
Enhancing Coherency of Specification Documents
from Automotive Industry
Jean-Noël Martin1 and Damien Martin-Guillerez2

1 All4Tec
6 Rue Léonard de Vinci – BP 0119 – F-53001 LAVAL Cedex, France
jnm@all4tec.net

2 Inria Bordeaux Sud-Ouest
351 cours de la Libération, 33405 Talence Cedex
damien.martin-guillerez@inria.fr

Abstract
A specification describes how a system should behave. If a specification is incorrect or wrongly
implemented, then the resulting system will contain errors that can lead to catastrophic states
especially in sensitive systems like the one embedded in cars.

This paper presents a method to construct a formal model from a specification written in
natural language. This implies that the specification is sufficiently accurate to be incorporated
in a model so as to find the inconsistencies in this specification. Sufficiently means that the
error rate is down 2%. The error counting method is discussed in the paper. A definition of
specification consistency is thus given in this paper.

The method used to construct the model is automatic and points out to the user the inconsist-
encies of the specification. Moreover once the model is constructed, the general test plan reflecting
the specification is produced. This test plan will ensure that the system that implements the
specification meets the requirements.

1998 ACM Subject Classification I.2.7 Natural Language Processing

Keywords and phrases coherency, specification, model generation, automatic text processing

Digital Object Identifier 10.4230/OASIcs.SLATE.2012.225

1 Introduction

Specification documents define the way a system should behave and not how it is structured.
They list the system’s properties and limits that we will call qualifiers. Those documents
are used to communicate between stakeholders of a project and are the reference documents
to verify if an engineered system meets the requirements. To ensure the correctness of the
system, modeling its specification with a formal paradigm such as Markov chains is of great
importance. It indeed enables automatic tests [10].

Of course, specification documents contain errors, leading to defects in the design and
thus in the product itself. However, determining whether a specification is correct or not
is a hard job especially due to lack of criteria to judge whether a specification is correct
or not. The IEEE has issued standards on the subject such as the IEEE 830 [1] and the
IEEE1233 [2], but these standards provide only part of the criteria and no objective criteria
to evaluate a specification. In fact, they define general rules but do not give support to a
quantitative qualification nor for a complete list of qualities.

To determine objective criteria to judge the correctness of a specification, one must define
what the means for a specification are to be correct. Of course, consistency is a key aspect of

© Jean-Noël Martin and Damien Martin-Guillerez;
licensed under Creative Commons License NC-ND

1st Symposium on Languages, Applications and Technologies (SLATE’12).
Editors: Alberto Simões, Ricardo Queirós, Daniela da Cruz; pp. 225–237

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2012.225
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


226 Enhancing Coherency of Specification Documents from Automotive Industry

correctness. Correctness includes both a good choice of words and the consistency itself. If a
specification is consistent, then the construction of a formal model of the specification becomes
possible In this paper, consistency is taken into account in our work and we automatically
extract a Markov model for test generation software from a specification document from
the automotive industry that is written in English. However a wrong choice of words will
be reported in the model will show that there will not be any negative consequences. This
paper is organized as follows: Section 2 presents the work related to this study and Section 3
presents the key aspects of specification documents that enable text analysis. After an
overview of the method used in Section 4, we go through the several steps of the treatment
of the specification in Section 5. We then examine how to improve the consistency of a
specification document thanks to our system in Section 6. Finally, we conclude in Section 7.

2 Related Work

Since the work done by Chomsky in 1965 [7] on formal grammars, automatic language
processing has evolved. Of course grammar parsing has also evolved. We can notably
mention the works of Nique [18] and Winograd [23] on context-free grammar. More recently a
new book had summarized the state of the art that was produced by Jurafsky and Martin [11].
Nique and Winograd explain in a clear way what the Chomsky approach is. Jurafsky opens on
the use of Markov models. These analyses, from Winograd to Juravsky, provide a large base
of information on how to process documents analysis in natural language and extract relevant
subparts of a document. Other works of interest are based on the concept of translation as
explained by Lutkens and Fermont [15], Planas [19]; especially those to compare text [20]
using alignment techniques. However, no work has really succeeded in generating general
purpose parser of natural language. Nevertheless, specification documents are well structured
and we will show in this paper that it is possible to parse them, to provide accurate detection
on non consistency, using some adaptation of the Chomsky grammar mixed with alignment
techniques.

