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Abstract
This paper gives an overview over several techniques for detection of features, and in particular
sharp features, on point-sampled geometry. In addition, a new technique using the Gauss map
is shown. Given an unstructured point cloud, this method computes a Gauss map clustering on
local neighborhoods in order to discard all points that are unlikely to belong to a sharp feature.
A single parameter is used in this stage to control the sensitivity of the feature detection.
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1 Introduction

The use of 3D scanning technologies in art, design, manufacturing and research has become
more and more common over the last years. Possible applications range from research and
medical applications to prototyping and design. For example during the development of a
new product, 3D scanning devices can be used to digitize and validate a manually optimized
prototype, thus speeding up the development process. It is of huge importance that no details
of a scanned object are lost during the scanning process. But not only the scanning process
itself needs to be optimized. Also the reconstruction of the raw point set data delivered
by the scanning device needs to be performed properly. During the reconstruction of the
surface one does not want to loose specific features of the original object, e.g. sharp edges
or corners. Sharp corners and edges are often used as design element, for example in the
car manufacturing industry to visually break up huge planes and underline the dynamic
and unique design of a car. In such cases it is useful to know the exact positions of sharp
features in the raw point cloud data. Other examples for the reasonable use of feature
detection might be quality measurement, monitoring of a manufacturing process or medical
applications. In non-photorealistic rendering feature lines are used to enhance the visual
perception. Additional, in the case of mesh generation, mesh simplification and segmentation
knowledge about the position of features can be of great help. Depending on discipline and
application, "feature" can have different meanings. In computer graphics and CAD for 3D
shapes this term is usually used for free form features including all kinds of visually prominent
characteristics of a shape, from salient edges, ridge and valley lines to sharp features as
line-type or corner features.

This paper aims first to give an overview over prominent existing feature detection
methods. These methods are classified into different groups, polygonal based methods in
Section 2 and point based methods in Section 3. We then present in Section 4 a new
method especially dedicated to the extraction of sharp features on point-sampled surfaces.
In our case, a point-sampled surface is a simple unstructured point cloud, where the points
belong to a 2-manifold, without any further information about (mesh) connectivity, topology,
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parameterization or differential properties. Our algorithm is based on the observation that
sharp features have the property to separate clearly two or more local surface parts with a
tangent discontinuity. We thus introduce Gauss map clustering as a sharp feature detection
operator. The presented method does not need any prior surface reconstruction. It can be
applied directly on the point cloud and only a local neighbor graph need to be computed.
The method is therefore fast and works for a wide range of sampling resolutions. It provides
a set of sharp feature points as result, even in the presence of noise.

2 Polygonal Methods

There exist multiple techniques for feature extraction relying on polygonal meshes [6, 12, 9,
7, 13]. The following methods represent a group of different approaches. The list of methods
is not intended to be exhaustive.

Hubeli and Gross [6] use a normal based multi-resolution framework and generate a set
of edges with a normal-based classification operator. In a classification phase they assign
a weight to every edge in the input mesh, proportional to the probability of belonging to
a feature. The authors provide different types of operators for different mesh types like
a "second order difference" operator for very coarse data sets, an "extended second order
difference" operator for finer meshes, or a computational more expensive "best for polynomial"
operator which performs well on noisy points sets. After this, in a detection phase they
reconstruct the features from the information gained in the classification phase. According
to the weights, they produce piecewise linear curves from the collections of edges that are
assumed to belong to a feature. For thresholding they use a hysteresis thresholding. An edge
is added as feature if it’s weight is larger than an upper bound. If the weight is smaller but a
neighboring edge is already selected as feature, the hysteresis thresholding provides another
lower bound and accepts the edge if its weight is above this second threshold. All other
edges are discarded as features. A thinning process then refines the edges to generate clear
feature lines. For the thinning all patch-boundary edges are first inserted to a linked list. A
first condition removes edges that are perpendicular to the mesh feature being extracted.
A second condition makes sure that an edge is only removed if the patch will not become
disconnected. If an edge is removed, new edges are inserted into the list and have to be
analyzed since they became boundary edges. The process continues until the list is empty.
They also present a multi resolution approach for their feature extraction to improve the
quality. The process is not fully automatic since a user has to choose the classification
operator and some parameters for the detection phase.

