
On Extending a Linear Tabling Framework to
Support Batched Scheduling
Miguel Areias and Ricardo Rocha

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{miguel-areias,ricroc}@dcc.fc.up.pt

Abstract
Tabled evaluation is a recognized and powerful technique that overcomes some limitations of
traditional Prolog systems in dealing with recursion and redundant sub-computations. During
tabled execution, several decisions have to be made. These are determined by the scheduling
strategy. Whereas a strategy can achieve very good performance for certain applications, for
others it might add overheads and even lead to unacceptable inefficiency. The two most successful
tabling scheduling strategies are local scheduling and batched scheduling. In previous work, we
have developed a framework, on top of the Yap system, that supports the combination of different
linear tabling strategies for local scheduling. In this work, we propose the extension of our
framework, to support batched scheduling. In particular, we are interested in the two most
successful linear tabling strategies, the DRA and DRE strategies. To the best of our knowledge,
no single tabling Prolog system supports both strategies simultaneously for batched scheduling.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Linear Tabling, Scheduling, Implementation

Digital Object Identifier 10.4230/OASIcs.SLATE.2012.9

1 Introduction

The operational semantics of Prolog is given by SLD resolution [7], an evaluation strategy
particularly simple that matches current stack based machines particularly well, but that
suffers from fundamental limitations, such as in dealing with recursion and redundant sub-
computations. Tabling [3] is a proposal that overcomes those limitations. In a nutshell,
tabling consists of storing intermediate solutions for subgoals so that they can be reused
when a similar subgoal appears. Work on SLG resolution, as initially implemented in the
XSB system [9], proved the viability of tabling technology for application areas such as Nat-
ural Language Processing, Knowledge Based Systems, Model Checking, Program Analysis,
among others. Tabling based models are able to reduce the search space, avoid looping, and
always terminate for programs with the bounded term-size property [3].

In a tabled evaluation, there are several points where we may have to choose between
continuing forward execution, backtracking, consuming solutions from the table, or complet-
ing subgoals. The decision on which operation to perform is determined by the scheduling
strategy. The two most successful strategies are local scheduling and batched scheduling [5].
Local scheduling tries to complete subgoals as soon as possible. When new solutions are
found, they are added to the table space and the evaluation fails. Solutions are only re-
turned when all program clauses for the subgoal at hand were resolved. Batched scheduling
favors forward execution first, backtracking next, and consuming solutions or completion
last. It thus tries to delay the need to move around the search tree by batching the return

© Miguel Areias and Ricardo Rocha;
licensed under Creative Commons License NC-ND

1st Symposium on Languages, Applications and Technologies (SLATE’12).
Editors: Alberto Simões, Ricardo Queirós, Daniela da Cruz; pp. 9–24

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2012.9
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

10 On Extending a Linear Tabling Framework to Support Batched Scheduling

of solutions. When new solutions are found for a particular tabled subgoal, they are added
to the table space and the evaluation continues.

The main difference between the two strategies is that in batched scheduling, variable
bindings are immediately propagated to the calling environment when a solution is found.
However, for some situations, this behavior may result in creating complex dependencies
between subgoals. On the other hand, since local scheduling delays solutions, it does not
benefit from variable propagation, and instead, when explicitly returning the delayed solu-
tions, it incurs an extra overhead for copying them out of the table.

Currently, the tabling technique is widely available in systems like XSB [12], Yap [10],
B-Prolog [13], ALS-Prolog [6], Mercury [11] and Ciao [4]. In these implementations, we can
distinguish two main categories of tabling mechanisms: suspension-based tabling and linear
tabling. Suspension-based tabling mechanisms need to preserve the computation state of
suspended tabled subgoals in order to ensure that all solutions are correctly computed.
A tabled evaluation can be seen as a sequence of sub-computations that suspend and later
resume. Linear tabling mechanisms use iterative computations of tabled subgoals to compute
fix-points and for that they maintain a single execution tree without requiring suspension
and resumption of sub-computations. While suspension-based mechanisms are considered
to obtain better results in general, they have more memory space requirements and are more
complex and harder to implement than linear tabling mechanisms.

In previous work, we have developed a framework, on top of the Yap system, that
supports the combination of different linear tabling strategies for local scheduling [1, 2].
As these strategies optimize different aspects of the evaluation, they were shown to be
orthogonal to each other for local scheduling. In this work, we propose the extension of
our framework, to combine different linear tabling strategies, but for batched scheduling. In
particular, we are interested in the two most successful linear tabling strategies, the DRA
and DRE strategies [2]. To the best of our knowledge, no single tabling Prolog system
supports both strategies simultaneously for batched scheduling. Extending our framework
from local scheduling to batched scheduling should be, in principle, smooth but, as we will
see, there are some relevant details that have to be considered in order to ensure a correct
and efficient integration of the DRA and DRE strategies with batched scheduling.

The remainder of the paper is organized as follows. First, we briefly introduce the
basics of tabling and describe the execution model for standard linear tabled evaluation
using batched scheduling. Next, we present the DRA and DRE strategies and discuss
how they can be used to optimize different aspects of the evaluation. We then provide
some implementation details regarding the integration of the two strategies on top of the
Yap system. Finally, we present some experimental results and we end by outlining some
conclusions.

2 Standard Linear Tabled Evaluation

Tabling works by storing intermediate solutions for tabled subgoals so that they can be
reused when a similar (or repeated) call appears1. In a nutshell, first calls to tabled sub-
goals are considered generators and are evaluated as usual, using SLD resolution, but their
solutions are stored in a global data space, called the table space. Similar calls to tabled
subgoals are considered consumers and are not re-evaluated against the program clauses
because they can potentially lead to infinite loops, instead they are resolved by consuming

1 Two subgoal calls are considered to be similar if they are the same up to variable renaming.

M. Areias and R. Rocha 11

the solutions already stored for the corresponding generator. During this process, as further
new solutions are found, we need to ensure that they will be consumed by all the consumers,
as otherwise we may miss parts of the computation and not fully explore the search space.