Extracting the model from this parsing requires having a consistent specification at the
entry of the system. However, it is not clear what a consistent document is.

The consistency domain has been explored by Michel Charolles [4, 5] and by Fabien
Wolf [24]. The sentential calculus is addressed initially by Michel Charolles [6] as the
consistency theory. The world of uncertainty is discussed by R. Martin [17] and Lehrer [14]
and deals with fuzzy logic that give a track to the alignment of texts. The concept of
’discourse framing’, i.e., generating a tree structure giving a summary of the speech, comes
from the work of Robert Martin [17] which relied on G. Fauconnier’s work [8]. All those
works give key points of what makes a text consistent but we found no work that precisely
defines the component of consistency of a text. So we did it.

Actually, some research has addressed the topic of making a specification consistent with
various results. Out of those, we can quote V. Gal [9], P. Serre [21] and M. W. Trojet [22]. All
those works rely on the description of the specification in specific language like the language
Z [15, 16] that is far from natural language.

This paper leverages the existing works on grammar and translation systems to parse the
well-structured specification documents.

As an example of what we call a well structured document, Listing 1 exhibits a paragraph
of a final writing of a specification. This start with a title which defines the universe and any
of the above requirements include one or two preconditions linked to a predicate.

This paper also presents a definition of the six qualities that compose consistency and



J.-N. Martin and D. Martin-Guillerez 227

Listing 1 An extract of a specification.
Speed
[DRL004 -A-v1] the boot lid release feature shall be enabled by any

boot lid release button , if the ignition is run or start and the
vehicle speed is no more than 7 km/h.

[DRL004 -A-v1] the boot lid release feature shall be enabled by any
boot lid release button , if the ignition is off , independent of the
actual vehicle speed information .

[DRL004 -A-v1] the boot lid release feature shall be enabled by any
boot lid release button , if the vehicle speed fault bit is set ,
independent of the actual vehicle speed information .

how the parsing uncovers consistency errors in specification documents. Indeed, Indeed, the
previous contributions consisted mainly in giving example of what was an inconsistent text.
We never found any definition of consistency except the one included in the dictionary.

Finally, this parsing results in a Markov model that can be used to prepare the test plan
for the system.

3 Specification Structure

We based our work on four specification documents written in English from the automotive
industry. Two of them come from Lear, the next comes from Audi and the last comes from
BMW. From those documents, we extracted the overall form of a specification document. It
is composed of four different semantic elements:

an action (or predicate), denoted P , describes what is done (for example, "the user presses
the button to open the device", "the user presses the button xxx that starts the motor that
opens the boot lid"), this defines the post-condition;
a condition, denoted C, defines the initial conditions under which the predicate may
apply (for example, "when the vehicle is traveling slower than 7 km / h", "when the Can
message is not missing");
a property, denoted Q, is a group of terms that gives quantitative data on the action (for
example, "during T_EnableBootLidRelease = 23 seconds", "PJB_RearWindowsStatus =
0 within the Can message 433");
and some background information, denoted A, treated as comments.

Thus, we consider that a specification is a sequence (C+ P Q∗A∗)+1; in a specification
one requirement is a set of non empty preconditions that applies to an action; this action is
qualified by one, several or no property and is subject to potential comments. A specification
is a list of requirements.

4 System Overview

We built software that convert a consistent specification written in English into a Markov
model for test generation software. This system is based on the fact that specification docu-
ments are well-structured as presented in the previous section. This software is decomposed
in 7 steps as shown in Figure 1:

1 For clarity the + sign means one or more and the ∗ sign means zero, one or more.

SLATE’12



228 Enhancing Coherency of Specification Documents from Automotive Industry

!

1 - Text tagging

2 - Noun phrase parsing

5 - Analysis of propositions

6 - Propositions alignement

7 - Model construction

Syntax errors

Semantics errors

3 Transformation on 
passive forms

4 - Docr tree analysis

Figure 1 System overview.

