
A Template for Predictability Definitions with
Supporting Evidence∗

Daniel Grund1, Jan Reineke2, and Reinhard Wilhelm1

1 Saarland University, Saarbrücken, Germany. grund@cs.uni-saarland.de
2 University of California, Berkeley, USA. reineke@eecs.berkeley.edu

Abstract
In real-time systems, timing behavior is as important as functional behavior. Modern archi-
tectures turn verification of timing aspects into a nightmare, due to their “unpredictability”.
Recently, various efforts have been undertaken to engineer more predictable architectures. Such
efforts should be based on a clear understanding of predictability. We discuss key aspects of and
propose a template for predictability definitions. To investigate the utility of our proposal, we
examine above efforts and try to cast them as instances of our template.

Digital Object Identifier 10.4230/OASIcs.PPES.2011.22

1 Introduction

Predictability resounds throughout the embedded systems community, particularly through-
out the real-time community, and has lately even made it into the Communications of the
ACM [12]. The need for predictability was recognized early [25] and has since been inspected
in several ways, e.g. [3, 26, 10]. Ongoing projects in point try to “reconcile efficiency and
predictability” (Predator1), to “reintroduce timing predictability and repeatability” by ex-
tending instruction-set architectures (ISA) with control over execution time (PRET [7, 13]),
or “guarantee the analyzability and predictability regarding timing” (MERASA [27]).

The common tenor of these projects and publications is that past developments in sys-
tem and computer architecture design are ill-suited for the domain of real-time embedded
systems. It is argued that if these trends continue, future systems will become more and
more unpredictable; up to the point where sound analysis becomes infeasible — at least in
its current form. Hence, research in this area can be divided into two strands: On the one
hand there is the development of ever better analyses to keep up with these developments.
On the other hand there is the exercise of influence on system design in order to avert the
worst problems in future designs.

We do not want to dispute the value of these two lines of research. Far from it. However,
we argue that both are often built on sand: Without a better understanding of “predictabil-
ity”, the first line of research might try to develop analyses for inherently unpredictable
systems, and the second line of research might simplify or redesign architectural components
that are in fact perfectly predictable. To the best of our knowledge there is no agreement —
in the form of a formal definition — what the notion “predictability” should mean. Instead
the criteria for predictability are based on intuition and arguments are made on a case-
by-case basis. In the analysis of worst-case execution times (WCET) for instance, simple

∗ The research leading to these results has received funding from or was supported by the European Com-
mission’s Seventh Framework Programme FP7/2007-2013 under grant agreement no 216008 (Predator)
and by the High-Confidence Design for Distributed Embedded Systems (HCDDES) Multidisciplinary
University Research Initiative (MURI) (#FA9550-06-0312).

1 http://www.predator-project.eu/

© Daniel Grund, Jan Reineke, Reinhard Wilhelm;
licensed under Creative Commons License ND

Workshop on Bringing Theory to Practice: Predictability and Performance in Embedded Systems (PPES 2011).
Editors: Philipp Lucas, Lothar Thiele, Benoît Triquet, Theo Ungerer, Reinhard Wilhelm; pp. 22–31

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grund@cs.uni-saarland.de
mailto:reineke@eecs.berkeley.edu
http://dx.doi.org/10.4230/OASIcs.PPES.2011.22
http://www.predator-project.eu/
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


Daniel Grund, Jan Reineke, and Reinhard Wilhelm 23

in-order pipelines like the ARM7 are deemed more predictable than complex out-of-order
pipelines as found in the PowerPC755. Likewise static branch prediction is said to be
more predictable than dynamic branch prediction. Other examples are TDMA vs. FCFS
arbitration and static vs. dynamic preemptive scheduling.

The agenda of this article is to stimulate the discussion about predictability with the
long-term goal of arriving at a definition of predictability. In the next section we present key
aspects of predictability and therefrom derive a template for predictability definitions. In
Section 3 we consider work of the last years on improving the predictability of systems and
try to cast the intuitions about predictability found in these works in terms of this template.
We close this section by discussing the conclusions from this exercise with an emphasis on
commonalities and differences between our intuition and that of others.

2 Key Aspects of Predictability

What does predictability mean? A lookup in the Oxford English Dictionary provides the
following definitions:

predictable: adjective, able to be predicted.
to predict: say or estimate that (a specified thing) will happen in the future or will
be a consequence of something.