A generator call C thus keeps trying its matching clauses until a fix-point is reached. If
no new solutions are found during one round of trying the matching clauses, then we have
reached a fix-point and we can say that C is completely evaluated. However, if a number of
subgoal calls is mutually dependent, thus forming a Strongly Connected Component (SCC),
then completion is more complex and we can only complete the calls in a SCC together [9].
SCCs are usually represented by the leader call, i.e., the generator call which does not
depend on older generators. A leader call defines the next completion point, i.e., if no new
solutions are found during one round of trying the matching clauses for the leader call, then
we have reached a fix-point and we can say that all subgoal calls in the SCC are completely
evaluated.

We next illustrate in Fig. 1 the standard execution model for linear tabling using batched
scheduling. At the top, the figure shows the program code (the left box) and the final state
of the table space (the right box). The program defines two tabled predicates, a/1 and b/1,
each defined by two clauses (clauses c1 to c4). The bottom sub-figure shows the evaluation
sequence for the query goal a(X). Generator calls are depicted by black oval boxes and
consumer calls by white oval boxes.

c3 c4

c1

c2

8,18,28: fix-point check

6: fix-point check

 :- table a/1, b/1.

c1) a(X) :- b(X).
c2) a(2).
c3) b(X) :- a(X).
c4) b(1).

1: a(X)

2: b(X)
 4: X=1
13: X=2
28: complete

Call Solutions

1: a(X)

 5: X=1
 7: X=2
28: complete

7: X=2

2: b(X)

4: X=13: a(X)

2: b(X)

5: X=1

c3 c4

16: fix-point check9: b(X)

15: X=1
(repeated)

11: a(X)

12: X=1
(repeated)

 13: X=2

9: b(X)

10: X=1
(repeated)

14: X=2
(repeated)

c2

17: X=2
(repeated)

c1

19-27: ...

Figure 1 A standard linear tabled evaluation using batched scheduling.

The evaluation starts by inserting a new entry in the table space representing the gen-
erator call a(X) (step 1). Then, a(X) is resolved against its first matching clause, clause
c1, calling b(X) in the continuation. As this is a first call to b(X), we insert a new entry
in the table space representing b(X) and proceed as shown in the bottom left tree (step 2).
Subgoal b(X) is also resolved against its first matching clause, clause c3, calling again a(X)
in the continuation (step 3). Since a(X) is a repeated call, we try to consume solutions from
the table space, but at this stage no solutions are available, so execution fails.

We then try the second matching clause for b(X), clause c4, and a first solution for b(X),
{X=1}, is found and added to the table space (step 4). We then follow a batched scheduling

SLATE’12

12 On Extending a Linear Tabling Framework to Support Batched Scheduling

strategy and the evaluation continues with forward execution [5]. With batched scheduling,
new solutions are immediately returned to the calling environment, thus the solution for
b(X) should now be propagated to the context of the previous call, which originates a first
solution for a(X), {X=1} (step 5). The execution then fails back to node 2 and we check
for a fix-point (step 6), but b(X) is not a leader call because it has a dependency (consumer
node 3) to an older call, a(X). Remember that we reach a fix-point when no new solutions
are found during the last round of trying the matching clauses for the leader call. Then,
we try the second matching clause for a(X) and a second solution, {X=2}, is found and
added to the table space (step 7). We then backtrack again to the generator call for a(X)
and because we have already explored all matching clauses, we check for a fix-point (step
8). We have found new solutions for both a(X) and b(X) in this round, thus the current
SCC is scheduled for re-evaluation.

The evaluation then repeats the same sequence as in steps 2 to 3 (now steps 9 to 11), but
since we are following a batched scheduling strategy, we first consume the solutions already
available for b(X) (this will be further explained later in section 4), which leads to a repeated
solution for a(X) (step 10). Tabling does not store duplicate solutions in the table space.
Instead, repeated solutions fail. This is how tabling avoids unnecessary computations, and
even looping in some cases. Next, the evaluation jumps to the consumer call of a(X) (step
11). Solution {X=1} is first forwarded to it, which originates a repeated solution for b(X)
(step 12) and thus execution fails. Then, solution {X=2} is also forward to it and a new
solution for b(X) is found (step 13) and propagated to a(X), which leads to a repeated
solution for a(X) (step 14).

In the continuation, we find another repeated solution for b(X) (step 15) and we fail a
second time in the fix-point check for b(X) (step 16). Again, as we are following a batched
scheduling strategy, the solutions for b(X) were already all propagated to the context of
a(X), thus we can safely backtrack to the generator call for a(X). Because we have found
a new solution for b(X) during this last round, the current SCC is scheduled again for re-
evaluation (step 18). The re-evaluation of the SCC does not find new solutions for both
a(X) and b(X) (steps 19 to 27). Thus, when backtracking again to a(X) we have reached
a fix-point and because a(X) is a leader call, we can declare the two subgoal calls to be
completed (step 28).

3 Linear Tabling Strategies

The standard linear tabling mechanism uses a naive approach to evaluate tabled logic pro-
grams. Every time a new solution is found during the last round of evaluation, the complete
search space for the current SCC is scheduled for re-evaluation. However, some branches of
the SCC can be avoided, since it is possible to know beforehand that they will only lead to
repeated computations, hence not finding any new solutions. Next, we present two different
strategies for optimizing the standard linear tabled evaluation. The common goal of both
strategies is to minimize the number of branches to be explored, thus reducing the search
space, and each strategy tries to focus on different aspects of the evaluation to achieve it.