1. A text tagging phase introduces the process, including the choice of stating the value of
words in conjunction with a statistical tagger [3].

2. A text parsing step, based on the Chomsky grammar [7, 12, 13, 18], decomposes the
text into word phrases, that is into elementary groups of words that have a grammatical
function.

3. The sentences that are in passive forms are then transformed into active form.
4. The doc tree elements are added to the propositions which are categorized in PQCA

propositions.
5. The sentences are decomposed into three term propositions (subject / verb / complement)

(see the work of F. Wolf [24]).
6. The propositions are aligned using classical translation methods. This enables the

identification of similar terms (i.e., the same action or the same object) written differently
in the text.

7. Finally, the propositions verbs are converted into states of a Markov Chain and the logic,
extracted thanks to steps 2 and 5, is converted into transition between states. Subjects
are the inputs and complements are the expected result.

This process succeeds if and only if most consistency errors have been removed from the
specifications. From the experiment explained further we had an automatic diagnostic of
97.6% of errors found. This condition enables automatic detections of many consistency
errors especially ambiguous statements in the specification.

5 System Description

This section presents each step done to parse a textual specification into a Markov Model.

5.1 Text Tagging
The text tagging tags the words of the documents with a set of 23 parts of speech. This is
done thanks to Brill parser [3]. At this stage we initialize the value of words: the value of
words is an extension of the excluded attribute given to weak words (weak words are the



J.-N. Martin and D. Martin-Guillerez 229

Listing 2 Definition of the grammar of a proposition.
<C> => <triggers word ><SN >

| <triggers +> <Text ><SV ><(<pivot ><Text >)
<P> => <SN > + <SV >

| <GV > <SN ><SV >
<Q> => <CONJ ><SN >

| <SN >
<Text > => <SN ><SV >

| <SN >
| <SV >

<SN > => <DET ><N+><0>
| <PREP > <SN >
| <Past participle >
| <DET ><A><N+>
| 0
| <DET ><NP >

<SV > => <Aux ><GV >
| <GV >

<GV > => <V><Q>

words that have a poor semantic value: the articles, the auxiliary, etc. . . ). The value of
words consists of allocating a value to any words, mainly:

0 for weak words;
1 for normal words;
3 for numeric values;
5 for named entities;
8 for negative words.

The allocation of the value of word at the tagging stage prepare for a further accurate
alignment of propositions. The value of word is chosen to provide a first idea of how to quote
the word depending on the semantic discrimination of any word.

5.2 Text Parsing
As we explained before, a specification is composed of conditions C, predicates P , properties
Q and comments A. As a consequence, our system leverages the regular form of specification
to analyze it. The parsing is thus the extraction, for each specification line, of the C, P , Q
and A elements.

This extraction is a classical grammar parsing using the grammar detailed in Listing 2.
To illustrate this schema we express the first rule in words: a condition C is made of a trigger
word that introduces a nominal noun phrase or a trigger that introduces a text followed by a
verb phrase, etc.

This grammar is a sub part of the one proposed by Chomsky in [7] to include only part
relative to the English used in the specification document. It specifies how a condition C, a
predicate P , and a property Q are decomposed. Figure 2 shows the results of the parse tree
of the sentence "If the PJB is configured for S389 and receives a valid boot lid release request
from the CRM". Of course the root of the parse tree in that figure is a condition C with the
"if" word as the trigger. "the PJB" is the subject to the "is configured for S389" verbal group.
"and" is a pivot introducing the text "receives a valid boot lid release request from the CRM".
Using this grammar, we thus have a basic decomposition of the text.

SLATE’12



230 Enhancing Coherency of Specification Documents from Automotive Industry

	  

C

trigger text SV
if

the Pjb

Pivot+text

SN

Det N

GV

V Q

is configured

CONJ SN

for
S389

NP

pivot

and

text

SV

GV

V Q
receives SN

Det
a

N+
valid boot lid release request

PREP SN

PREP
from the CRM

Det NP

Figure 2 Grammar parse tree of a condition.

