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Abstract
Being able to compute worst-case execution time bounds for tasks of an embedded software
system with hard real-time constraints is crucial to ensure the correct (timing) behavior of the
overall system. Any means to increase the (static) time predictability of the embedded software
are of high interest – especially due to the ever-growing complexity of such software systems.
In this paper we study existing coding proposals and guidelines, such as MISRA-C, and inves-
tigate whether they simplify static timing analysis. Furthermore, we investigate how additional
knowledge, such as design-level information, can further aid in this process.
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1 Introduction

Embedded hard real-time systems need reliable guarantees for the satisfaction of their timing
constraints. Experience with the use of static timing analysis methods and the tools based
on them in the automotive and the avionics industries is positive. However, both, the
precision of the results and the efficiency of the analysis methods are highly dependent on
the predictability of the execution platform [3] and of the software run on this platform.

In this paper, we concentrate on the effect of the software on the time predictability of
the embedded system. More precisely, we study existing software development guidelines
that are currently in production use and identify coding rules that might ease a static timing
analysis of the developed software. Such coding guidelines are intended to lead the developer
to producing – among others – reliable, maintainable, testable/analyzable, and reusable
software. Code complexity is also a key aspect due to maintainability and testability issues.
However, the coding rules are not explicitly intended to improve the software predictability
with respect to static timing analysis.

Based on our experience of analyzing automotive and avionics software, we provide
additional means to increase software time predictability. Certain information about the
program behavior cannot be determined statically just from the binary itself (or from the
source code, if available). Hence, additional (design-level) knowledge about the system
behavior would allow for a more precise (static) timing analysis. For instance, different
operating modes of a flight control unit, such as plane is on ground and plane is in air, might
lead to mutual exclusive execution paths in the software system. By using this knowledge, a
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2 Software Structure and WCET Predictability

static timing analyzer is able to produce much tighter worst-case execution time bounds for
each mode of operation separately.

Section 2 discusses related work. Section 3 briefly introduces static timing analysis and
discusses challenges static timing analysis has to face. Section 4 investigates existing coding
guidelines for their prospects to aid software predictability and discusses further means to
increase the predictability of embedded software systems. Finally, Section 5 concludes this
paper.

2 Related Work

The impact of the source code structure on time predictability has been subject to several
research papers and projects respectively.

For instance, Puschner and Kirner propose a WCET-oriented programming approach [11]
that aims at producing few or no input-data dependent code. Basically, the idea is to
transform the software into a single-path program. To realize input-data dependent behavior
of the code – this cannot be avoided for any piece of complex software – predicated operations
shall be used1. A major drawback of the proposed code transformation is that in every
possible execution context of a function or loop, the processor would have to always fetch
the corresponding instructions, even if they would not be executed. Hence, the single-path
paradigm actually impairs the worst-case behavior.

Thiele and Wilhelm investigate threats to time predictability and propose design principles
that support time predictability [14]. Among others the authors discuss the impact of software
design on system predictability. For example, the use of dynamic data structures should be
avoided, as these are hard to analyze statically.

Wenzel et al. [15] discuss the possible impact of existing software development guidelines
(DO-178B, MISRA-C, and ARINC 653) on the WCET analyzability of the software. Further-
more, the authors provide challenging code patterns, some of which, however, do not appear
to cause problems for binary-level, static WCET analysis. For instance, calls to library
functions do not necessarily impair the software’s time predictability. The implementation
and thus the binary code of the called function determines the time predictability, and not
the fact of the function being part of a library. Nonetheless, the binary code of the library
functions are required to be available to ensure a precise static worst-case execution time
analysis if complex hardware architectures are being used. For ARINC 653 implementations
that are truly modular this might not always be the case.

The purpose of the project COLA (Cache Optimizations for LEON Analyses)2 was to
investigate how software can achieve maximum performance, whilst remaining analyzable,
testable, and predictable. COLA is a follow-on project to the studies PEAL and PEAL2
(Prototype Execution-time Analyzer for LEON), which identified code layout and program
execution patterns that result in cache risks, so called cache killers, and quantified their
impact. Among others, the COLA project produced cache-aware coding rules that are
specifically tailored to increase the time predictability of the LEON2 instruction cache.

