The Lockmaster’s Problem

Sofie Coene! and Frits C. R. Spieksma'

1 Research group Operations Research and Business Statistics (ORSTAT)
Katholieke Universiteit Leuven, Belgium
Sofie.Coene@econ.kuleuven.be

—— Abstract

Inland waterways form a natural network that is an existing, congestion free infrastructure with
capacity for more traffic. The European commission promotes the transportation of goods by
ship as it is a reliable, efficient and environmental friendly way of transport. A bottleneck for
transportation over water are the locks that manage the water level. The lockmaster’s problem
concerns the optimal strategy for operating such a lock. In the lockmaster’s problem we are given
a lock, a set of ships coming from downstream that want to go upstream, and another set of ships
coming from upstream that want to go downstream. We are given the arrival times of the ships
and a constant lockage time; the goal is to minimize total waiting time of the ships. In this
paper a dynamic programming algorithm (DP) is proposed that solves the lockmaster’s problem
in polynomial time. We extend this DP to different generalizations that consider weights, water
usage, capacity, and (a fixed number of) multiple chambers. Finally, we prove that the problem
becomes strongly NP-hard when the number of chambers is part of the input.

1998 ACM Subject Classification F.4.1 Computability Theory
Keywords and phrases Lock Scheduling, Batch Scheduling, Dynamic Programming, Complexity

Digital Object Identifier 10.4230/0ASIcs. ATMOS.2011.27

1 Introduction

Transportation of goods by ship, over sea as well as over waterways, is a promising alternative
for transport over land. Reasons are its reliability, its efficiency (a ship of 1200 tons can
transport as much as 40 train couches and 60 trucks), and its environmental friendliness.
Here, we focus on transport by inland ships over waterways. The European Commission
promotes the better use of inland waterways in order to relieve heavy congested transport
corridors. Carriage of goods by inland waterways is a mode of transport which can make
a significant contribution to sustainable mobility in Europe [6, 1]. Not only is its energy
consumption per km/ton of transported goods approximately 17% of that of road transport
and 50% of rail transport, it also has a high degree of safety and its noise and gas emissions
are modest. This natural network is the only existing infrastructure that is congestion free
and has capacity for more traffic [8]. Typically, these waterways are interrupted by locks such
that higher water levels can be maintained and such that larger and heavier ships are able to
use it. These locks are a bottleneck for transportation over water and hence, operating locks
wisely contributes to the popularity of transportation over water. However, the algorithmic
problem how to operate a lock has not been studied broadly in the scientific literature. We
aim to fill this gap. We now continue with the description of a very basic situation that
will act as our core problem: the lockmaster’s problem. Later, we will discuss extensions to
more realistic settings. Consider a lock consisting of a single chamber. Ships coming from
upstream, wanting to go downstream, arrive at the lock at given times r;, ¢ = 1,...,ny with

ry <rg < ... < ry,. Other ships, coming from downstream, wanting to go upstream, arrive
@@@@ © Sofie Coene and Frits C. R. Spieksma;
G licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 27-37

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.27
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

28

The Lockmaster’s Problem

at the lock at given times s;, i =1,...,n9 with 57 <s9 < ... < sp,. Let n =n; + ng, and
let T denote the lockage duration, this is the time between closing the lock for entering
ships, and opening the lock so that ships can leave. We assume that all data are integral.
Our goal is to find a feasible lock-strategy that minimizes total waiting time of all ships.
In other words, we need to determine at which moments in time the lock should start to
go up (meaning at which moments in time ships that are downstream are lifted), and at
which moments in time the lock should start to go down (meaning at which moments in
time ships that are up are being lowered). Clearly, for such a strategy to be feasible, (i)
going-up moments and going-down moments (referred to as moments) should alternate, and
(ii) consecutive moments should be at least T' time-units apart. It is clear that this particular
problem is a simplified version of reality; we will, however, add capacity restrictions and
other extensions in Section 4.