3.1 Dynamic Reordering of Alternatives
The key idea of the Dynamic Reordering of Alternatives (DRA) strategy, as originally pro-
posed by Guo and Gupta [6], is to memoize the clauses (or alternatives) leading to consumer
calls, the looping alternatives, in such a way that when scheduling an SCC for re-evaluation,
instead of trying the full set of matching clauses, we only try the looping alternatives.

M. Areias and R. Rocha 13

Initially, a generator call C explores the matching clauses as in standard linear tabled
evaluation and, if a consumer call is found, the current clause for C is memoized as a looping
alternative. After exploring all the matching clauses, C enters the looping state and from
this point on, it only tries the looping alternatives until a fix-point is reached. Figure 2 uses
the same program from Fig. 1 to illustrate how DRA evaluation works.

c3 c4

c1

c2

8,16,24: fix-point check

6: fix-point check

1: a(X)

7: X=2

2: b(X)

4: X=13: a(X)

2: b(X)

c3

15: fix-point check9: b(X)

11: a(X)

12: X=1
(repeated)

 13: X=2

9: b(X)

10: X=1
(repeated)

14: X=2
(repeated)

c1

17-23: ...

1: a(X)

2: b(X)
 4: X=1
13: X=2
24: complete

Call Solutions

 5: X=1
 7: X=2
24: complete

Looping Alternatives

 3: c1

 3: c3

5: X=1

 :- table a/1, b/1.

c1) a(X) :- b(X).
c2) a(2).
c3) b(X) :- a(X).
c4) b(1).

Figure 2 A linear tabled evaluation using batched scheduling with DRA evaluation.

The evaluation sequence for the first SCC round (steps 2 to 7) is identical to the standard
evaluation of Fig. 1. The difference is that this round is also used to detect the alternatives
leading to consumers calls. We only have one consumer call at node 3 for a(X). The clauses
in evaluation up to the corresponding generator, call a(X) at node 1, are thus marked as
looping alternatives and added to the respective table entries. This includes alternative
c3 for b(X) and alternative c1 for a(X). As for the standard strategy, the SCC is then
scheduled for two extra re-evaluation rounds (steps 9 to 15 and steps 17 to 23), but now
only the looping alternatives are evaluated, which means that the clauses c2 and c4 are
ignored.

3.2 Dynamic Reordering of Execution
The second strategy, that we call Dynamic Reordering of Execution (DRE), is based on the
original SLDT strategy, as proposed by Zhou et al. [14]. The key idea of the DRE strategy is
to give priority to the program clauses and, for that, it lets repeated calls to tabled subgoals
execute from the backtracking clause of the former call. A first call to a tabled subgoal is
called a pioneer and repeated calls are called followers of the pioneer. When backtracking
to a pioneer or a follower, we use the same strategy and we give priority to the exploitation
of the remaining clauses. The fix-point check operation is still performed by pioneer calls.
Figure 3 uses again the same program from Fig. 1 to illustrate how DRE evaluation works.

As for the standard strategy, the evaluation starts with (pioneer) calls to a(X) (step 1)
and b(X) (step 2), and then, in the continuation, a(X) is called repeatedly (step 3). With
DRE evaluation, a(X) is now considered a follower and thus we steal the backtracking clause

SLATE’12

14 On Extending a Linear Tabling Framework to Support Batched Scheduling

c1 c2

10,19: fix-point check

1: a(X)

2: b(X)
 5: X=2
 7: X=1
19: complete

Call Solutions

1: a(X)

 4: X=2
 8: X=1
19: complete

4: X=22: b(X)

6: X=2
(repeated)

8: X=1

c3 c4

9: fix-point check2: b(X)

7: X=13: a(X)

3: a(X)

11-18: ...

5: X=2

 :- table a/1, b/1.

c1) a(X) :- b(X).
c2) a(2).
c3) b(X) :- a(X).
c4) b(1).

Figure 3 A linear tabled evaluation using batched scheduling with DRE evaluation.

of the former call at node 1, i.e., clause c2. The evaluation then proceeds as for a generator
call (right upper tree in Fig. 3), which means that new solutions can be generated for a(X).
We thus try clause c2 and a first solution for a(X), {X=2}, is found and added to the table
space (step 4). Then, we follow a batched scheduling strategy and the solution {X=2} is
propagated to the context of b(X), which originates the solution {X=2} (step 5), and to the
context of a(X), which leads to a repeated solution (step 6).

As both matching clauses for a(X) were already taken, the execution backtracks to the
pioneer node 2. Next, we find a second solution for b(X) (step 7), which is then propagated,
leading also to a second solution for a(X) (step 8). In step 9, we check for a fix-point, but
b(X) is not a leader call because it has a dependency (follower node 3) to an older call, a(X).
We then backtrack to the pioneer call for a(X) and because we have already explored the
matching clause c2 in the follower node 3, we check for a fix-point. Since we have found
new solutions during the last round, the current SCC is scheduled for re-evaluation (step
10). The re-evaluation of the SCC does not find any further solutions (steps 11 to 18), and
thus the evaluation can be completed at step 19.

4 Propagation of Solutions in Re-evaluation Rounds

In the previous sections, one could observe that tabling does not store duplicate solutions in
the table space and, instead, repeated solutions fail. This is how tabling avoids unnecessary
computations, and even looping in some cases. However, since repeated solutions also fail in
re-evaluation rounds, this means that, in fact, a solution is only propagated once, i.e., in the
round it is first found, which might be not sufficient to ensure the completeness of the eval-
uation. To solve this problem, this is why, in a re-evaluation round, we start by propagating
(consuming) the solutions already available for the subgoal call at hand. Alternatively, we
could propagate the solutions at the end, after the fix-point check procedure, but by doing
that some solutions will be propagated more than once in a single round, which is worthless.