Consequently, a system is predictable if one can foretell facts about its future, i.e. deter-
mine interesting things about its behavior. In general, the behaviors of such a system can be
described by a possibly infinite set of execution traces (sequences of states and transitions).
However, a prediction will usually refer to derived properties of such traces, e.g. their length
or a number of interesting events on a trace. While some properties of a system might be
predictable, others might not. Hence, the first aspect of predictability is the property to be
predicted.

Typically, the property to be determined depends on something unknown, e.g. the input
of a program, and the prediction to be made should be valid for all possible cases, e.g. all
admissible program inputs. Hence, the second aspect of predictability are the sources of
uncertainty that influence the prediction quality.

Predictability will not be a boolean property in general, but should preferably offer shades
of gray and thereby allow for comparing systems. How well can a property be predicted? Is
system A more predictable than system B (with respect to a certain property)? The third
aspect of predictability thus is a quality measure on the predictions.

Furthermore, predictability should be a property inherent to the system. Only because
some analysis cannot predict a property for system A while it can do so for system B does
not mean that system B is more predictable than system A. In fact, it might be that the
analysis simply lends itself better to system B, yet better analyses do exist for system A.

With the above key aspects we can narrow down the notion of predictability as follows:

I Proposition 1. The notion of predictability should capture if, and to what level of precision,
a specified property of a system can be predicted by an optimal analysis.

Refinements

A definition of predictability could possibly take into account more aspects and exhibit
additional properties.

PPES 2011



24 A Template for Predictability Definitions with Supporting Evidence

Fr
eq
ue

nc
y

Exec-timeLB BCET WCET UB

In addition: abstraction-induced variance

Input- and state-induced variance Overest.

Figure 1 Distribution of execution times ranging from best-case to worst-case execution time
(BCET/WCET). Sound but incomplete analyses can derive lower and upper bounds (LB, UB).

For instance, one could refine Proposition 1 by taking into account the complexity/cost
of the analysis that determines the property. However, the clause “by any analysis not
more expensive than X” complicates matters: The key aspect of inherence requires a
quantification over all analyses of a certain complexity/cost.
Another refinement would be to consider different sources of uncertainty separately to
capture only the influence of one source. We will have an example of this later.
One could also distinguish the extent of uncertainty. E.g. is the program input completely
unknown or is partial information available?
It is desirable that the predictability of a system can be determined automatically, i.e.
computed.
It is also desirable that predictability of a system is characterized in a compositional way.
This way, the predictability of a composed system could be determined by a composition
of the predictabilities of its components.

2.1 A Predictability Template
Besides the key aspect of inherence, the other key aspects of predictability depend on the
system under consideration. We therefore propose a template for predictability with the
goal to enable a concise and uniform description of predictability instances. It consists of
the above mentioned key aspects

property to be predicted,
sources of uncertainty, and
quality measure.

In Section 3 we consider work of the last years on improving the predictability of systems.
We then try to cast the possibly even unstated intuitions about predictability in these works
in terms of this template. But first, we consider one instance of predictability in more detail
to illustrate this idea.

2.2 An Illustrative Instance: Timing Predictability
In this section we illustrate the key aspects of predictability at the hand of timing pre-
dictability.

The property to be determined is the execution time of a program assuming uninter-
rupted execution on a given hardware platform.



Daniel Grund, Jan Reineke, and Reinhard Wilhelm 25

The sources of uncertainty are the program input and the hardware state in which execu-
tion begins. Figure 1 illustrates the situation and displays important notions. Typically,
the initial hardware state is completely unknown, i.e. the prediction should be valid for
all possible initial hardware states. Additionally, schedulability analysis cannot handle a
characterization of execution times in the form of a function depending on inputs. Hence,
the prediction should also hold for all admissible program inputs.
Usually, schedulability analysis requires a characterization of execution times in the form
bounds on the execution time. Hence, a reasonable quality measure is the quotient of
BCET over WCET; the smaller the difference the better.
The inherence property is satisfied as BCET and WCET are inherent to the system.

To formally define timing predictability we need to first introduce some basic definitions.

I Definition 2. Let Q denote the set of all hardware states and let I denote the set of all
program inputs. Furthermore, let Tp(q, i) be the execution time of program p starting in
hardware state q ∈ Q with input i ∈ I.

Now we are ready to define timing predictability.