2 Literature

Literature on lock scheduling problems is rather limited. Some recent papers deal with the
optimal sequencing for locking ships when a queue emerges due to some lock malfunction
or accident. Nauss [13] determines an optimal sequence in the presence of setup times and
non-uniform lockage processing times. Smith et al. [15] perform a simulation study on the
impact of alternative decision rules and infrastructures improvement on traffic congestion
in a section of the Upper Mississippi River. Ting and Schonfeld [16] study several control
alternatives, such as sequencing, in order to improve lock service quality. They use heuristic
methods. Verstichel and Vanden Berghe [17] mention the increasing occupation of logistic
infrastructure in ports and waterways. They develop (meta)heuristics for a lock scheduling
problem where a lock has at least one chamber, but often consists of multiple parallel
chambers of different dimensions and lockage times. They deal with capacity restrictions in
the sense that ships have sizes and the lock area is restricted, making this problem at least
as hard as a bin packing problem. None of these papers study the lockmaster’s problem.
The lockmaster’s problem is closely related to a batch scheduling problem. Batch
scheduling involves a machine that can process multiple jobs simultaneously. As far as we are
aware, this connection has not been observed so far. Suppose that, in our problem, we only
have downstream going ships. Then, the lock can be seen as a batching machine and the jobs
are the arriving ships with release dates and equal processing times (i.e. the lockage time T').
Following the notation of Baptiste [2] this is problem 1|p — batch,b = n,r;, p; = p| > w; F;. In
words: we have a single parallel batching machine with unrestricted capacity (b = n), release
dates on the jobs, and uniform processing times. The objective is to minimize the sum of
weighted flow times, however, in the basic lockmaster’s problem there are only unit weights.
Baptiste [2] shows that this problem is polynomially solvable for a variety of objective
functions. Cheng et al. [5] developed an O(n?) algorithm for 1|p — batch,b = n,r;,p; = p|f
where f can be any regular objective function. Condotta et al. [7] show that feasibility of the
same problem with deadlines can be checked in O(n?). Clearly, the lockmaster’s problem is
more general. Indeed, when there are upstream going and downstream going ships, we are
dealing with two families of jobs, and only jobs of the same family can be together in a batch.
Further, in our case, processing a batch of one family needs to be alternated by processing a
(possibly empty) batch containing jobs of the other family; i.e. it is not possible to process two
batches of the same family consecutively. The concept of a “family" of jobs is also described
by Webster and Baker [18], however not in combination with a batch processing machine. In
their paper, Webster and Baker deal with a scheduling problem where scheduling jobs of

S. Coene and F. C. R. Spieksma

the same family consecutively reduces setup times. In our problem, dealing with jobs of the
same family consecutively, i.e. in one batch, reduces the total batching time. This type of
problem is also known under the name of batch scheduling with job compatibilities. Jobs
within a batch need to be pairwise compatible, and these compatibilities can be expressed
using a compatibility graph. Boudhar [3] and Finke et al. [9] study different variants of
these batch scheduling problems when the compatibility graph is bipartite or an interval
graph. In our case the compatibility graph is the union of two cliques. Our problem can be
summarized as being 1|p — batch,b=n,r;,p; =p,® = 2,574 > F;, with 55, =2T if f =g
and sy, =T if f # g, where ® refers to the number of families and s¢, to the setup times
between batches; we will refer to our problem as the lockmaster’s problem. For a review on
scheduling a batching machine we refer the reader to Potts and Kovalyov [14] and Brucker et
al. [4]. Lee et al. [12] develop dynamic programming algorithms for scheduling a batching
machine with release dates, deadlines, and constant processing times when the goal is to
minimize makespan or minimize the number of tardy jobs. In conclusion, this literature
study reveals that the complexity of our lockmaster’s problem does not follow from results

in literature. Further, we consider the lockmaster’s problem with multiple parallel chambers.

Again, when considering the uni-directional case, the problem is related to parallel batch
scheduling problems. Condotta el al. [7] have developed a polynomial time algorithm in case
of parallel batching machines and deadlines where the objective is minimizing the maximum
lateness.