Listing 3 TPassive rule from the transformation defined by Chomsky.
TPassive :
SN1 + Aux + "to" + VPP + SN2 <=> SN2 + Aux + "be" + VPP + SN1

5.3 Active Form
Once the sentences are extracted using the previously described grammar, sentences in
passive form are transformed into active form. This step is performed so that logic of the
specification is direct and thus transferable to a Markov model.

First of all we stated that the transformations were dual. Assuming V PP stands for verb
participle, which is changed to infinitive thanks to the rule exhibited in Listing 3. This rule
comes from the Chomsky defined transformation but it is limited to the only sentence with
exactly two verbs. We extended it with two new rules shown in Listing 42 to include all the
possible cases especially sentences with three verb phrases and simpler sentences with one
only verb phrase.

5.4 Doc Tree Adding
Thanks to the plan of the document we extract the “Universe” from the document and we
construct a couple of propositions, adding a “Universe” to any proposition. The “Universe”
concept comes from the works of R. Martin[17] and G. Fauconnier [8]. In our case we extract
the universe from the plan of the documents.

The “Universe” step is the one where the major traps for incorrect statement are set.

2 In Listing 4, noun phrases are labelled GN1 to GN4 and verb phrases V P P , V P 1 and V P 2

Listing 4 Grammar for passive forms with three verbs.
<VPP > <GN1 > <VP1 > <GN2 > <GN3 > <VP2 > <GN4 >

<=>
<GN3 > <GN4 > <VP2 > <"to"> <VPP > <GN1 > <"to"> <VP1 > <GN2 >



J.-N. Martin and D. Martin-Guillerez 231

5.5 Proposition Normalization
As shown in Figure 1, sentences are then decomposed in propositions by analyzing the parse
tree obtained by the second step. Each proposition is a group of three groups: a subject, a
verb and a complement. Each proposition is thus stored in that form and the logic between
propositions is kept (for example, the "if" trigger of the sentence analyzed in Figure 2 is
kept as a causal link between the sentence analyzed and the following sentence). The two
propositions are "the PJB is configured for S389" and "the PJB receives a valid boot lid
release request from the CRM". The proposition analyzed in Figure 2 shows after that step:
1. "the PJB" (subject) "is configured" (verb) "for S389" (complement)
2. "the PJB" (subject is to be found) "receives" (verb) "a valid boot lid release request from

the CRM" (complement)

The two propositions are expressed in the causal links "if 1 and 2". Note that the subject
of the second proposition needs to be extracted from the first proposition. After this step,
we have a list of propositions decomposed into subject / verb / complement and the causal
link between each proposition.

5.6 Proposition Alignment
The subsequent step is to align the propositions using translation techniques. This step helps
to identify propositions or nominal groups that have the same meaning but that are written
differently.

To do so, we use alignment techniques described by Lutkens et al. [15] and Planas [19]. To
measure the similarity between sentences, the Jaccard measure is used [20] because it is simple
and meets our needs. Used in conjunction with the value of words, it allows for an accurate
comparison between propositions: for example two propositions with a different numerical
value will be paired and if a negative word is in one of the propositions the alignment will
fail. Thanks to the same propriety we can correct a wrong comma in a sentence. Calculating
the Jaccard value with and without the value of word will disclose formal contradiction.

5.7 Markov Model Generation
Using the previous steps, we now have a list of propositions with their causal link in a
database.

Using this, we can construct the Markov model for test generation software. The model
for this software is described in [10] and was chosen for our process because it has proven its
efficiency for test plan generation.

A Markov process is defined by a process in which the probability of going to a given
state only depends on the current state. The direct consequence of this property is that a
Markov process can be described as a series of states and a transition function. This function
δ(x, y) gives the probability of transiting from state x to state y. The model used by the
test generation software is a variation of Markov processes in which the transition functions
are also labelled by an extra condition that should be met for the transition to be triggered
(Figure 3).

This model thus represents perfectly the elements extracted from the specification. Each
proposition is a state and the causal link a transition. The extracted model (Figure 4) can
then be inserted into the test generation software that will construct the test plan for the
specified system.

SLATE’12



232 Enhancing Coherency of Specification Documents from Automotive Industry

	  
Figure 3 Extract of a manually constructed model.