I Definition 3 (Timing predictability). Given uncertainty about the initial hardware state
Q ⊆ Q and uncertainty about the program input I ⊆ I, the timing predictability of a
program p is

Prp(Q, I) := min
q1,q2∈Q

min
i1,i2∈I

Tp(q1, i1)
Tp(q2, i2) (1)

The quantification over pairs of states in Q and pairs of inputs in I captures the uncertainty.
The property to predict is the execution time Tp. The quotient is the quality measure:
Prp ∈ [0, 1], where 1 means perfectly predictable.

Refinements

The above definitions allow analyses of arbitrary complexity, which might be practically
infeasible. Hence, it would be desirable to only consider analyses within a certain complexity
class. While it is desirable to include analysis complexity in a predictability definition it
might become even more difficult to determine the predictability of a system under this
constraint: To adhere to the inherence aspect of predictability however, it is necessary to
consider all analyses of a certain complexity/cost.

Another refinement is to distinguish hardware- and software-related causes of unpre-
dictability by separately considering the sources of uncertainty:

I Definition 4 (State-induced timing predictability).

SIPrp(Q, I) := min
q1,q2∈Q

min
i∈I

Tp(q1, i)
Tp(q2, i)

(2)

Here, the quantification expresses the maximal variance in execution time due to different
hardware states, q1 and q2, for an arbitrary but fixed program input, i. It therefore captures
the influence of the hardware, only. The input-induced timing predictability is defined
analogously. As a program might perform very different actions for different inputs, this
captures the influence of software:

I Definition 5 (Input-induced timing predictability).

IIPrp(Q, I) := min
q∈Q

min
i1,i2∈I

Tp(q, i1)
Tp(q, i2) (3)

PPES 2011



26 A Template for Predictability Definitions with Supporting Evidence

Example for state-induced timing unpredictability

A system exhibits a domino effect [14] if there are two hardware states q1, q2 such that
the difference in execution time of the same program starting in q1 respectively q2 may be
arbitrarily high, i.e. cannot be bounded by a constant. For instance, the iterations of a
program loop never converge to the same hardware state and the difference in execution
time increases in each iteration.

In [22] Schneider describes a domino effect in the pipeline of the PowerPC 755. It
involves the two asymmetrical integer execution units, a greedy instruction dispatcher, and
an instruction sequence with read-after-write dependencies.

The dependencies in the instruction sequence are such that the decisions of the dispatcher
result in a longer execution time if the initial state of the pipeline is empty than in case
it is partially filled. This can be repeated arbitrarily often, as the pipeline states after the
execution of the sequence are equivalent to the initial pipeline states. For n subsequent
executions of the sequence, execution takes 9n+ 1 cycles when starting in one state, q∗1 , and
12n cycles when starting in the other state, q∗2 . Hence, the state-induced predictability can
be bounded for such programs pn:

SIPrpn(Q, I) = min
q1,q2∈Q

min
i∈I

Tpn
(q1, i)

Tpn(q2, i)
≤ Tpn

(q∗1 , i∗)
Tpn(q∗2 , i∗)

= 9n+ 1
12n (4)

3 Supporting Evidence?

In recent years, significant efforts have been undertaken to design more predictable architec-
tural components. As we mentioned in the introduction, these efforts are usually based on
sensible, yet informal intuitions of what makes a system predictable. In this section, we try
to cast these intuitions as instances of the predictability template introduced in Section 2.1.

We summarize our findings about how existing efforts fit into our predictability template
in Tables 1 and 2. For each approach we determine the property it is concerned with,
e.g. execution time, the source of uncertainty that makes this property unpredictable,
e.g. uncertainty about program inputs, and the quality measure that the approach tries to
improve, e.g. the variation in execution time. Whenever the goals that are explicitly stated in
the referenced papers do not fit into this scheme, we determine whether the approach can still
be explained within the scheme. In that case, we provide appropriate characterizations in
parentheses. In the following sections, we supplement the two tables with brief descriptions
of the approaches.

3.1 Branch Prediction

Bodin and Puaut [5] and Burguière and Rochange [6] propose WCET-oriented static branch
prediction schemes. Bodin and Puaut specifically try to minimize the number of branch
mispredictions along the worst-case execution path, thereby minimizing the WCET. Using
static branch prediction rather than dynamic prediction is motivated by the difficulty in
modeling complex dynamic schemes and by the incurred analysis complexity during WCET
estimation. The approaches are evaluated by comparing WCET estimates for the generated
static predictions with WCET estimates for the dynamic scheme, based on conservative
approximations of the number of mispredictions.