2.1 Our results

We show that

(1) there is an O(n%) algorithm for the lockmaster’s problem (see Section 3);

(2) this algorithm can be extended to deal with regular objective functions (4.1), non-uniform
lockage times (4.2), settings with a limited number of times that there can be locked (4.3),
capacities (4.4), and with a constant number of parallel chambers (4.5);

(3) if the number of parallel chambers is part of the input, the problem becomes strongly
NP-hard (Section 5).

3 A DP for the lockmaster’s problem

When is a lock likely to start going up or down? Either upon arrival of a ship or immediately
upon arrival of the lock. This suggests that the number of moments the lock starts moving
is limited. Garey et al. [11] and recently Condotta et al. [7] use the concept of “forbidden
regions" in the presence of deadlines to define periods of time in which no job/batch can
start in a feasible schedule. Given that there are no deadlines, the same concept can be used
to define periods of time in which no batch can start in an optimal schedule. We introduce
a set of moments U at which it is possible to go up. These upmoments are referred to as

u;. Similarly, we introduce a set of moments at which it is possible to go down, the set D.

These downmoments are referred to as d;. Let us define set S = {s;}, set R = {r;} and

© ={0,27,4T,...,4nT}; further in the text it will be shown why this set is limited to 4nT.

We use the Minkowski-sum to sum two sets, i.e. the sum of two sets A = {a;} and B = {b;}
as follows:

A+B = {al—+bj|al- c A,bj e B}
Then, bearing this definition in mind, here is a proposal for U and for D:

U=(S+0O)U(R+06+{T}),

29

ATMOS’11

30

The Lockmaster’s Problem

D=(R+©)U(S+6+{T}).

For example, suppose we have two ships traveling downstream and two ships traveling
upstream with R = {1,7} and S = {2,4} and T' = 5. Then,
U ={2,4,6,12,14,16,22,24,26, ...,162,164, 166} and
D ={1,7,9,11,17,19,21,27,29, ...,161, 167, 169}.
We will come back to the cardinality of U and D.

» Lemma 1. There is an optimal lock strategy for the lockmaster’s problem whose upmoments
are contained in U, and whose downmoments are contained in D.

Proof. Contradiction. Suppose there is an instance such that each optimal strategy has
either an upmoment not in U or a downmoment not in D (such a moment is called a failure).
Consider an optimal strategy for this instance for which its earliest failure is minimal, say at
time t. Let us assume for convenience that at time ¢, the lock went up. Notice that ¢ cannot
be equal to an s;. Consider that moment in time ¢. Let € > 0 be a very small quantity. There
are two possibilities:

(i) at t — e the lock was waiting to go up. If, in our optimal strategy, there are ships
transported up at time ¢, it cannot have been optimal to wait until £, since no downstream
ships arrive at time ¢ (since t is not in S). Hence, there are no ships transported. But
then, we need not have waited, and there is an optimal strategy that immediately went
up after the last time before ¢+ we went down.

(ii) at t — e the lock was going down. Thus, at ¢t — T, the lock started a down-operation. This

moment in time is, by assumption, in D. But then it follows that ¢ is in U. Contradiction.
<

Now, let us further analyze U and D.

» Lemma 2. When, for a given instance for the lockmaster’s problem, during a time period
equal to 4T no ships arrive at the lock, the instance can be divided into two instances. The
solution can then be found by solving these two smaller instances.

Proof. We observe that if during a period of time of length 47" nothing happens (meaning
that there are no ship arrivals), the instance can be subdivided into two instances. Indeed,
suppose the final arriving ship in the instance is an upstream going ship with arrival time s,
(the same analysis can be done when the final ship arriving is going downstream). The latest
possible optimal lockage time for this ship is s, + 27" — €, with € > 0 and small. Suppose
that this ship is locked at time ¢ > s, + 27". Since it was the final ship arriving, it would
have been better to lock the ship at time ¢t — 2kT with k an integer such that ¢t — 2kT is in
[$p, $p + 2T"). If this ship is locked at time s, + 27" — ¢, then the lock is at upstream level at
sp + 3T — € and again at downstream level at s, + 47T — e¢. This means that, when no ship
arrives in a time interval of 4T, the instance can be split into two separate instances. <

From now on we assume (without loss of generality, due to lemma 2) that each instance of
the lockmaster’s problem has the property that a ship arrives during any 47 interval. This
allows us to bound the cardinality of U U D. For each period of time of length 47, we have
at least one arrival. In a 47T interval there can be at most O(n) elements in U U D by the
construction of the sets. Partition the time-axis into consecutive 47 intervals: there can be
at most n of them (since each needs to contain at least one arrival). Thus, there are at most
O(n?) elements in U U D.