	  
Figure 4 Extract of a manually constructed model.



J.-N. Martin and D. Martin-Guillerez 233

6 Enhancing Consistency helped by the Model Generator

As presented in Figure 1, several steps in the model generation enable the detection of errors
in the specification documents. In this section, we present how our system can be used
to remove several consistency errors in specifications after presenting our definition of the
consistency of a specification.

6.1 Consistency Approach
The word consistency distinguishes parts of an ensemble that focuses on a logical connection
including a lack of contradiction in the devoted set; these parts are closely linked. They
include a logical link and are organized to provide a stepwise link. This consistency initially
dedicated to the discourse, proved suitable for the specification documents.

The first quality that we require from a text, related to consistency, is the property of a
text to make sense. It is easy to infer informational relation between elements from one part
of a document to the next. We will make use of the example provided by a personal access
system equipment to demonstrate this property:

The "Pase" is the smartcard that allows a vehicle user to open the vehicle doors and to
click on the switch instead of the ignition key;
The "Pase" user can approach his vehicle without taking the smartcard in his hands;
He can see the flashers welcome him, and he can hear the door unlock;
After entering the vehicle, he uses the "Pase" which he introduces into a smartcard reader,
and he can then press the "Start" button to start the vehicle.

The inferences here are common, respecting the principle of relevance in the transmission
of information. The inferences to be done to understand this text are progressive. The "Pase"
replaces the ignition key, and there is a button that replaces the "Neimann". Yet it must
characterize these inferences, "the "Pase" is the smartcard (...) instead of the ignition key”
and thus explicitly states the first inference, and ”the "Start" button (...) starts the vehicle”
explicitly states the second inference. Further progress is respected: we discussed the device,
then we talk about the doors opening and finally about the car starting.

Remove the first sentence from this text and we can no longer justify its consistency. We
must then make a less explicit inference. ”The "Pase" is a remote command.”

Note that the principle of relevance is more demanding in a written language when the
preset is low than in the spoken language where the preset is important because of the
knowledge of the listener. It must be recognized that many texts do not satisfy this property.
We have many examples that give situations of ambiguity in the texts:

In the text "The phone rings. I drive my car.", there are some connections to be established
to achieve consistency.
The text "The vehicle was parked by Mark on a very busy place. The noise was terrible.
Paul spent the evening on a bench beside the ocean. The wind was blowing. It was raining."
is given as an example of ambiguity: submitted to a panel of readers, interpretations
range from "there is a vehicle parked in a noisy place and strangely a man named Paul
spends an evening at the seaside" to "Paul, who was in the camper is sad to stay there
the next day because of bad weather".

6.2 Definition of the Consistency
We identified a series of documents qualities that make the documents understandable.
Some of them are components of the documents consistency while others simply make the

SLATE’12



234 Enhancing Coherency of Specification Documents from Automotive Industry

documents less ambiguous and more understandable.
The qualities of documents that do not qualify as components of the consistency are:
The undefined or ambiguous words: words that are not defined in the dictionary are
to be defined or changed, a word in a text that combines a single definition in a given
context is not ambiguous.
The generic documents deserve to be written in the generic present tense, standardizing
as much as possible the negative forms3.

The qualities of the documents that qualify as components of the consistency:
Cohesion and progressiveness: cohesion and progressiveness are the properties of a text
that establish the continuity of the progress of the text, the property reflects the ability
of text to be consistent in terms of chronological steps;
Logical consistency: we define logical consistency as the absence of logical contradictions
raised by the text;
Clarity: we will define clarity as the property of a group of proposals to mean something
in a clear way;
Plausibility: the plausibility of an act is its ability to seem possible. In the field of
natural language, we will consider as a plausible sentence a phrase that we are not
surprised to hear [8]. Operationally we are considering the Dempster and Shaffer’s theory,
which can allocate two trust values to a predicate such as credibility of P defined by
Credibility(P ) = 1− Confidence(¬P );
Explicit knowledge: knowledge is explicit if it helps to understand a text without knowing
the local context; it is based on the principle of relevance applied to items overlooked by
the author in the specification;
Accuracy of the text consists in lack of over information: we found in some texts two
parts of the text which have exactly the same meaning. In the specification domains, this
is named over specification.