In the previous examples, for simplicity of explanation, we have omitted some steps
regarding the propagation of solutions since, for all the examples, one propagation per

M. Areias and R. Rocha 15

solution was enough to correctly compute the corresponding evaluations. To better illustrate
the importance of the propagation of solutions in re-evaluation rounds, Fig. 4 shows a new
example, using again the same program from Fig. 1, but for the query goal a(X), b(Y). For
simplicity of explanation, we consider a standard linear tabled evaluation, i.e., without DRA
and DRE support.

c3 c4

c1 c2

12,26,41: fix-point check

8: fix-point check

1: a(X)

9: X=2

2: b(X)

4: X=13: a(X)

2: b(X)

5: X=1

c3 c4

24: fix-point check17: b(X)

23: X=1
(repeated)

19: a(X)

20: X=1
(repeated)

 21: X=2

17: b(X)

 18: X=1
(repeated)

22: X=2
(repeated)

c2

25: X=2
(repeated)

c1

33-40: ...

1: a(X), b(Y)

X=1

6: b(Y)

X=2

7: X=1,
 Y=1

10: b(Y)

11: X=2,
 Y=1

27: b(Y) 30: b(Y)

28: X=1,
 Y=1

 29: X=1,
 Y=2

X=1 X=2

31: X=2,
 Y=1

 32: X=2,
 Y=2

 :- table a/1, b/1.

c1) a(X) :- b(X).
c2) a(2).
c3) b(X) :- a(X).
c4) b(1).

1: a(X)

2: b(X)
 4: X=1
21: X=2
41: complete

Call Solutions

 5: X=1
 9: X=2
41: complete

X=1

13: b(Y)

14: X=1,
 Y=1

X=2

15: b(Y)

16: X=2,
 Y=1

Figure 4 Propagation of solutions in re-evaluation rounds using batched scheduling.

In the first round of the evaluation (steps 1 to 12), the solutions found for a(X), at steps
5 and 9, are propagated to the context of the top query goal and, in the continuation, b(Y)
consumes (note that b(Y) is a variant call of b(X)) the available answer found for b(X) at
step 4, which originates the solutions {X=1, Y=1} (step 7) and {X=2, Y=1} (step 11) for
the top query goal.

Next, in the second round of the evaluation (steps 13 to 26), the generator node for a(X)
starts by propagating its solutions (steps 13 to 16), but only repeated solutions are found
for the top query goal (steps 14 and 16). Later, at step 21, a new solution, {X=2}, is found
for b(X). The combination of this new solution with the previous solutions for a(X) should
originate new solutions for the top query goal. The solution for b(X) is then propagated
to the context of a(X) (step 22) but, since this originates a repeated solution for a(X), the
computation fails.

By failing for a(X), we cannot combine the new answer for b(X) with the previous
answers for a(X) in this round. Hence, this fact, i.e., the fact that tabling fails for repeated

SLATE’12

16 On Extending a Linear Tabling Framework to Support Batched Scheduling

solutions, can lead to a collateral effect where it can be blocking forward execution. To solve
this problem, this is why, in a re-evaluation round, we start by propagating all the available
solutions. Therefore, in the third and final round of the evaluation (steps 27 to 40), the
generator node for a(X) starts again by propagating its solutions (steps 28 to 32) and the
solutions {X=1, Y=2} (step 29) and {X=2, Y=2} (step 32) are generated. Since this round
does not find any new solution, the evaluation is finally completed at step 41.

5 Implementation Details

This section describes some implementation details regarding the extension of our framework
to support batched scheduling, with particular focus on the table space data structures and
on the tabling operations.

5.1 Table Space
To implement the table space, Yap uses tries which is considered a very efficient way to
implement the table space [8]. Tries are trees in which common prefixes are represented only
once. Tries provide complete discrimination for terms and permit look up and insertion to
be done in a single pass. Figure 5 details the table space organization for the example used
on the previous sections.

subgoal trie

table entry
for a/1

VAR0

subgoal frame
for a(VAR0)

solution trie

1 2

subgoal trie

table entry
for b/1

VAR0

subgoal frame
for b(VAR0)

solution trie

1 2

Table Space

Figure 5 Table space organization.

As other tabling engines, Yap uses two levels of tries: one for the subgoal calls and other
for the computed solutions. A tabled predicate accesses the table space through a specific
table entry data structure. Each different subgoal call is represented as a unique path in the
subgoal trie and each different solution is represented as a unique path in the solution trie.
A key data structure in this organization is the subgoal frame. Subgoal frames are used to
store information about each tabled subgoal call, namely: the entry point to the solution
trie; the state of the subgoal (ready, evaluating or complete); support to detect if the subgoal
is a leader call; and support to detect if new solutions were found during the last round of
evaluation. The DRA and DRE strategies extend the subgoal frame data structure with the
following extra information [2]:
DRA: support to detect, store and load looping alternatives; and two new states, loop_ready

and loop_evaluating, used to detect, respectively, generator and consumer calls in re-
evaluating rounds.

DRE: the pioneer call; and the backtracking clause of the former call.

M. Areias and R. Rocha 17

To support the propagation of solutions, as discussed in section 4, an extra field, named
SgFr_last_consumed, marks the last solution consumed in a pioneer or follower call.

5.2 Tabling Operations
We next introduce the pseudo-code for the main tabling operations required to support
batched scheduling with DRA and DRE evaluation.