Daniel Grund, Jan Reineke, and Reinhard Wilhelm 27

Table 1 Part I of constructive approaches to predictability.

Approach Hardware unit(s) Property Source of uncertainty Quality measure

WCET-oriented static branch
prediction [5, 6]

Branch predictor Number of branch
mispredictions

Analysis imprecision
(Uncertainty about
initial predictor state)

Statically computed
bound (Variability
in mispredictions)

Time-predictable execu-
tion mode for superscalar
pipelines [21]

Superscalar out-of-
order pipeline

Execution time of
basic blocks

Analysis imprecision
(Uncertainty about the
pipeline state at basic
block boundaries)

Qualitative: analy-
sis practically fea-
sible (Variability in
execution times of
basic blocks)

Time-predictable Simultane-
ous Multithreading [2, 16]

SMT processor Execution time of
tasks in real-time
thread

Uncertainty about execu-
tion context, i.e., other
tasks executing in non-
real-time threads

Variability in execu-
tion times

CoMPSoC: a template for com-
posable and predictable multi-
processor system on chips [9]

System on chip in-
cluding network on
chip, VLIW cores
and SRAM

Memory access
and communica-
tion latency

Concurrent execution of
unknown other applica-
tions

Variability in laten-
cies

Precision-Timed Architec-
tures [13]

Thread-interleaved
pipeline and
scratchpad memo-
ries

Execution time Uncertainty about initial
state and execution con-
text

Variability in execu-
tion times

Predictable out-of-order execu-
tion using virtual traces [28]

Superscalar out-of-
order pipeline and
scratchpad memo-
ries

Execution time of
program paths

State of features such
as caches, branch predic-
tors, etc. and input val-
ues of variable latency in-
structions

Variability in execu-
tion times

Memory Hierarchies, Pipelines,
and Buses for Future Architec-
tures in Time-Critical Embed-
ded Systems [29]

Pipeline, memory
hierarchy, and
buses

Execution time,
memory access la-
tencies, latencies
of bus transfers

Uncertainty about the
pipeline state, the cache
state, and about concur-
rently executing applica-
tions

Variability in execu-
tion times and mem-
ory access latencies

3.2 Pipelining and Multithreading
Rochange and Sainrat [21] propose a time-predictable execution mode for superscalar pipe-
lines. They simplify WCET analysis by regulating instruction flow of the pipeline at the
beginning of each basic block. This removes all timing dependencies within the pipeline
between basic blocks. Thereby it reduces the complexity of WCET analysis, as it can be
performed on each basic block in isolation. Still, caches have to be accounted for globally.
The authors take the stance that efficient analysis techniques are a prerequisite for pre-
dictability: “a processor might be declared unpredictable if computation and/or memory
requirements to analyse the WCET are prohibitive.”

Barre et al. [2] and Mische et al. [16] propose modifications to simultaneous multithread-
ing (SMT) architectures. They adapt thread-scheduling in such a way that one thread, the
real-time thread, is given priority over all other threads, the non-real-time threads. As a
consequence, the real-time thread experiences no interference by other threads and can be
analyzed without having to consider its context, i.e., the non-real-time threads.

3.3 Comprehensive Approaches
Hansson et al. [9] propose CoMPSoC, a template for multiprocessors with predictable and
composable timing. By predictability they refer to the ability to determine lower bounds
on performance. By composability they mean that the composition of applications on one
platform does not have any influence on their timing behavior. Predictability is achieved by
VLIW cores and no use of caches or DRAM. Composability is achieved by TDM arbitration
on the network on chip and on accesses to SRAMs.

PPES 2011



28 A Template for Predictability Definitions with Supporting Evidence

Lickly et al. [13] present a precision-timed (PRET) architecture that uses a thread-
interleaved pipeline and scratchpad memories. The thread-interleaved pipeline provides
high overall throughput and constant execution times of instructions in all threads, at the
sacrifice of single-thread performance. PRET introduces new instructions into the ISA to
provide control over timing at the program level.