S. Coene and F. C. R. Spieksma

We now define a dynamic programming algorithm (DP) where f(u;,d;) (with u; < d; —T)
represents the minimal costs of a lockage strategy that takes care of all up-requests up to
u;, all down-requests up to d;, which features an upmoment at time ¢ = u;, which features
a downmoment at time ¢ = d;, and such that there are no other up- or downmoments in
between u; and d;.

Here is a recursion. For each u; € U, d; € D, with u; < d; — T we have:

fluidg) = min {f(up,dj) + Yoo wi—s)+ Y (dj—m)k;
ujllg_d;/ o é:sge(ui/,ui] k:TkE(dj/7dj]

for all u; > d; — T we set:
fus, dj) = oo.
The recursion is initialized as follows:
flur,u1 +T)=0.

For this recursion to work we set u; = min{s;,7 — T'}. The optimal value is given
by min{f(u;,d;)|w; > sp,,d; > oy, u; € U,d;j € D}. A straightforward way to determine
the complexity of DP is to observe that there are O(n?) states and since for each state
we enumerate over all other states, we arrive at an O(n®) algorithm. To improve the time
complexity of DP, we observe the following.

» Observation. If d; € D\ R, then the previous upmoment was d; — T'.

Indeed, notice that if the lock goes down at a moment in time (say ¢) that is not an arrival
moment in R, then the previous upmoment was at ¢ — 7. If the lock went up earlier than
t — T, then there is an optimal solution in which the next downmoment is earlier than ¢; as
no ship is arriving at ¢, there is no need to wait for ¢.

» Theorem 3. DP is a polynomial-time algorithm for the lockmaster’s problem.

Proof. Correctness follows from lemma’s 1 and 2 and the following. We argue that the
observation above implies that it is sufficient for DP to consider O(n?) states. Indeed, there
are O(n?) states with d; € D\ R, and O(n?) states with d; € R. The latter fact follows
from the insight that |R| = O(n) (combined with the fact that U and D have cardinality
O(n?)). Computing each state can be done by evaluating O(n?) states, leading to a total
time complexity for this algorithm equal to O(n®). <

4 Extensions

4.1 Regular objective functions

For the analysis above we chose as an objective to minimize the sum of the waiting times,
which is a very natural objective function for this problem. The algorithm, however, works
for any regular, i.e. non-decreasing in (waiting) time, objective function. Such a function can
be for instance minimizing the weighted sum of waiting times or minimizing the maximum
waiting time. Indeed, in the recursion, a cost of a state can be computed by taking the cost of
a previous state and adding the extra cost incurred. These are cost-functions non-decreasing
in ¢t and it is clear how the extra cost can be calculated, independent of the value of the
previous state. Let us consider, for example, the weighted lockmaster’s problem. In practice,
it happens that not all ships are of equal importance, e.g. it is conceivable that the waiting

31

ATMOS’11

32

The Lockmaster’s Problem

cost for ships transporting goods is higher than the waiting cost of leisure ships or ships
transporting dangerous goods get priority over normal cargo ships. This can be dealt with
by assigning weights to the ships revealing their priority. Taking into account weights w for
the ships in the DP recursion can be done straightforwardly as follows:

Pluidy) = min {fuirdp)+ Y welwi—s)+ Y wild; — i)}
ujlg_d;/—T L:sp€(u;r,us) k:'r‘ke(dj/,dj]

Initialization and determination of the optimal value are identical to the basic DP in the
previous section.