We start with Fig. 6 showing the pseudo-code for the new solution operation. Initially,
the operation simply inserts the given solution SOL in the solution trie structure for the given
subgoal frame SF and, if the solution is new, it updates the SgFr_new_solutions subgoal
frame field to TRUE. Then, for batched scheduling, it adjusts the execution’s environment
and proceeds with forward execution.

new_solution(solution SOL, subgoal frame SF) {
if (solution_check_insert(SOL,SF) == TRUE) // new solution

SgFr_new_solutions(SF) = TRUE
else // repeated solution

fail()
if (batched_scheduling_mode(SF)) // batched scheduling

proceed()
else { ... } // local scheduling

}

Figure 6 Pseudo-code for the new solution operation.

Figure 7 shows the pseudo-code for the tabled call operation. New calls to tabled subgoals
are inserted into the table space by allocating the necessary data structures. This includes
allocating and initializing a new subgoal frame SF to represent the given subgoal call SC
(this is the case where the state of SF is ready). In such case, the tabled call operation
then stores a new generator node2; updates the state of SF to evaluating; and proceeds by
executing the current alternative.

On the other hand, if the subgoal call is a repeated call, then the subgoal frame SF
is already in the table space, and three different situations may occur. First, if the call is
already evaluated (this is the case where the state of SF is complete), the operation consumes
the available solutions by implementing the completed table optimization which executes
compiled code directly from the solution trie structure associated with the completed call [8].

Second, if the call is a first call in a re-evaluating round (this is the case where the
state of SF is loop_ready), the operation stores a new generator node; updates the state
of SF to loop_evaluating; and resets the SgFr_last_consumed field to the first solution.
Then, it executes the consume_solutions_and_execute() procedure in order to consume the
available solutions before re-evaluate the matching alternatives. This procedure, consumes
all the available solutions for the subgoal, starting from the first solution, and, when no more
solutions are to be consumed, it starts with the evaluation of the first matching alternative,
which for DRA is the first looping alternative.

Third, if the call is a repeated call (this is the case where the state of SF is evaluating
or loop_evaluating), the operation first marks the current branch as a non-leader branch
and, if in DRA, it also marks the current branch as a looping branch. Next, if DRE mode
is enabled and there are unexploited alternatives (i.e., there is a backtracking clause for the

2 Generator, consumer and follower nodes are implemented as regular WAM choice points extended with
some extra fields related to the table space data structures.

SLATE’12

18 On Extending a Linear Tabling Framework to Support Batched Scheduling

tabled_call(subgoal call SC) {
SF = subgoal_check_insert(SC) // SF is the subgoal frame for SC
if (SgFr_state(SF) == ready) { // first round

store_generator_node()
SgFr_state(SF) = evaluating
goto execute(current_alternative())

} else if (SgFr_state(SF) == complete) { // already evaluated
goto completed_table_optimization(SF)

} else if (SgFr_state(SF) == loop_ready) { // re-evaluation round
store_generator_node()
SgFr_state(SF) = loop_evaluating
if (batched_scheduling_mode(SF)){

SgFr_last_consumed(SF) = SgFr_first_solution(SF)
if (DRA_mode(SF))

goto consume_solutions_and_execute(SF,first_looping_alternative())
else

goto consume_solutions_and_execute(SF,first_alternative())
} else { ... } // local scheduling

} else if (SgFr_state(SF) == evaluating or // first round
SgFr_state(SF) == loop_evaluating) { // re-evaluation round

mark_current_branch_as_a_non_leader_branch(SF)
if (DRA_mode(SF))

mark_current_branch_as_a_looping_branch(SF)
if (DRE_mode(SF) && has_unexploited_alternatives(SF)) {

store_follower_node()
if (DRA_mode(SF) and SgFr_state(SF) == loop_evaluating)

goto consume_solutions_and_execute(SF,next_looping_alternative())
else

goto consume_solutions_and_execute(SF,next_alternative())
} else {

store_consumer_node()
goto consume_solutions(SF)

}
}

}

Figure 7 Pseudo-code for the tabled call operation.

former call), it stores a follower node and proceeds by consuming the available solutions
before executing the next looping alternative or the next matching alternative, according to
whether the DRA mode is enabled or disabled for the subgoal. Otherwise, it stores a new
consumer node and starts consuming the available solutions.

To mark the current branch as a non-leader branch, we follow all intermediate generator
calls in evaluation up to the generator call for frame SF and we mark them as non-leader
calls (note that the call at hand defines a new dependency for the current SCC). To mark the
current branch as a looping branch, we follow all intermediate generator calls in evaluation
up to the generator call for frame SF and we mark the alternatives being evaluated by each
call as looping alternatives.

Finally, we discuss in more detail how completion is detected with batched scheduling.
Remember that after exploring the last matching clause for a tabled call, we execute the
fix-point check operation. Figure 8 shows the pseudo-code for its implementation.