The project MERASA aimed at the development of a predictable and (statically) analyz-
able multi-core processor for hard real-time embedded systems. Bonenfant et al. [1] propose
coding guidelines to improve the analyzability of software executed on the MERASA platform.

1 Yet many embedded hardware architectures, as e.g. PowerPC, do not support predicated operations.
2 Funded by the European Space Agency (ESA) under the basic Technology Research Programme (TRP),

ESA/ESTEC Contract AO/1-5877/08/NL/JK.



G. Gebhard, C. Cullmann, and R. Heckmann 3

Both static analysis and measurement-based approaches are considered. In principle, these
coding guidelines correspond to the MISRA-C guidelines discussed in Section 4.2.

3 Static Timing Analysis

Exact worst-case execution times (WCETs) are impossible or very hard to determine, even
for the restricted class of real-time programs with their usual coding rules. Therefore, the
available WCET analyzers only produce WCET guarantees, which are safe and precise upper
bounds on the execution times of tasks. The combined requirements for timing analysis
methods are:

soundness – ensuring the reliability of the guarantees,
efficiency – making them feasible in industrial practice, and
precision – increasing the chance to prove the satisfaction of the timing constraints.

Any software system when executed on a modern high-performance processor shows a
certain variation in execution time depending on the input data, the initial hardware state,
and the interference with the environment. In general, the state space of input data and
initial states is too large to exhaustively explore all possible executions in order to determine
the exact worst-case and best-case execution times. Instead, bounds for the execution times
of basic blocks are determined, from which bounds for the whole system’s execution time are
derived.

Some abstraction of the execution platform is necessary to make a timing analysis of the
system feasible. These abstractions lose information, and thus are – in part – responsible
for the gap between WCET guarantees and observed upper bounds and between BCET
guarantees and observed lower bounds. How much is lost depends on the methods used
for timing analysis and on system properties, such as the hardware architecture and the
analyzability of the software.

Despite the potential loss of precision caused by abstraction, static timing analysis
methods are well established in the industrial process, as proven by the positive feedback
from the automotive and the avionics industries. However, to be successful, static timing
analysis has to face several challenges, being discussed in the subsequent Section 3.2.

3.1 Tools for Static Worst-Case Execution Time Analysis
Figure 1 shows the general structure of WCET analyzers like aiT, see http://www.absint.
com/aiT – this is the static WCET tool we are most experienced with. The input binary
executable has to undergo several analysis phases, before a worst-case execution time bound
can be given for a specific task3. First, the binary is decoded (reconstruction of the control-
flow). Next, loop and value analysis try to determine loop bounds and (abstract) contents of
registers and memory cells. The (cache and) pipeline analysis computes lower and upper basic
block execution time bounds. Finally, the path analysis computes the worst-case execution
path through the analyzed program (see [3] for a more detailed explanation).

3.2 Challenges
A static WCET analysis has to cope with several challenges to be successful. Basically, we
discern two different classes of challenges. Challenges that need to be met to make the

3 A task (usually) corresponds to a specific entry point of the analyzed binary executable.
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Figure 1 Phases of WCET computation.

WCET bound computation feasible at all are tier-one challenges. Tier-two challenges are
concerned with keeping the WCET bounds as tight as possible, e.g., to enable a feasible
schedule of the overall system.

The used coding style is tightly coupled to the encountered tier-one challenges. Section 4
investigates whether coding guidelines that are in production use (indirectly) address such
challenges and whether they ease their handling. Section 4.3 provides means how to cope
with tier-two challenges.

In the following, we discuss tier-one WCET analysis challenges.

Function Pointers. Often simple language constructs do not suffice to implement a certain
program behavior. For instance, user-defined event handlers are usually implemented via
function pointers to exchange data between communication library (e.g., for CAN devices)
and the application. Resolving function pointers automatically is not easily done and
sometimes not feasible at all. Nevertheless, function pointers need to be resolved to enable
the reconstruction of a valid control-flow graph and the computation of a WCET bound.

Loops and Recursions. Loops (and also recursions) are a standard concept in software
development. The main challenge is to automatically bound the maximum possible number
of loop iterations, which is mandatory to compute a WCET bound at all. Whereas often-used
counter loops can be easily bounded, it is generally infeasible to bound input-data dependent
loops without additional knowledge. Similarly, such knowledge is required for recursions.