4.2 Non-uniform lockage times

It is not uncommon that lockage times for going up (7,) and down (Ty) are not equal. Then,
for u; € U and d; € D:

fluidy) = min {f(ur.dp)+ Yo (w-s)+ Y (dj—r)}
u;/ gd;/ *TZ L:sp€(u,ruq) kirype(d;r,d;]

where ©, U and D are now:
0= {0, Ty+ Ty, 2(Td + Tu), 3(Td + Tu), e 7TZ(QTd + 2Tn)},

U= (S+0)U(R+{Ty}+0),
D=(R+0©)U(S+{T,}+9©).

It is not difficult to verify that all results from Section 3 apply to this setting. Also,
initialization and the optimal solution are determined equivalently to the basic DP.

4.3 Water usage

Due to organizational/environmental reasons, there could be a limit on the number of times
there can be locked. In this situation, Lemma 2 no longer holds. Indeed, splitting an instance,
would also mean dividing the number of allowed lockage times over the two instances and
it is not straightforward how this should be done. The cardinality of U and D needs to be
reconsidered. Let us define alternative sets U’ and D’ as follows. For all pairs of consecutive
ships (t,t') with my —my > 4T and my, mpy € SUR, let U' = U\{w;|u; € [my + 4T, myp)}
and D' = D\{d,|d; € [my + 4T, my)}.

» Lemma 4. All optimal up and downmoments are in U' and D’ respectively.

Proof. From Lemma 1 we know that all optimal up- and downmoments are contained in
U and D. Suppose a ship arrives at time m; and during a time period of 4T after that no
other ships arrive. Suppose further, without loss in generality, that the ship arriving at m; is
an upward going ship. Then, following the same argument as in the proof of Lemma 2, all u;
and d; later than m; + 47 and earlier than my, the first arrival after m;, will not be part of
an optimal solution and can be deleted from the sets U and D. <

S. Coene and F. C. R. Spieksma

What is now the cardinality of U’ and D’? When, in an instance, there is no gap of 47T, it
holds that every 47T interval at least one ship arrives, and there are at most n such intervals,
yielding size O(n?). When there are z such gaps, cardinality is « times O(n?), with z < n,
yielding size O(n?).

In a dynamic programming recursion for this problem (DPw), an entry is needed to keep
track of the number of times there has been locked before. It still holds that all ships arrived
before or upon lockage time will be handled. Now, we use v for the number of times there
has already been locked and V for the maximum number of times there can be locked. For
u; € U, dj € D',v <V, the algorithm DPw is given by:

flui,dj,v) = dj,?i?_T{f(ui"dj”v —D+ Y (w—s)+ Y. (dj—r)}
wy<d; T L:sg€(u;r,uq) kirg€(d;r,d;]

The initial state is
f(ul,ul +T,V— 1) =0

with w3 = min{s;,r — T}.
The optimum is given by min{f(u;,d;, v|u; > sp,,d; > ry,,v < V)}. In these states all
ships are locked and the maximum number of allowed lockage times is not exceeded.

» Lemma 5. DPuw is a polynomial-time algorithm for the water-usage constrained lockmaster’s
problem.

Proof. See also the proof of Theorem 3. There are O(Vn?) states, with V' < n. Computing
each state can be done by evaluating O(n?) states, leading to a total time complexity for the
algorithm equal to O(Vn®). <

4.4 Capacity

Until now we did not take into account any capacity restrictions. Suppose the sizes of the
ships are uniform and the lock can accommodate at most b ships at once. It is easy to
see that Lemma 1 and its proof also hold in this case. Upmoments and downmoments in
an optimal solution will be contained in U and D, respectively. However, Lemma 2 is not
directly applicable. Indeed, it can happen that ships need to wait longer than 47T when the
capacity of the lock is filled. Suppose that during a certain time period no ships arrive at
the lock. Then, the lock will go up and down with full capacity and without waiting until
the waiting queue is empty. In other words, the strategy of the lock is very simple in this
time period. Given that there are n; + no ships in the instance, let 7 = max{ni,n2}. Then
the following lemma holds:

» Lemma 6. When, for a given instance of the lockmaster’s problem with capacity constraint,
during a time period equal to 2T'[] no ships arrive at the lock, the instance can be divided
into two instances. The solution can then be found by solving these two smaller instances.