The fix-point check operation starts by verifying if the subgoal at hand is a leader call. If
it is leader and has found new solutions during the last round, then the current SCC is sched-
uled for a re-evaluation. For batched scheduling, this is the same situation as for a first call
in a re-evaluating round in the tabled call operation, i.e., it resets the SgFr_last_consumed
field to the first solution and executes the consume_solutions_and_execute() procedure. If

M. Areias and R. Rocha 19

fix-point_check(subgoal frame SF) {
if (SgFr_is_leader(SF)){

if (SgFr_new_solutions(SF)) { // start a new round
SgFr_new_solutions(SF) = FALSE
for each (subgoal in current SCC)

SgFr_state(subgoal) = loop_ready
SgFr_state(SF) = loop_evaluating
if (batched_scheduling_mode(SF)) {

SgFr_last_consumed(SF) = SgFr_first_solution(SF)
if (DRA_mode(SF))

goto consume_solutions_and_execute(SF,first_looping_alternative())
else

goto consume_solutions_and_execute(SF,first_alternative())
} else { ... } // local scheduling

} else { // complete subgoals in current SCC
for each (subgoal in current SCC)

SgFr_state(subgoal) = complete
if (batched_scheduling_mode(SF))

fail()
else { ... } // local scheduling

} else { // not a leader call
if (SgFr_new_solutions(SF)) // propagate new solutions

SgFr_new_solutions(current_leader(SF)) = TRUE
SgFr_new_solutions(SF) = FALSE // reset new solutions
if (batched_scheduling_mode(SF))

fail()
else { ... } // local scheduling

}
}

Figure 8 Pseudo-code for the fix-point check operation.

the subgoal is leader but no new solutions were found during the current round, then we
have reached a fix-point and thus, the subgoals in the current SCC are marked as completed
and the evaluation fails.

Otherwise, if the subgoal is not a leader call, then it propagates the new solutions in-
formation to the current leader of the SCC and the evaluation fails. Note that, with batched
scheduling, we can safely fail since all the solutions were already propagated to the context
of the calling environment. Moreover, since the SgFr_new_solutions flag is propagated to
the leader of the SCC, the leader will mark the SCC for a new evaluation round, which
means that the current subgoal will be called again, and so it will start by consuming all its
solutions.

6 Experimental Results

To the best of our knowledge, Yap is now the first tabling engine that integrates and supports
the combination of different linear tabling strategies using batched scheduling. We have thus
the conditions to better understand the advantages and weaknesses of each strategy when
used solely or combined. In what follows, we present initial experiments comparing linear
tabled evaluation with and without DRA and DRE support, using batched scheduling. To
put our results in perspective, we have also included experiments for the B-Prolog linear
tabling system [13] and for the YapTab suspension-based tabling system [10], both using
batched scheduling. In fact, for B-Prolog, we used its eager scheduling mode, which is
similar to batched scheduling. The environment for our experiments was a PC with a 2.83
GHz Intel(R) Core(TM)2 Quad CPU and 8 GBytes of memory running the Linux kernel

SLATE’12

20 On Extending a Linear Tabling Framework to Support Batched Scheduling

3.0.0-16-generic. We used B-Prolog version 7.5 and Yap version 6.0.7.
For benchmarking, we used three sets of programs. The Model Checking set includes

three different specifications and transition relation graphs usually used in model checking
applications. The Path Right set implements the right recursive definition of the well-
known path/2 predicate, that computes the transitive closure in a graph, using three different
edge configurations. Figure 9 shows an example for each configuration. We experimented
the Pyramid and Cycle configurations with depths 1000, 2000 and 3000 and the Grid
configuration with depths 20, 30 and 40. We chose this set of experiments because the
path/2 predicate implements a relatively easy to understand pattern of computation and its
right recursive definition creates several inter-dependencies between tabled subgoals. The
Warren set is a variation of the left recursive definition of the path problem for a linear
graph (see Fig. 9), where the path/2 clauses are duplicated to be used with the labels a and
b. This problem was kindly suggested by David S. Warren as a way to stress the performance
of a linear tabling system. All benchmarks find all the solutions for the problem.

Cycle
(depth 4)

Grid
(depth 4)

Pyramid
(depth 4)

Warren
(depth 4)

a

b

a

Figure 9 Edge configurations used with the second and third set of problems.

In Table 1, we show the execution time, in milliseconds, for standard linear tabling
(column Std), DRA and DRE evaluation, solely and combined (column DRA+DRE),
B-Prolog and YapTab, using batched scheduling, and the respective performance ratios
when compared with standard linear tabling, for the Model Checking, Path Right and
Warren sets of problems. Ratios higher than 1.00 mean that the respective strategy has a
positive impact on the execution time. The ratio marked with n.c. for B-Prolog means that
we are not considering it in the average results (for some reason, we failed in executing this
benchmark). The results are the average of five runs for each benchmark.

In addition to the results presented in Table 1, we also collected several statistics re-
garding important aspects of the evaluation (not fully presented here due to lack of space).
In Table 2, we show some of these statistics for standard linear tabling and the respective
performance ratios when compared with the other models, for a subset of the benchmarks.
We used the Leader specification for the Model Checking set, the configurations Pyr-
amid and Cycle with depth 2000 and Grid with depth 30 for the Path Right set, and
the configuration with depth 600 for the Warren set.

The statistics in Table 2 measure how the mixing with SLD (non-tabled) computations
can affect the base performance of our benchmarks. For that, we extended the tabled
predicates, at the beginning and at the end of each clause, with dummy SLD (non-tabled)
predicates, which we named sldi/0, with 0 < i ≤ 2n, where n is the number of tabled clauses.
For example, the extended definition for the path/2 predicate is:

path(X,Z) :- sld1, edge(X,Y), path(Y,Z), sld2.
path(X,Z) :- sld3, edge(X,Z), sld4.

M. Areias and R. Rocha 21

Table 1 Execution time, in milliseconds, for standard linear tabling, DRA and DRE evaluation,
solely and combined, B-Prolog and YapTab, using batched scheduling, and the respective ratios
when compared with standard linear tabling (for the linear tabling models, best ratios are in bold).