Hildebrand et al. [7] use anisotropic filtering on third order derivatives of the surface
mesh. The derivatives are approximated by discrete differential geometric approximations.
This way, the authors compute discrete extremalities, which are then smoothed and used
to trace feature lines in regular triangles. Singular triangles need a special treatment. In
this case the adjacent triangles are used to determine the feature line intersections with the
singular triangle. After the first feature line extraction, a threshold filter is used to improve
the stability of the feature extraction and to remove small ridges. The last step is an optional
smoothing of the feature lines. Both methods ([6], [7]) use extrema triangles to build a set of
sharp feature edges.

Watanabe and Belyaev [12] use the so called focal surfaces to detect curvature extrema on
dense triangle meshes. If kmax and kmin are the largest and smallest principle curvature then
the principle centers of curvature are points situated at the surface normal with a distance
of 1/kmax and 1/kmin from the surface. These principle centers form the focal surface. It
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consists of two sheets, one for the minimal, and one for the maximal principal curvature.
Watanabe now uses the property, that the singularities of the focal surfaces, called focal
ribs, correspond to lines on the original surface where the principal curvature has extrema.
They present a method for the estimation of the principle curvature on a dense triangle
mesh and then show how the associated focal ribs can be used to identify the features. Also
here a thinning process of the first results is necessary to construct a final feature line. The
resulting lines show the regions of maximal curvature. The method is not specialized for the
detection of sharp features.

All mesh-based techniques use the connectivity information and normals associated with
the underlying mesh. But often surface scanning devices do not deliver a mesh as raw data,
but an unsorted set of point data representing the original surface. In this case, a mesh-based
method has to rely on the proper reconstruction of the features during the mesh generation.

3 Point Based Methods

Very few feature detection methods are dedicated to point-sampled geometry only. The
major problem of these point based methods is the lack of knowledge concerning normal and
connectivity information. This makes feature detection a more challenging task than in mesh
based methods.

Gumhold et al. [5] present a method that uses the Riemannian graph to construct the
connectivity information for the point cloud. The Riemannian is the graph, that contains
the edges to the k nearest neighbors for every data point. The algorithm first analyzes the
neighborhood of each point via a principal component analysis (PCA). The eigenvalues of
the correlation matrix are then used to determine a probability of a point belonging to a
feature. The analysis of the ellipsoid formed by the three eigenvectors and their eigenvalues
allows further conclusions about the underlying feature type. This way the algorithm can
differentiate between line-type features, border and corner points. The result is a quite dense
set of points covering all kinds of features independent if the feature is sharp or not. This
set of points is then reduced by computing a minimal spanning tree followed by a branch
cutting. This is an elegant way to obtain a sparse set of points representing the feature line.

Pauly et al. [11] extended the PCA approach with a multi scale analysis of the neighbor-
hoods. Based on the eigenvalue analysis of the covariance matrix, they compute a value for
the surface variation in the local area around a sample point. To obtain more information,
they use a multi scaling approach that varies the size of these neighborhoods. That means,
they apply their feature detection operator to multiple neighborhood sizes, which allows to
measure the persistence of the feature. A jump in the graph of the surface variation during
the multi scaling shows the existence of new surface parts. Especially in noisy datasets, the
multi scaling approach enhances the result of the usual PCA analysis. Since the method
analyzes up to 200 neighborhood sizes for each point in the dataset, it is computationally
more expensive. To handle relative huge neighborhood sizes of over 200 neighbors, they
also show a way to solve the problem of neighbors not belonging to the same connected
region. To estimate when a neighborhood becomes too large, they use a heuristic that looks
for strong deviations in the normal direction. The algorithm recognizes all kinds of visual
eminent features, but for the identification of only the sharp features inside the dataset,
this method has to be modified. One way to adapt this approach to sharp features may be
achieved with an adjustment of the thresholds for the feature recognition. With well chosen
lower and upper thresholds the method may be able to identify only sharp features.