Consistency of specification documents will be defined in part by our ability to generate a
test model that can produce a test plan. The deficiencies in this criterion will be considered
as inconsistencies in the text and we will work to detect and fill them with the cooperation
of the author of the specification document.

If consistency requires a precise definition, it is not difficult to define the inconsistency:
in fact the inconsistency is the property of a text whose consistency cannot be established.

6.3 Removing Inconsistencies in Specifications
We believe that our automatic translation of specification documents into the Markov model
helps to remove most consistency errors in specification documents (we measured 97,6%
consistency errors removed in our specification documents compared to manual consistency
error removal).

The parsing of the text detects grammar errors and some ambiguous words. The user
is prompted to define ambiguous words or to change them. We rewrites the document in
the generic present tense. Defects related to cohesions and progressiveness are found at
the universe step. At the model step, the absence of links (non-attainable states) could
also disclose lack of logical consistency. The proposition alignment uncovers ambiguous
and undefined propositions by duplicating links in the model. Finally, the relevance of the

3 This quality is relevant for specification documents but seems to not apply to novels



J.-N. Martin and D. Martin-Guillerez 235

Table 1 Table of defects automatically found. The defect rate is stated as the total weight of the
defects rated to the number of words of the document.

First specification Second specification
diagnosis occurrence weight total occurrence weight total
lexical conformity 148 1 148 18 1 18
missing words 14 1 14 2 1 2
text parts 4 3 12 0 3 0
syntax not conform 6 9 54 20 9 180
progressiveness 1 96 96 0 96 0
logical inconsistency 2 18 36 1 18 18
lack of clarity 0 36 0 1 36 36
explicit knowledge 3 9 27 7 9 63
accuracy 1 9 9 2 9 18
defect total weight 396 335
size of the document 1172 4440
defect rate 33,79% 7,55%

specification is hard to assess but the obtained model will be intricate if the text is irrelevant.
Indeed, irrelevant phrases induce extra states and links in the model.

We applied those principles to two specifications from the automotive industry and it
leads us to a specification that we believe is non ambiguous and permits the extraction of
the model shown in Figure 4. In the automatic analysis we have an automatic diagnosis of
non-correct writing and from that we issued the Table 1. This table shows the number of
occurrences of a class of error, the estimated weight of a error (i.e., the number of modification
the error requires to fix it) and the total weight of errors.

The defects extracted are the result of the whole process. The main parts are detected at
the analysis step, mainly at the “Universe” step, but some errors are detected at the model
step due to the model form that make the errors evident.

Finally we can say that the three major classes of error are balanced: a third is semantic
(41%), a third is syntaxic (33%), and the remaining part is lexical. Among the semantic
errors the main part is progressiveness then explicit knowledge, then logical consistency then
clarity, and finally accuracy.

7 Conclusion

In this paper, we presented our method for automatically extracting a Markov model for a
test generation software from a specification written in english using a natural language. We
proved this method works by applying it to a real specification from the automotive industry.
This method is now to be applied to large specifications up to 500 pages.

The principle that has been applied to automotive documents should soon be applied to
other disciplines like defense or transportation.

This work is made possible thanks to the large literature in automatic language processing
and to the structure of specifications. It is now being integrated into the MaTeLo software
and we are extending it to handle other languages: French is soon to be used, Italian, Spanish
and Portuguese are natural but German introduces specific problems.

This model extractor also help to make a specification consistent. We defined what we call
the consistency of a document that is to say a document has to adhere to six properties. Each

SLATE’12



236 Enhancing Coherency of Specification Documents from Automotive Industry

step in the automatic analysis can disclose consistency problems and errors in the obtained
model. This discloses the most dramatic consistency problems of the original specifications.
Once the specification is consistent enough, the obtained model will generate the test plan for
the final system. This system will increase the quality (less defects) of the resulting products.