Bench Std DRA DRE DRA+DRE B-Prolog YapTab
Model Checking
IProto 2,874 2,879 (1.00) 5,766 (0.50) 3,098 (0.93) 8,087 (0.36) 1,201 (2.39)
Leader 5,355 5,288 (1.01) 13,423 (0.40) 5,430 (0.99) 40,624 (0.13) 1,891 (2.83)
Sieve 35,218 35,350 (1.00) 76,927 (0.46) 38,048 (0.93) 217,155 (0.16) 11,046 (3.19)

Average (1.00) (0.45) (0.95) (0.22) (2.80)
Path Right - Pyramid
1000 983 526 (1.87) 1,102 (0.89) 658 (1.49) 948 (1.04) 517 (1.90)
2000 3,897 2,071 (1.88) 4,380 (0.89) 2,611 (1.49) 5,630 (0.69) 2,013 (1.94)
3000 9,043 4,740 (1.91) 10,110 (0.89) 5,920 (1.53) — (n.c.) 4,561 (1.98)
Path Right - Cycle
1000 687 539 (1.27) 713 (0.96) 563 (1.22) 540 (1.27) 362 (1.89)
2000 2,793 2,198 (1.27) 2,891 (0.97) 2,286 (1.22) 3,079 (0.91) 1,534 (1.82)
3000 6,048 4,681 (1.29) 6,343 (0.95) 4,949 (1.22) 8,678 (0.70) 2,956 (2.05)
Path Right - Grid
20 221 166 (1.33) 227 (0.97) 174 (1.27) 202 (1.09) 105 (2.10)
30 1,344 1,015 (1.32) 1,362 (0.99) 1,036 (1.30) 1,318 (1.02) 605 (2.22)
40 4,578 3,508 (1.31) 4,697 (0.97) 3,630 (1.26) 5,995 (0.76) 1,958 (2.34)

Average (1.50) (0.94) (1.33) (0.93) (2.03)
Warren
400 2,673 2,632 (1.02) 42 (64.26) 42 (64.26) 7,861 (0.34) 21 (126.09)
600 9,496 9,564 (0.99) 109 (87.28) 109 (87.28) 27,302 (0.35) 58 (162.61)
800 23,163 23,086 (1.00) 205 (112.88) 198 (116.98) 67,049 (0.35) 107 (216.88)

Average (1.00) (87.93) (89.51) (0.35) (168.53)

The rows in Table 2 show the number of times each dummy SLD predicate is called
for the corresponding benchmark. We can read these numbers as an estimation of the
performance ratios that we will obtain if the execution time of the corresponding SLD
predicate clearly overweights the execution time of the other computations. Note that the
odd SLD predicates (such as sld1 and sld3) correspond to re-executions of a clause and that
the even SLD predicates (such as sld2 and sld4) correspond to new answer operations. In
our experiments, the sld2 predicate (placed at the end of the first tabled clause) is the one
that can potentially have a greater influence in the performance ratios as it clearly exceeds
all the others in the number of times it is called (see Table 2).

Analyzing the general picture of Table 1, the results show that DRA evaluation is able
to reduce the execution time for the Path Right problem set (1.50 times faster, on average)
but has no impact for the other two sets, when compared with standard evaluation. The
results also indicate that DRE evaluation has a negative impact in the execution time for
the Model Checking and Path Right sets but, on the other hand, it can significantly
reduce the execution time for the Warren set (more than 80 times faster, on average). We
next discuss in more detail each strategy.

SLATE’12

22 On Extending a Linear Tabling Framework to Support Batched Scheduling

Table 2 Number of calls to the dummy SLD predicates for standard linear tabling and the
respective ratios when compared with DRA and DRE evaluation, solely and combined, B-Prolog
and YapTab, using batched scheduling (for the linear tabling models, best ratios are in bold).

Bench Std DRA DRE DRA+DRE B-Prolog YapTab
Model Checking - Leader
sld1 3 1.00 0.75 1.00 1.00 3.00
sld2 1,153,026 1.00 0.40 1.00 1.00 2.00
sld3 3 3.00 0.75 3.00 3.00 3.00
sld4 3 3.00 0.75 3.00 3.00 3.00
Path Right - Pyramid 2000
sld1 7,999 2.00 1.00 2.00 2.00 2.00
sld2 37,951,017 2.38 0.86 1.73 2.38 2.38
sld3 7,999 2.00 1.00 2.00 2.00 2.00
sld4 23,988 2.00 1.00 2.00 2.00 2.00
Path Right - Cycle 2000
sld1 6,002 1.00 1.00 1.00 1.00 3.00
sld2 18,003,000 1.29 1.00 1.29 1.29 2.25
sld3 6,002 3.00 1.00 3.00 3.00 3.00
sld4 10,000 2.50 1.00 2.50 2.50 2.50
Path Right - Grid 30
sld1 2,702 1.00 1.00 1.00 0.18 3.00
sld2 13,851,534 1.29 1.00 1.30 0.30 2.21
sld3 2,702 3.00 1.00 1.02 3.00 3.00
sld4 17,400 2.50 1.00 1.27 2.50 2.50
Warren - 600
sld1/sld3 302 1.00 100.67 100.67 1.00 302.00
sld2/sld4 18,044,650 1.00 66.98 100.42 1.00 201.17
sld5/sld7 302 302.00 100.67 302.00 302.00 302.00
sld6/sld8 90,600 302.00 100.67 302.00 302.00 302.00

DRA: the results for DRA evaluation show that the strategy of avoiding the exploration of
non-looping alternatives in re-evaluation rounds is quite effective in general and does not
add extra overheads when not used. The results also show that, for the Path Right set,
DRA is more effective for programs without loops, like the Pyramid configurations, than
for programs with larger SCCs, like the Cycle and Grid configurations. On Table 2, we
can observe that the number of dummy SLD computations is, in fact, effectively reduced
with DRA evaluation.