Proof. Suppose n ships are waiting at the lock to go up, then the lock needs to go up and
down until all ships are handled. Given that the lock has a capacity b, the queue will be
empty after at most [] upmoments of the lock. 27" time units pass between two upmoments,
such that the last ships go upstream at time 27°([{] — 1). Note that the lock does not
spend any time waiting as the ships have already arrived and are waiting to move as soon
as possible. Thus, T time units later the lock is at the upstream level, and another T time

33

ATMOS’11

34

The Lockmaster’s Problem

units later again at the downstream level. If during 27'[7] time units no ships arrive, the
instance can be split into two separate instances. <

It follows that we can assume, without loss of generality, that each 27°[7] time units at least
one ship and at most n ships arrive. In a 27°([£] + 1) interval there can be at most O(n?)
elements in U U D for that interval. We have at most n intervals, such that there are at most
O(n?) elements in U U D.

Define a dynamic programming algorithm (DPc) with f(u;,d;,p,q) (with w; < d; —T) as
the minimal costs of a lockage strategy that includes the accumulated cost for all up-requests
up to u; and the cost for all down-requests up to d;. Part of these ships is still waiting at
the lock, i.e. p is the number of ships waiting to go upstream and ¢ is the number of ships
waiting to go downstream; the cost for these ships is only partial (indeed, their waiting time
is not completed yet). This state features an upmoment at time ¢t = u;, a downmoment at
time ¢ = d;, and there are no other up- or downmoments in between u; and d;. Let I(u;,u;)
be equal to the number of ships ¢ with arrival time s; in the interval (u;,u;] and k(d;/,d;)
the number of ships j with arrival time r; in the interval (d;/, d;].

Then, let:

p_ {{max{p +b—1(u,u;),0t} ifp>0

{0,1,...,0 — l(uir,ui)} ifp=0
Q= {maz{q+b—k(d;,d;),0}} ifqg>0
{0,1,...,b—k(dj,d;)} ifg=0

and:

f(uia dj7p7 q) = d r<r11n T{f(uiladj'ap/a q/)+

S SUG—
u:/ S_dj/—T
p'epP
d'€qQ
Z (u; — s¢) + Z (dj =) +p' (wi —uir) +¢'(dj — djr)}. (1)
Z:See(ui/,ui] k:’l‘ke(dj/,dj]

with initial state
flui,us +7,0,0) =0

and u; = min{sy,r; — T}.

When p,q > 0 it means that the lock was operated at full capacity in the previous state.
Just before operating the lock there were thus p 4+ b ships ready to go up, from which
I(uy,u;) arrived between the previous upmoment of the lock and the current upmoment.
Thus, after the previous upmoment of the lock there were p + b — I(u;, u;) ships not handled
yet. If this is a negative number it means that all ships are handled up till s; < u; and
p’ = 0. When p,q = 0, it means that no ships are waiting and full capacity b was not
necessarily used, meaning that p’ + l(uy,u;) < b. It follows that p’ < b+ I(u;, u;), and
idem for ¢’. The waiting time of any ship [that arrived between w; and u; is at least
u; — s, which explains the second part of (1). However, for the p’ ships that could not
enter the lock at u,;, the waiting time increases with (u; — uy), which is dealt with in the
third part. Analogue arguments hold for the downmoments. The optimal value is given by
min{f(ui, dj, 0, 0)|uz > Sn2,dj > Tpy, Wi € U, dj S D}

S. Coene and F. C. R. Spieksma

» Theorem 7. DPc is a polynomial-time algorithm for the lockmaster’s problem with a
capacity restriction.

Proof. The proof is analogue as the proof for Theorem 3. U and D have cardinality O(n?);
p and ¢ have cardinality O(n). It follows that this algorithm will have O(n®) states. For
each state we need to evaluate O(n®) states, yielding a total time complexity of O(n'?). =

Notice that when the ships are weighted, ships might no longer be locked in order of

arrival and hence algorithm DP (or an extension of it) might fail to find an optimal solution.