Demarsin et al. [2] also searched for sharp features in point cloud data. Their goal is to
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produce closed sharp feature lines. They choose a region growing method that segments the
point cloud into clusters and identify the regions of sharp features. Based on the analysis
of the normals of the points, they segment the point cloud in clusters with equal normal
behavior. From these clusters they build up a graph that connects the neighboring clusters.
The edges in this graph are then used as indication for the existence of a sharp feature in the
related area. Similar to Gumhold [5] and Pauly [11], they use a graph approach and construct
a minimum spanning tree of these candidates. This gives them an initial reconstruction for
the feature lines. A fixed parameter for the maximum branch length is then used to cut of
the short branches of the tree. In the next step, they close the feature lines. For each open
endpoint in their graph they compute the n nearest neighbors among the other endpoints.
The distance and the length of the paths of the neighboring endpoints is used to determine a
good connection. After this they cut of the branches of the possibly remaining endpoints
and smooth the graph to get their final closed feature lines.

The mentioned techniques for the detection of features in point clouds are mostly used as
a preprocessing step for another processing step, e.g. a surface reconstruction with sharp
features, but there exist also several reconstruction methods that preserve sharp features
during a surface reconstruction of a point cloud without preprocessing. For example the
methods shown by Amenta et al. [1], Guy and Medioni [4], Fleischmann et al. [3] and
Öztireli et al. [10]

4 Feature extraction via Gaussian Map Clustering

This section presents our feature extraction method. It is a point-based method like the
methods mentioned in Section 3. The method can be divided into three steps: In the first
step, the data structure used for the analysis of the point set is built. Subsequently this data
structure is used to generate local neighborhoods inside the point set. In the last step these
neighborhoods are analyzed, and points belonging to sharp features are identified.
We define a point cloud as a simple set of 3D point coordinates P = {p1, p2, ..., pN}, pi ∈ R3

without any normal or connectivity information. The data points are unstructured, but
supposed to belong to a 2-manifold surface. Let N = |P | be the number of points.
The type of sharp feature we want to detect in the point cloud can vary from edges or lines
between two surfaces to corners where three or more surfaces meet.

4.1 Analysis of neighborhoods
To detect sharp features in the point cloud, we have to analyze the neighborhood of every
point in the dataset, similar to [11],[5], and decide if the point is a sharp feature point or not.
As neighborhood, we use the k-nearest, i.e. the k points with the shortest distance to the
sample point. The k-nearest neighbor search is a well studied problem and many algorithms
exist, since it is just a variant of the nearest neighbor search problem. For performance
reasons, we use a kd-tree implementation as underlying data structure. Building the kd-tree
is performed in a pre-processing step for our algorithm. After the construction of the local
neighborhood Np for a sample point p ∈ P , the next step is to analyze it and decide if p
belongs to a sharp feature or not. During tests a neighborhood size of 16 turned out to
deliver good results. For the following analysis we apply a Gauss map clustering.

4.2 Discrete Gauss map
Let Np be the neighborhood of p containing the k nearest neighbors and Ip = {1, ..., k}.
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We now take a set T of all possible k · (k − 1) triangles with p and two neighborhood
points as vertices

T = { ∆ij = ∆(p, pi, pj) | i 6= j, i, j ∈ Ip}.

An example for three possible triangles is shown in Figure 2. The normal vector of one of
these triangles ∆ij is given by

nij = ppi × ppj . (1)

Note that nij = −nji. The discrete Gauss map of the neighborhood of p can now be defined
as the mapping of T onto the unit sphere S2 centered at p as follows

Gp : T → S2

∆ij 7→ xij := p+ nij

‖nij‖ .
(2)

Figure 1 shows the projection onto the gaussian sphere.