Whitham and Audsley [28] refine the approach of Rochange [21]. Any aspect of the
pipeline that might introduce variability in timing is either constrained or eliminated:
scratchpads are used instead of caches, dynamic branch prediction is eliminated, variable
duration instructions are modified to execute a constant number of cycles, exceptions are
ignored. Programs are statically partitioned into so-called traces. Within a trace, branches
are predicted perfectly. Whenever a trace is entered or left, the pipeline state is reset to
eliminate any influence of the past.

Wilhelm et al. [29] give recommendations for future architectures in time-critical em-
bedded systems. Based on the principle to reduce the interference on shared resource, they
recommend to use caches with LRU replacement, separate instruction and data caches, and
so-called compositional architectures, such as the ARM7. Such architectures do not have
domino effects and exhibit little state-induced variation in execution time.

3.4 Memory Hierarchy
In the context of the Java Optimized Processor, Schoeberl [23] introduces the so-called
method cache: instead of caching fixed-size memory blocks, the method cache caches entire
Java methods. Using the method cache, cache misses may only occur at method calls and
returns. Due to caching variable-sized blocks, LRU replacement is infeasible. Metzlaff et
al. [15] propose a very similar structure, called function scratchpad, which they employ
within an SMT processor.

Schoeberl et al. [24] propose dedicated caches for different types of data: methods (in-
structions), static data, constant, stack data, and heap data. For heap data, they propose a
small, fully-associative cache. Often, the addresses of accesses to heap data are difficult, or in
case of most memory allocators, impossible to predict statically. In a normal set-associative
cache, an access with an unknown address may modify any cache set. In the fully-associative
case, knowledge of precise memory addresses for heap data is unnecessary.

Puaut and Decotigny [18] propose to statically lock cache contents to eliminate intra-

Table 2 Part II of constructive approaches to predictability.

Approach Hardware unit(s) Property Source of uncertainty Quality measure

Method Cache [23, 15] Memory hierarchy Memory access
time

(Uncertainty about initial
cache state)

Simplicity of analysis

Split Caches [24] Memory hierarchy Number of data
cache hits

Among others, uncertainty
about addresses of data ac-
cesses

(Percentage of ac-
cesses that can be
statically classified)

Static Cache Locking [18] Memory hierarchy Number of in-
struction cache
hits

Uncertainty about initial
cache state and interference
due to preempting tasks

Statically computed
bound (Variability in
number of hits)

Predictable DRAM Con-
trollers [1, 17]

DRAM controller in
multi-core system

Latency of DRAM
accesses

Occurrence of refreshes and
interference by concurrently
executing applications

Existence and size of
bound on access la-
tency

Predictable DRAM Re-
freshes [4]

DRAM controller Latency of DRAM
accesses

Occurrence of refreshes Variability in laten-
cies

Single-path paradigm [19] Software-based Execution time Uncertainty about program
inputs

Variability in execu-
tion times



Daniel Grund, Jan Reineke, and Reinhard Wilhelm 29

task cache interference and inter-task cache interferences (in preemptive systems). They
introduce two low-complexity algorithms to statically determine which instructions to lock
in the cache. To evaluate their approach, they compare statically guaranteed cache hit rates
in unlocked caches with hit rates in locked caches.

Akesson et al. [1] and later Paolieri et al. [17] propose the predictable DRAM controllers
Predator and AMC, respectively. These controllers provide a guaranteed maximum latency
and minimum bandwidth to each client, independently of the execution behavior of other
clients. This is achieved by predictable access schemes, which allow to bound the latencies
of individual memory requests, and predictable arbitration mechanisms: CCSP in Predator
and TDM in AMC, allow to bound the interference between different clients.

Bhat and Mueller [4] eliminate interferences between DRAM refreshes and memory ac-
cesses, so that WCET analysis can be performed without considering refreshes. Standard
memory controllers periodically refresh consecutive rows. Their idea is to instead execute
these refreshes in bursts and refresh all lines of a DRAM device in a single or few bursts.
Such refresh bursts can then be scheduled in periodic tasks and taken into account during
schedulability analysis.