Irreducible Loops. Usually, loops have a single entry point and thus a single loop header.
However, more complicated loops are occasionally encountered. By using language constructs
like the goto statement from C or by means of hand-written assembly code, it is possible
to construct loops featuring multiple entry points. So far, there exists no feasible approach
to automatically bound this kind of loops [8]. Hence, additional knowledge about the
control-flow behavior of such loops is always required.



G. Gebhard, C. Cullmann, and R. Heckmann 5

4 Software Predictability

In this section we discuss existing coding standards and investigate rules from the 2004
MISRA-C standard that are beneficial for software predictability. Thereafter, we describe
how design-level information can further aid static timing analysis.

4.1 Coding Guidelines

Several coding guidelines have emerged to guide software programmers to develop code
that conforms to safety-critical software principles. The main goal is to produce code that
does not contain errors leading to critical failure and thus causing harm to individuals or to
equipment. Furthermore, software development rules aim at improved reliability, portability,
and maintainability.

In 1998, the Motor Industry Software Reliability Association (MISRA) published MISRA-
C [9]. The guidelines were intended for embedded automotive systems implemented in the C
programming language. An updated version of the MISRA-C coding guidelines has been
released in 2004 [10]. This standard is now widely accepted in other safety-critical domains,
such as avionics or defense systems. On the basis of the 2004 MISRA-C standard, the
Lockheed Martin Corporation has published coding guidelines that are obligatory for Air
Vehicle C++ development in 2005 [2]. Albeit certain rules tackle code complexity, there are
no rules that explicitly aim at developing better time predictable software.

4.2 MISRA-C

Wenzel et al. [15] reckon that among the standards DO-178B, MISRA-C, and ARINC 653,
only MISRA-C includes coding rules that can effect software predictability. In the following,
we thus take a closer look at the 2004 MISRA-C guidelines. The list partially corresponds to
the one found in [15] (focusing on 1998 MISRA-C), but refers to the potential impact on the
time predictability using binary-level static WCET analysis (e.g., with the aiT tool).

Rule 13.4 (required): The controlling expression of a for statement shall not contain
any objects of floating type. State-of-the-art abstract interpretation based loop analyzers
work well with integer arithmetic, but do not cope with floating point values [5, 4]. Thus, by
forbidding floating point based loop conditions, a loop analysis is enabled to automatically
detect loop bounds.

Rule 13.6 (required): Numeric variables being used within a for loop for iteration count-
ing shall not be modified in the body of the loop. This rule promotes the use of (simple)
counter-based loops and prohibits the implementation of a complex update logic of the loop
counter. This allows for a less complicated loop bound detection.

Rule 14.1 (required): There shall be no unreachable code. Tools like aiT can detect
that some part of the code is not reachable. However, static timing analysis computes an
over-approximation of the possible control-flow. By this, the analysis might assume some
execution paths that are not feasible in the actual execution of the software. Hence, the
removal of unreachable parts from the code base leads to less sources of such imprecision.

PPES 2011
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Rule 14.4 (required): The goto statement shall not be used. The usage of the goto
statement does not necessarily cause problems for binary-level timing analysis. These
statements are compiled into unconditional branch instructions, which are no challenge to
such analyses by themselves. However, the usage of the goto statement might possibly
introduce irreducible loops into the program binary. There is no known approach available to
automatically determine loop bounds for this kind of loops. Consequently, manual annotations
are always required. Even worse, certain precision-enhancing analysis techniques, such as
virtual loop unrolling [13], are not applicable.

Rule 14.5 (required): The continue statement shall not be used. Wenzel et al. [15] state
that not adhering to this rule could lead to unstructured loops (see rule 14.4). However,
continue statements only introduce additional back edges to the loop header and therefore
cannot lead to irreducible loops. Any loop containing continue statements can be trans-
formed into a semantically equivalent loop by means of if-then-else constructs. Hence, the
only purpose of this rule is to enforce a certain coding style.

Rule 16.1 (required): Functions shall not be defined with a variable number of arguments.
Functions with variable argument lists inherently lead to data dependent loops iterating over
the argument list. Such loops are hard to bound automatically.