Figure 1 The projection of the normal of one of the possible triple (p, pi, pj) onto the gaussian
sphere, with the two possible results xij and xji

4.2.1 Gauss map clustering
Feature detection is now performed by analyzing the clustering behavior of these normals on
the Gauss map Gp of the set T = {∆(p, pi, pj)}.

The motivation for this idea is the fact that in the case of a smooth piecewise C0 surface,
the patterns of resulting cluster on the Gauss map is different whether the point is flat,
curved (elliptic, hyperbolic or parabolic) or tangent plane discontinuous. In the nearly flat
case, the Gauss map of neighbor points will present one cluster of points on the sphere, see
Figure 3 (left). In the case of a curved point (parabolic, hyperbolic, or elliptic) the points
will not form clusters, but spread on the sphere over a larger region, see Figure 3 (middle).
And a tangent plane discontinuity will lead to a pattern, where the points of the sphere form
two distinct clusters, see Figure 3 (right).
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Working with a simple point cloud, the difficulty is that we have only very limited information
about the underlying surface. No local triangulation or normal vectors are available. For
this reason, we defined the Gauss map as projection of all triangles in T (see Sect. 4.2). As
a consequence of using all triangles ∆(p, pi, pj), the resulting Gaussian map will contain
some additional noisy points that correspond to the triangles with p and one data point
from each of the planes. These noisy points are distributed over the whole gaussian sphere
(see Figure 2 right), while the correct points (i.e. points belonging to triangles of p and two
points of one of the planes) are positioned in clearly recognizable clusters. The dominance of
the clusters makes it easy to ignore the noisy points during the computation of the clusters.
Figure 2(right) illustrates these assumptions for the common case of p lying on the sharp
edge of two intersecting planes, with half of the k = 16 neighborhood points lying on each
plane. The result of the Gauss map computation shows two pairs of (opposite) clusters of
O(k2/4) identical points. These pairs of clusters correspond to each of the intersecting planes.
Note that the reason for the pairwise clusters is the lack of knowledge about the original
surface, especially the normal directions. The points in the neighborhood are unsorted and
so we can not control which triangle (∆(p, pi, pj) or ∆(p, pj , pi)) is used for the gaussian
clustering. Based on this fact, both normals, nij and nji are normals of possible triangles,
also see Figure 1. The result are clusters on opposing sides of the sphere, although they
belong to the same plane, but where arbitrary projected into opposing directions. The red
points on the right picture in Figure 2 are an example for these opposing clusters. All other
points on the sphere (noisy points) correspond to situations with one point of each plane
and the sample point forming a triangle. This noise is sparsely distributed over the sphere.
The example in Figure 2(right) was implemented in Matlab.

Figure 2 Left: Computation of the normal vectors used for feature identification. Middle: An
example for a sharp feature situation. Right: The Gauss map Gp for the feature identification of the
example in the middle, showing the clusters (big red and blue points) and the noisy points generated
from wrong triangles.

Using this knowledge about the clustering behavior on the Gauss map, called Gauss map
clustering, we can now determine whether the sample point p belongs to a sharp feature
or not. Regarding cluster analysis, we have to consider the effect of the opposing clusters
mentioned above. Since we don’t have any information whether the normals points outside
or inside of the surface and thus nij = −nji, each point xij in one of the clusters has its
counterpart xji in the cluster on the other hemisphere of the Gaussian map.