3.5 Discussion
The predictability view of most efforts can indeed be cast as instances of the predictability
template introduced in Section 2.1. Also, different efforts do require different instantia-
tions: Properties found include: execution time, number of branch mispredictions, number
of cache misses, DRAM access latency. Sources of uncertainty include: initial {proces-
sor|cache|branch predictor} state, but also program inputs, and concurrently executing ap-
plications. Most disagreement between the predictability template and the views taken in
the analyzed efforts arises at the question of the quality measure: Many approaches use ex-
isting static analysis approaches to evaluate the predictability improvement. This does not
establish that an approach improves predictability. However, as the inherent predictability
is often hard to determine, this is still useful. Designers of real-time systems need analysis
methods that will provide useful guarantees. So, from a practical point of view, system A
will be considered more predictable than system B if some analysis for A are more precise
than for B. In such cases, further research efforts should clarify whether A is indeed more
predictable than B. Overapproximating static analyses provide upper bounds on a system’s
inherent predictability. Few methods exist so far to bound predictability from below.

4 Related Work

Here we want to discuss related work that tries to capture the essence of predictability or
aims at a formal definition.

Bernardes [3] considers a discrete dynamical system (X, f), where X is a metric space
and f describes the behavior of the system. Such a system is considered predictable at
a point a, if a predicted behavior is sufficiently close to the actual behavior. The actual
behavior at a is the sequence (f i(a))i∈N and the predicted behavior is a sequence of points
in δ-environments, (ai)i∈N, where ai ∈ B(f(ai−1), δ), and the sequence starts at a0 ∈ B(a, δ).

Stankovic and Ramamritham [25] already posed the question about the meaning of
predictability in 1990. The main answers given in this editorial is that “it should be possible
to show, demonstrate, or prove that requirements are met subject to any assumptions made.”
Hence, it is rather seen as the existence of successful analysis methods than an inherent
system property.

PPES 2011



30 A Template for Predictability Definitions with Supporting Evidence

Henzinger [10] describes predictability as a form of determinism. Several forms of non-
determinism are discussed. Only one of them influences observable system behavior, and
thereby qualifies as a source of uncertainty in our sense. There is also a short discussion
how to deal with such nondeterminism: Either avoid it by building systems bottom-up us-
ing only deterministic components or achieve top-level determinism by hiding lower-level
nondeterminism by a deterministic abstraction layer. [25] discusses a similar approach.

Thiele andWilhelm [26] describe threats to timing predictability of systems, and proposes
design principles that support timing predictability. Timing predictability is measured as
difference between the worst (best) case execution time and the upper (lower) bound as
determined by an analysis.

In a precursor of this article, Grund [8] also attempts to formally capture predictability. It
is argued, as opposed to almost all prior attempts, that predictability should be an inherent
system property.

Kirner and Puschner [11] describe time-predictability as the ability to calculate the dura-
tion of actions and explicitly includes the availability of efficient calculation techniques. Fur-
thermore, a “holistic definition of time-predictability” is given. It combines the predictability
of timing, as given in [8] and in Equation 1; and the predictability of the worst-case timing,
as given in [26].

[20] does not aim at a general definition of predictability. Instead the predictability
of caches, in particular replacement policies, is considered. Two metrics are defined that
indicate how quickly uncertainty, which prevents the classification of hits respectively misses,
can be eliminated. As these metrics mark a limit on the precision that any cache analysis
can achieve, they are inherent system properties.

5 Summary and Future Work

The most severe disagreement between our opinion on predictability and those of others
concerns the inherence property. We think that the aspect of inherence is indispensable to
predictability: Basing the predictability of a system on the result of some analysis of the
system is like stating that sorting takes exponential time only because nobody has found a
polynomial algorithm yet!

Modern computer architectures are so complex that arguing about properties of their
timing behavior as a whole is extremely difficult. We are in search of compositional notions of
predictability, which would allow us to derive the predictability of such an architecture from
that of its pipeline, branch predictor, memory hierarchy, and other components. Future work
should also investigate the relation of predictability to other properties such as robustness,
composability and compositionality.

References
1 B. Akesson, K. Goossens, and M. Ringhofer. Predator: A predictable SDRAM memory

controller. In CODES+ISSS ’07, pages 251–256, 2007.
2 J. Barre, C. Rochange, and P. Sainrat. A predictable simultaneous multithreading scheme

for hard real-time. In Architecture of computing systems ’08, pages 161–172, 2008.
3 N. C. Bernardes, Jr. On the predictability of discrete dynamical systems. Proc. of the

American Math. Soc., 130(7):1983–1992, 2001.
4 B. Bhat and F. Mueller. Making DRAM refresh predictable. In ECRTS ’10, 2010.
5 F. Bodin and I. Puaut. A WCET-oriented static branch prediction scheme for real-time

systems. In ECRTS ’05, pages 33–40, 2005.