Rule 16.2 (required): Functions shall not call themselves, either directly or indirectly.
Similarly to using goto statements, the use of recursive function calls might lead to irreducible
loops in the call graph. Thus, a similar impact on software predictability would apply as
discussed above for goto statements (see rule 14.4).

Rule 20.4 (required): Dynamic heap memory allocation shall not be used. Dynamic
memory allocation leads to statically unknown memory addresses. This will lead to an
over-estimation in the presence of caches or multiple memory areas with different timings.
Recent work tries to address this problem by means of cache-aware memory allocation [6].

Rule 20.7 (required): The setjmp macro and the longjmp function shall not be used.
In accordance to the discussion of rule 14.4 and of rule 16.2, the usage of the setjmp and
the longjmp macro would allow the construction of irreducible loops. Hence, similar time
predictability problems would arise.

4.3 Design-Level Information
Coping with all tier-one challenges of WCET analysis (see Section 3.2) is usually not sufficient
in industrial practice. Additional information that is available from the design-level phase
is often required to allow a computation of significantly tighter worst-case execution time
bounds. Here, we address the most relevant tier-two challenges.

Operating Modes. Many embedded control software systems have different operating
modes. For example, a flight control system differentiates between flight and ground mode.
Any such operating mode features different functional and therefore different timing behavior.
Unfortunately, the modes of behavior are not well represented in the control software code.
Although there is ongoing work to semi-automatically derive operating modes from the source
code [7], we still propose to methodically document their behavioral impact.



G. Gebhard, C. Cullmann, and R. Heckmann 7

Such documentation could include loop bounds or other kinds of annotations specific
to the corresponding operating mode. At best developers should instantly document the
relevant source code parts to avoid a later hassle of reconstructing this particular knowledge.

Complex Algorithms. Complex algorithms or state machines are often modeled with tools
like MATLAB or SCADE. By means of code generators these models are then transferred
into, e.g., C code. During this process, high-level information about the algorithm or the
state machine update logic respectively are lost (e.g., complex loop bounds, path exclusions).

Wilhelm et al. [16] propose systematic methods to make model information available to
the WCET analyzer. The authors have successfully applied their approach and showed that
tighter WCET bounds are achievable in this fashion.

Data-Dependent Algorithms. Computing tight worst-case execution time bounds is a
challenging task for strongly data-dependent algorithms. This is mainly caused by two
reasons. On the one hand, data-dependent loops are hardly bounded statically. However,
for computing precise WCET bounds, it generally does not suffice to assume the maximal
possible number of loop iterations for each execution context. On the other hand, a static
analysis is often unable to exclude certain execution paths through the algorithm without
further knowledge about the execution environment. The following example demonstrates
this problem.

Message-based communication is usually implemented by means of fixed-size read and
write buffers that are reserved for each scheduling cycle separately. During an interrupt
handler the message data is either copied from or to memory – depending on the current
scheduling cycle. Here, read and write operations can never occur in the same execution
context of the message handler. Without further information both operations cannot be
excluded by a static WCET analysis. Additionally, the analysis has no a-priori information
about the amount of data being transferred. However, the allocation of the data buffers
and the amount of data to transmit is statically known during the software design phase.
Using this information would allow for a much more precise static timing analysis of such
algorithms.

Imprecise Memory Accesses. Unknown or imprecise memory access addresses are one
of the main challenges of static timing analysis for two reasons. First, they impair the
precision of the value analysis. Any unknown read access introduces unknown values into the
value analysis and therefore increases the possibly feasible control-flow paths and negatively
influences the loop bound analysis. In addition, any write access to an unknown memory
location destroys all known information about memory during the value analysis phase.
Second, the pipeline analysis has to assume that any memory module might be the target
of an unknown memory access – the slowest memory module will thus contribute the most
to the overall WCET bound. For architectures featuring data caches, an imprecise memory
access invalidates large parts of the abstract cache (or even the whole cache) and leads to an
over-approximation of the possible cache misses on the WCET path. Such unknown memory
accesses can result from the extensive use of pointers inside data structures with multiple
levels of indirections.