When considering the unidirectional case, Baptiste’s algorithm [2] (see Section 2) yields a
polynomial time procedure.

4.5 Multiple (parallel) chamber lock

In practice a lock often consists in multiple chambers that operate independently such that
ships can be dealt with in parallel. We will show that when the number of chambers is
independent from the input and all chambers have identical lockage times, the problem can
be solved in polynomial time by adapting DP. However, when the number of chambers is
part of the instance and the chambers have arbitrary lockage times, the problem becomes
NP-hard.

First, consider a problem with k < n identical chambers in parallel, lockage time for all
locks is equal to T'. All possible lockage times are identical to the single chamber case, such
that Lemma 1 and Lemma 2 are applicable. Indeed, each of the chambers will only move
upon arrival of a ship or immediately after an up- (or down-) movement of the chamber. Let
u; be a vector of size k containing elements from U, thus VI < k : w;(l) € U; and Jj a vector
of size k containing elements from D, thus VI < k : d; (1) € D.

» Lemma 8. Given that there are k uniform parallel chambers in the lockmaster’s problem,
an optimal solution exists where the lockage sequence of the chambers is ordered as follows

ui(1) <uj(2) <...<uj(k) and d;(1) < d;(2) < ... < dj(k), Vu;,Vd;.

Proof. Suppose the optimal solution is not in accordance to Lemma 8. Then, there is a

moment in time where the lockage sequence alters, let this moment be e.g. d_j (2) < d_j(l).

Given that u;(1) < @;(2), it holds that chamber 1 is available to go down earlier than
chamber 2. All chambers are identical, thus the solution value will not change when chamber
1 goes down at t = d;(2) and chamber 2 at t = d;(1), yielding a solution as described in
Lemma 8. <

Let us now define f(u;, d;) with @; and d; ordered and @;(1) < d;(1))~T,Vl € 1...k,u;(l) €
U,d;(l) € D, as the minimal cost of a lockage strategy where all up requests up to ¢ = u; (k)

and all down requests up to ¢t = d;(k) are dealt with. For each [€ 1...%, chamber [moves
up at time ¢ = ;(I) and down at time ¢ = d;(k) and there are no other up- or down-moments
in between.

Then, for all 4; and dj, 4;(1) < d;(l) — T we have

ftg,d) = min {f(@,d)+

@) (k)<i; (1) e
d;(k)<d; (1)

> > (wi(l) = sm) + > (d;(1) = 70)},
=0k e (s (14+1)) =0 kilroe(dj(z(;,gj(zﬂ)]

35

ATMOS’11

36

The Lockmaster’s Problem

J
Smys di (k) > 1, (1) € U, d; (1) € D,V < kY.

» Lemma 9. The lockmaster’s problem with multiple identical parallel chambers is solvable
in polynomial time.

Proof. See also the proof of Theorem 3. There are O(n3*) states, computing each state can
be done by evaluating O(n3*) states, leading to a total time complexity for the algorithm
equal to O(n%%). <

5 Non-identical parallel chambers

In this section we prove that in the case of multiple non-identical parallel chambers where
the number of chambers is part of the input, the lockmaster’s problem is NP-hard.

» Lemma 10. The lockmaster’s problem with non-identical parallel chambers is strongly
NP-hard.

