reason is that the number
of communication steps required within a recovery of one trusted peer is constant.

The difference in the duration stems from the different sizes of the beginning start-up
group. With a higher Trust Level, the update group in the beginning is larger; updating
peers happens in parallel. Therefore, the update duration does not increase with the update
group size. However, with a larger update group size less recoveries are required. Therefore,
for L2 = 99.999% the update duration is shorter.

4.2.0.2 Traffic Generated by Update and Self initialization

The traffic is observed on a per-peer basis. Figure 2 shows the traffic generated for the
smallest and largest simulation setzup. The x-axis represents the peers’ ID.4

It can be observed that the update group is symmetrically located around the peer
ID 0. Especially in the graphs for large system sizes with T = 2000, the recovery traffic

3 Note that we did not simulate computation time. The durations all stem from message transfer.
4 For T = 2000 the ID space was increased in order to enable complete message logging. Therefore, peer

IDs are distributed from 0 to 224.
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Figure 2 Update and self initialization traffic by message type

is almost equal for all peers. Only at the middle of the graph is the traffic distinctively
lower, because here the two recovery fronts meet. Recovery traffic is the major source for
traffic, although it is below 60 kBytes in total per peer. It can be seen that recovery traffic
and overlay maintenance traffic have the lowest proportions of traffic load. Overall, a very
even distribution of traffic load over the trusted peers is achieved by the update and self
initialization mechanism.

When observing the main source for traffic increase, it is obvious that the quorum size
has an influence on it, however the system size influence seems minimal. It can be seen that
there are very few peers with distinctively higher loads. The maximum load for the complete
update and self initialization process is 240.13 kBytes, which happened in all experiments
with t = 17. Assuming for trusted peers a DSL-connection with 128 kBit upload, a trusted
peer would need 15.37 seconds to send this traffic. Accordingly, even the very few trusted
peers with the maximum load do not get overloaded by the update and self initialization
process. The statistics show that there are only very few peers with a traffic load above 100
kBytes.

5 Conclusion

This paper focused on a specific issue when applying threshold cryptography to p2p systems.
The key shares have to be protected over time. Proactive secret sharing (PSS) is designed for
that purpose. PSS introduces time periods and provides the ability to update key shares and
recover corrupted and lost key shares at the end of a time period. Also new key shares for
new peers can be created. However, these mechanisms seem to be expensive and unattractive
for large p2p system. In this paper we proved the opposite. Updating a system of 2000 peers
requires approximately and 71 seconds and the average load per peer is 49.10 kBytes.

Accordingly, threshold cryptography based p2p systems can be secured with PSS. Update
phases can be performed once a day. Peers not participating in an update will be recovered
when they join again. This basic finding can be employed to build decentralized trust
anchors for new trustworthy p2p mechanisms, like the token-based accounting scheme [7, 8].
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