A consistent specification might still need repetition of explicit knowledge to ensure that
the reader who will implement the specification does not overlook important information.
Ensuring such a thing in a current work will increase the overall consistency of specification
documents. A last improvement in our roadmap is to address non-functional properties
specified in the document. For instance, a specification can contain safety rules to avoid a
certain state and those rules should be translated into the model. Our current implementation
needs to be improved to handle those general rules.

Acknowledgements Jean-Noël Martin would like to thank his Thesis advisors very much:
Bernard Levrat and Amghar Tassadit due to the fact they convinced him to do this project
as it will be of benefit to his company.

References
1 IEEE 830 – recommended pactice for software requirement specifications, 1993.
2 IEEE 1233 – guide for developing system requirement specifications, 1996.
3 Eric Brill. A Simple Rule-Based Part Of Speech Tagger. In Third Conference on Applied

Computational Linguistic, 1992.
4 Michel Charolles. Note sur la cohérence des textes. Pratiques, 10:105 – 111, 1976.
5 Michel Charolles. Text connexity, text coherence and text interpretation processings. In

E. Sozer, editor, Text Connexity, Text Coherence, Aspects, Methods, Results, pages 1 – 16,
1985.

6 Michel Charolles. Cohérence, pertinence et intégration conceptuelle. Intégration Concep-
tuelle, 2002.

7 Noam Chomsky. Aspects of the theory of syntax. MIT Press, 1965.
8 G. Fauconnier. Domains and connections. Cognitive Linguistics, 1:151–174, 1990.
9 Viviane Gal. Spécification à l’aide du langage LOTOS d’un algorithme de gestion d’une

mémoire répartie à cohérence causale. CNAM, 1995.
10 H. Le Guen and T. Thelin. Practical experiences with statistical usage testing. In Eleventh

Annual International Workshop on Software Technology and Engineering Practice, 2003.
11 Daniel Jurafsky and James H. Martin. Speech and Language processing. Pearson Interna-

tional Edition, second edition, 2009.
12 J. J. Katz. Sur la compréhension des phrases agrammaticales., chapter Semi-sentences,

pages 400–416. Fodor and Katz, 1964.
13 J. J. Katz and P. Postal. An Integrated Theory of Linguistic Descriptions. MIT Press,

1964.
14 Keith Lehrer. Coherence, consensus and language. Linguistics and Philosophy, 7(1):43 –

55, 1984.
15 E. Lutkens and Ph. Fermont. A prototype machine translation based on extracts from data.

Manuals, Université libre de Bruxelles, Bruxelles, 1985.
16 Clara Mancini, Donia Scott, and Simon Buckingam Shum. Visualing discourse coherence

in non linear documents. TAL, 47(2), 2006.
17 Robert Martin. Pour une logique du sens. Presses Universitaires de France, 1983.
18 C. Nique. L’initiation Méthodique à la grammaire générative. Colin, 1974.
19 Emmanuel Planas. Structure et algorithmes pour la traduction fondée sur la mémoire. PhD

thesis, Université Joseph Fourier, Grenoble, 1998.



J.-N. Martin and D. Martin-Guillerez 237

20 Reinhard Rapp. Identifying word translations in non-parallel texts. In the 33rd annual
meeting on Association for Computational Linguistics, 1995.

21 Philippe Serré. Consistency of the geometrical specification for objects in n-dimensional
Euclidian space. PhD thesis, École Centrale des Arts et Manufactures, 2000.

22 Mohamed Wassim Trojet. Approche de vérification formelle des modèles DEVS à base du
langage Z. 2010.

23 T. Winograd. Language as a Cognitive Process, volume 1: Syntax. Addison-Wesley, 1983.
24 Fabien Wolf and Edward Gibson. Coherence in Natural Language. Massachusetts Institute

of Technology, 2006.

SLATE’12




	coherency
	Introduction
	Related Work
	Specification Structure
	System Overview
	System Description
	Text Tagging
	Text Parsing
	Active Form
	Doc Tree Adding
	Proposition Normalization
	Proposition Alignment
	Markov Model Generation

	Enhancing Consistency helped by the Model Generator
	Consistency Approach
	Definition of the Consistency
	Removing Inconsistencies in Specifications

	Conclusion

	blank-page