Proof. We show that the lockmaster’s problem with multiple non-identical parallel chambers
is at least as hard as numerical matching with target sums (NMTS). In an instance of NMTS
we are given positive integers a; (1 <i < n), b; (1 <j<n)andt, (1 <k <n). It holds that
2w te =22; ;(ai +bj). The question is whether there exists a collection of m triples (i, j, %)
such that (i) a; + b; = ¢, for each triple, and (ii) each integer in the input occurs exactly
once. This problem is proven to be NP-hard by Garey and Johnson [10]. We assume, without
loss of generality, that the a;’s and t,’s are pairwise different and that min; b; > max; a;.
We now construct an instance of the lockmaster’s problem as follows. There are 2n ships,
n ships travel upstream and arrive at the lock at s; := a; and n ships travel downstream
arriving at the lock at times 7 := t,. There are n chambers, each with a certain lockage
time b;. Is there a solution for the lockmaster’s problem with total waiting time equal to
0? If there is a solution to NMTS, each triple (a;, b;,) corresponds to a combination of a
chamber with an upstream and a downstream going ship. The upstream going ship arrives
at time a;, enters the chamber that needs b; time units to arrive at the downstream level
and after t,, time units the downstream going ship enters the chamber and spends b; time
units in the lock. Each ship can enter a chamber upon arrival time and total waiting time is
equal to 0. On the other hand, if a solution to the lockmaster’s problem with value 0 exists,
it means that each upstream going ship is assigned upon arrival to exactly one chamber.
Moreover, since min; b; > max; a;, it follows that each chamber accommodates one upstream
going ship. Since downstream going ships also have waiting time equal to 0, there must exist
triples for which it holds that a; + b; = ¢, and we have a solution to NMTS. <

—— References

1 H. Allaeys. Optimalisering van een sluis (in Dutch), 2010. Master Thesis, Katholieke
Universiteit Leuven.

2 P. Baptiste. Batching identical jobs. Mathematical Methods of Operations Research, 52:355—
367, 2000.

3 M. Boudhar. Scheduling a batch processing machine with bipartite compatibility graphs.
Mathematical Methods of Operations Research, 57:513-527, 2003.

4 P. Brucker, A. Gladky, H. Hoogeveen, M. Y. Kovalyov, C. N. Potts, T. Tautenhahn, and
S. L. Van De Velde. Scheduling a batching machine. Journal of Scheduling, 1:31-54, 1998.

S. Coene and F. C. R. Spieksma

5

10

11

12

13

14

15

16

17

18

T. C. E. Cheng, J. J. Yuan, and A. F. Yang. Scheduling a batch-processing machine
subject to precedence constraints, release dates and identical processing times. Computers
and Operations research, 32:849-859, 2005.

European commission. Promotion of inland waterway transport, January 2011.
http://ec.europa.eu/transport/inland/promotion/promotion-en.htm.

A. Condotta, S. Knust, and N. V. Shakhlevich. Parallel batch scheduling of equal-length
jobs with release and due dates. Journal of Scheduling, 13:463-477, 2010.

Inland Navigation Europe. Water webletter, November 2010. www.inlandnavigation.org.
G. Finke, V. Jost, M. Queyranne, and A. Sebd. Batch processing with interval graph
compatibilities between tasks. Discrete Applied Mathematics, 156:556-568, 2008.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco, 1979.

M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan. Scheduling unit-time tasks
with arbitrary release times and deadlines. SIAM Journal on Computing, 10:256-269, 1981.
C. Lee, R. Uzsoy, and L. A. Martin-Vega. Efficient algorithms for scheduling semiconductor
burn-in operations. Operations Research, 40:764-775, 1992.

R. M. Nauss. Optimal sequencing in the presence of setup times for tow/barge traffic
through a river lock. European Journal of Operational Research, 187:1268-1281, 2008.

C. N. Potts and M. Y. Kovalyov. Scheduling with batching: A review. Furopean Journal
of Operational Research, 120:228-249, 2000.

L. D. Smith, D. C. Sweeney, and J. F. Campbell. Simulation of alternative approaches to
relieving congestion at locks in a river transportation system. Journal of the Operational
Research Society, 60:519-533, 2009.

C. Ting and P. Schonfeld. Control alternatives at a waterway lock. Journal of Waterway,
Port, Coastal, and Ocean Engineering, 127:89-96, 2001.

J. Verstichel and G. Vanden Berghe. A late acceptance algorithm for the lock scheduling
problem. Logistik Management, 5:457-478, 2009.

S. Webster and K. R. Baker. Scheduling groups of jobs on a single machine. Operations
Research, 43:692-703, 1995.

37

ATMOS’11

	Introduction
	Literature
	Our results

	A DP for the lockmaster's problem
	Extensions
	Regular objective functions
	Non-uniform lockage times
	Water usage
	Capacity
	Multiple (parallel) chamber lock

	Non-identical parallel chambers