A remedy to this could be to document the memory areas that might be accessed for
each function separately, especially if slow memory modules could be accessed. For example,
memory-mapped I/O regions that are used for CAN or FLEXRAY controllers usually are
only accessed in the corresponding device driver routines. Thus, the analysis would only
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Iteration Counts Frequency of Occurrence Observed for
0 1 552
1 99 881 801
2 116 421
3 114

4 .. 9 13
10 .. 19 19
20 .. 39 24
40 .. 59 22
60 .. 79 13
80 .. 99 11

100 .. 135 7
156 1 lDivMod (0x ffd9 3580, 0x 107 d228)
186 1 lDivMod (0x fff2 c009, 0x 118 dcc4)
204 1 lDivMod (0x ffe8 70e3, 0x 141 4167)

Table 1 Observed iteration counts for lDivMod.

need to assume for those specific routines that imprecise or unknown memory accesses target
these (slow) memory regions. For all other routines, the analysis would be allowed to assume
that different, potentially faster memory modules are being accessed.

Error Handling. In embedded software systems, error handling and recovery is a very
complex procedure. In the event of an error, great care needs to be taken to ensure safety
for individuals and machinery respectively.

A precise (static) timing analysis of error handling routines requires a lot more than the
maximum number of possible errors that can occur or have to be handled at once. First
of all however, it needs to be decided whether the error case is relevant for the worst-case
behavior or not. If not, all error-case related execution paths through the software may be
ignored during WCET analysis, which will obviously lead to much lower WCET bounds
being computed. This however requires precise knowledge about which parts of the software
are concerned with handling errors.

Otherwise, static timing analysis has to cope with error handling. The assumption that
all errors might occur at once naturally leads to safe timing guarantees. However, in reality
this is a rather uncommon or simply infeasible behavior of the embedded system. Here,
computing tight WCET bounds requires precise knowledge about all potential error scenarios.
An early documentation of the system’s error handling behavior is thus expected to allow for
a quicker and more precise analysis of the overall system.

Software Arithmetic. Under certain circumstances, an embedded software system makes
use of software arithmetic. This is the case if the underlying hardware platform does not
support the required arithmetic capabilities. For instance, the Freescale MPC5554 processor
only supports single precision floating point computations [12]. If higher-precision FPU
operations are required, (low-level) software algorithms emulating the required arithmetic
precision come into play. Such algorithms are usually designed to provide good average-case
performance, but are not implemented with good WCET predictability in mind. This often
causes a static timing analysis to assume the worst-case path through such routines for most
execution contexts.
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An extreme example for a function with good average-case performance and bad WCET
predictability is the library function lDivMod of the CodeWarrior V4.6 compiler for Freescale
HCS12X. The purpose of this routine is to compute quotient and remainder of two 32 bit
unsigned integers. The algorithm performs an iteration computing successive approximations
to the final result. To get an impression on the number of loop iterations, we performed
an experiment in which lDivMod was applied to 108 random inputs. Table 1 shows which
iteration counts were observed in this experiment. The number of iterations is 1 in more
than 99.8% and 0, 1, or 2 in more than 99.999% of the sample inputs. On the other
hand, iteration counts of more than 150 could be observed for a few specific inputs. There
seems to be no simple way to derive the number of iterations from given inputs (other than
running the algorithm). The highest possible iteration count could not yet be determined
by mathematical analysis. Even if it were known that 204 is the maximum, a worst-case
execution time analysis had to assume that such a high iteration number occurs when the
input values cannot be determined statically, leading to a big over-estimation of the actual
WCET.

To tighten the computed WCET bounds, further information would be required to avoid
the cases with high numbers of loop iterations in many or all execution contexts. Making
sure that the used software arithmetic library features good WCET analyzability also helps
to tighten the computed WCET bounds. Another – more radical – approach would be to
employ a different hardware architecture that supports the required arithmetic precision.

5 Conclusion

Our experience with static timing analysis of embedded software systems shows that the
analysis complexity varies greatly. As discussed above, the software structure strongly
influences the analyzability of the overall system. Existing coding guidelines, such as the
MISRA-C standard, partially address tier-one challenges encountered during WCET analysis.
However, solely adhering to these guidelines does not suffice to achieve worst-case execution
time bounds with the best precision possible. We usually suggest to document the software
system behavior as early as possible – desirably during the software design phase – to tackle
the tier-two WCET analysis challenges. Otherwise, achieving precise analysis results during
the software development testing and validation phase might become a costly and time
consuming process.
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