For this reason and to avoid possible problems and wrong detections, we have to guarantee
that opposing clusters are treated as one cluster. So instead of the original vectors, we use the
lines defined by these vectors for the clustering. After clustering, the results are interpreted
as follows. The case of one resulting cluster (i.e. two opposing clusters) corresponds to a flat
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Figure 3 2D examples for clustering during feature detection

or nearly flat areas (Figure 3 left). Two or more clearly distinguishable clusters show the
existence of a sharp feature nearby and the sample point of this neighborhood belongs to
this feature (Figure 3 right). The case of no clustering and a sparsely distribution of points
on the Gaussian map shows, that this region is curved or has at most a smooth feature, but
not a sharp one (Figure 3 middle).
In many clustering algorithms one needs to specify the number of clusters to produce.
However, we have to go the other way around. We want to distinguish our real clusters from
sparsely distributed points in the Gauss map, and afterwards count the number of clusters.
Therefore we use a hierarchical agglomerative ("bottom-up") clustering method [8]. Starting
with one separate cluster for each point, we merge them step by step into larger clusters.
Here the distance, which is used as the criterion for the merging process, and its definition is
of importance for the success of the clustering.
We use the mean distance Dc between the elements as criterion, and define the distance as
the angle between the lines which are defined by the opposing clusters as follows:

Dc(S1, S2) = 1
|S1| · |S2|

∑
x∈S1

∑
y∈S2

d(x, y), (3)

where S1, S2 are two clusters to be compared, |S| is the number of elements in a cluster
and d is the distance measure on our Gauss map. Each agglomeration increases the distance
between the clusters. As a consequence, we can stop the clustering algorithm when the
distance between the existing clusters exceeds a certain threshold σ ∈ [0, π2 ].
After the clustering we have to discard all clusters with only a few points. We do so to
eliminate the effects of the noisy points mentioned earlier. If only one cluster remains, we
know that the sample point does not belong to a sharp feature since the underlying area is
a flat plane. If two to four clusters remain, we say that the point belongs to a feature. If
the result consists of more than four clusters or no cluster at all, we decide that the point
is not a feature since the result of many or no clusters is a strong signal for a curvy area
without a sharp feature. For datasets with sharp features where more than four edges join,
the parameter can be adjusted to match the occurring situation.

4.3 Sensitivity to parameter choice
The threshold σ is the parameter we can use for the sensitivity of the feature detection. It
corresponds to the angle of the sharp feature we want to detect. The choice of the value of σ
depends on the dataset. A dataset with obtuse angles will need a lower value for σ than a
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dataset with acute angles. The effect of σ is shown in Figure 4. On the left side a too small
σ was chosen, the features were not detected properly. In the middle σ was well chosen, the
features are well detected. On the right side σ was chosen too big, resulting in the detection
of too many feature candidates. The user adapts the σ value with a trial and error method.

Figure 4 Different values of σ tested with the trim-star model, σ growing from left to right.

4.4 Sensitivity to noise
We also tested the methods behavior regarding noise. To do so, we generated noise by moving
the points of the original dataset in a random direction with a maximum length of 5%, 10%
and 15% of the dataset’s bounding box. The results are shown in Figure 5. One can see
that the method is relatively stable concerning noise and only strong noise results in the
presence of outliers and false positive features (i.e. points which are detected as features
but which are not features). To improve the result it would also be possible to use some
smoothing techniques to reduce the outliers in the presence of strong noise. Indeed, just
removing isolated candidates which are not surrounded by other features would reduce the
resulting number of outliers significantly.

Figure 5 Noise test on the trim-star model. From left to right: no noise, 5%, 10%, 15% noise

5 Results and conclusion

The proposed method for sharp feature detection was tested on various constructed and real
world examples and delivered good results, see Figure 6. It does not rely on local surface
reconstructions, and no normal information is required. The resulting point cloud with
the marked sharp features can be used for several applications like surface reconstruction,
non-photorealistic rendering, mesh generation or surface modeling. In [5] a whole section is
devoted to possible applications. Currently, the threshold for the sensitivity is user controlled
and specific for a dataset. For most datasets, an automatic computation of the parameter
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Figure 6 Sharp feature detection on a cube, an icosahedron, the trim-star model model, the
fandisk and a vase model.

can reduce user dependency. The method detects line-type and corner-typed sharp features.
Cone peak features are currently not recognized by it, but it should be possible to extract a
particular clustering behavior for these cases and adapt the method to recognize these.
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