Daniel Grund, Jan Reineke, and Reinhard Wilhelm 31

6 C. Burguiere, C. Rochange, and P. Sainrat. A case for static branch prediction in real-time
systems. In RTCSA ’05, pages 33–38, 2005.

7 S. Edwards and E. Lee. The case for the precision timed (PRET) machine. In DAC ’07,
pages 264–265, 2007.

8 D. Grund. Towards a formal definition of timing predictability. Presentation at RePP 2009
workshop. http://rw4.cs.uni-saarland.de/~grund/talks/repp09-preddef.pdf.

9 A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoC: A template for compos-
able and predictable multi-processor system on chips. Trans. Des. Autom. Electron. Syst.,
14(1):1–24, 2009.

10 T. Henzinger. Two challenges in embedded systems design: Predictability and robustness.
Philos. Trans. Royal Soc.: Math., Phys. and Engin. Sciences, 366(1881):3727–3736, 2008.

11 R. Kirner and P. Puschner. Time-predictable computing. In SEUS ’11, volume 6399 of
LNCS, pages 23–34, 2011.

12 Edward Lee. Computing needs time. Comm. of the ACM, 52(5):70–79, 2009.
13 B. Lickly, I. Liu, S. Kim, H. Patel, S. Edwards, and E. Lee. Predictable programming on

a precision timed architecture. In CASES ’08, pages 137–146, 2008.
14 T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled microproces-

sors. In RTSS ’09, pages 12–21, 1999.
15 S. Metzlaff, S. Uhrig, J. Mische, and T. Ungerer. Predictable dynamic instruction scratch-

pad for simultaneous multithreaded processors. In MEDEA ’08, pages 38–45, 2008.
16 J. Mische, S. Uhrig, F. Kluge, and T. Ungerer. Exploiting spare resources of in-order SMT

processors executing hard real-time threads. In ICCD ’08, pages 371–376, 2008.
17 M. Paolieri, E. Quinones, F.J. Cazorla, and M. Valero. An analyzable memory controller

for hard real-time CMPs. Embedded Syst. Letters, 1(4):86–90, 2009.
18 I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking in multi-

tasking hard real-time systems. In RTSS ’02, page 114, 2002.
19 P. Puschner and A. Burns. Writing temporally predictable code. In WORDS ’02, page 85,

2002.
20 J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of cache replacement

policies. Real-Time Syst., 37(2):99–122, 2007.
21 C. Rochange and P. Sainrat. A time-predictable execution mode for superscalar pipelines

with instruction prescheduling. In Computing Frontiers ’05, pages 307–314, 2005.
22 J. Schneider. Combined Schedulability and WCET Analysis for Real-Time Operating Sys-

tems. PhD thesis, Saarland University, 2003.
23 M. Schoeberl. A time predictable instruction cache for a Java processor. In JTRES ’04,

pages 371–382, 2004.
24 M. Schoeberl, W. Puffitsch, and B. Huber. Towards time-predictable data caches for chip-

multiprocessors. In SEUS ’09, pages 180–191, 2009.
25 J. Stankovic and K. Ramamritham. What is predictability for real-time systems? Real-

Time Syst., 2:247–254, 1990.
26 L. Thiele and R. Wilhelm. Design for timing predictability. Real-Time Syst., 28(2-3):157–

177, 2004.
27 T. Ungerer et al. MERASA: Multi-core execution of hard real-time applications supporting

analysability. IEEE Micro, 99, 2010.
28 J. Whitham and N. Audsley. Predictable out-of-order execution using virtual traces. In

RTSS ’08, pages 445–455, 2008.
29 R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Memory

hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
Trans. on CAD of Integrated Circuits and Syst., 28(7):966–978, 2009.

PPES 2011

http://rw4.cs.uni-saarland.de/~grund/talks/repp09-preddef.pdf

	Introduction
	Key Aspects of Predictability
	A Predictability Template
	An Illustrative Instance: Timing Predictability

	Supporting Evidence?
	Branch Prediction
	Pipelining and Multithreading
	Comprehensive Approaches
	Memory Hierarchy
	Discussion

	Related Work
	Summary and Future Work