DRE: for the Model Checking set, DRE evaluation is around two times slower than
standard evaluation and, for the Path Right set, DRE has no significant impact for
all the configurations. Table 2 confirms that, the strategy of allocating follower nodes,
adds an extra complexity to the evaluation for the Model Checking set (the number
of dummy SLD calls is higher) and that it has no impact for the Path Right set (the
number of dummy SLD calls is identical to standard evaluation). For the Warren
set, DRE evaluation produces the most interesting results. Note that, this is the set of
benchmarks where suspension-based tabling (the YapTab system) is far more faster than
standard linear tabling (168.53 times faster, on average) and the difference increases as
the depth of the problem also increases. However, DRE evaluation is able to reduce this

M. Areias and R. Rocha 23

huge difference to a minimum. On average, DRE evaluation is 87.93 times faster than
standard evaluation and the scalability, as the depth of the problem increases, is similar
to the one observed for YapTab. Table 2 confirms this behavior for DRE and YapTab
evaluations (the number of dummy SLD calls is clearly lower than standard evaluation).

Regarding the combination of both strategies (DRA+DRE), our experiments show that,
in general, the best of both worlds is always present in the combination. The results in
Table 1 show that, by combining both strategies, DRA is able to avoid DRE behavior for
the Model Checking and Path Right sets. Still, the results for DRA+DRE are slightly
worst than DRA used solely. For the Warren set, the results show that, by combining both
strategies, it is possible to reduce even further the execution time when compared with DRE
used solely. In particular, one can observe that, for depths 400 and 600, the execution times
are the same but, for depth 800, DRA+DRE evaluation outperforms DRE used solely.

The statistics on Table 2 confirm that, in general, the best of both worlds is always
present in the combination. The exceptions are the sld2 predicate, for the Pyramid 2000
configuration, and the sld3 and sld4 predicates, for the Grid 30 configuration. On the
other hand, for the Warren 600 configuration, the sld1/sld3 predicates are executed the
same number of times as for DRE used solely, the sld5 to sld8 predicates are executed the
same number of times as for DRA used solely, and the sld2 and sld4 predicates are executed
less times than both strategies used solely, which is explained by the fact that the fix-point
is achieved in less rounds (statistics not shown here due to lack of space).

Regarding the comparison with the B-Prolog linear tabling system, the results in Table 2
suggest that B-Prolog implements a DRA-based evaluation strategy since the statistics for
B-Prolog and DRA evaluation are all the same, except for the sld1 and sld2 predicates in
the Grid 30 configuration. However, the execution times in Table 1 show that our DRA
implementation is always faster than B-Prolog in these experiments and that, for almost all
configurations, the ratio difference shows a generic tendency to increase as the depth of the
problem also increases.

For all experiments, the results obtained for the YapTab suspension-based system clearly
outperform the standard linear tabled evaluation but, for our DRA+DRE implementation,
they are globally comparable. On average, YapTab is around 2 times faster than DRA+DRE
evaluation, including the Warren problem set, where YapTab shows a huge difference for
standard linear tabling. The results also indicate that our implementation scales as well as
YapTab when we increase the depth of the problem being tested.

7 Conclusions

We have presented a new linear tabling framework that integrates and supports batched
scheduling with DRA and DRE evaluation, solely or combined. We discussed how these
strategies can optimize different aspects of a tabled evaluation and we presented the relevant
implementation details for their integration on top of the Yap system.

Our experimental results were very interesting and very promising. In particular, the
combination of DRA with DRE showed the potential of our framework to effectively reduce
the execution time of the standard linear tabled evaluation. When compared with YapTab’s
suspension-based mechanism, the commonly referred weakness of linear tabling of doing a
huge number of redundant computations for computing fix-points was not such a problem in
our experiments. We thus argue that an efficient implementation of linear tabling can be a
good and first alternative to incorporate tabling into a Prolog system without such support.

SLATE’12

24 On Extending a Linear Tabling Framework to Support Batched Scheduling

Further work will include adding new strategies/optimizations to our framework, and
exploring the impact of applying our strategies to more complex problems, seeking real-world
experimental results, allowing us to improve and consolidate our current implementation.

Acknowledgements This work is partially funded by the ERDF (European Regional De-
velopment Fund) through the COMPETE Programme and by FCT (Portuguese Foundation
for Science and Technology) within projects HORUS (PTDC/EIA-EIA/100897/2008) and
LEAP (PTDC/EIA-CCO/112158/2009).

References
1 M. Areias and R. Rocha. An Efficient Implementation of Linear Tabling Based on Dynamic

Reordering of Alternatives. In International Symposium on Practical Aspects of Declarative
Languages, number 5937 in LNCS, pages 279–293. Springer-Verlag, 2010.

2 M. Areias and R. Rocha. On Combining Linear-Based Strategies for Tabled Evaluation
of Logic Programs. Journal of Theory and Practice of Logic Programming, International
Conference on Logic Programming, Special Issue, 11(4–5):681–696, 2011.

3 W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic Programs.
Journal of the ACM, 43(1):20–74, 1996.

4 P. Chico, M. Carro, M. V. Hermenegildo, C. Silva, and R. Rocha. An Improved Con-
tinuation Call-Based Implementation of Tabling. In International Symposium on Practical
Aspects of Declarative Languages, number 4902 in LNCS, pages 197–213. Springer-Verlag,
2008.

5 J. Freire, T. Swift, and D. S. Warren. Beyond Depth-First: Improving Tabled Logic
Programs through Alternative Scheduling Strategies. In International Symposium on Pro-
gramming Language Implementation and Logic Programming, number 1140 in LNCS, pages
243–258. Springer-Verlag, 1996.

6 Hai-Feng Guo and G. Gupta. A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In International Conference
on Logic Programming, number 2237 in LNCS, pages 181–196. Springer-Verlag, 2001.

7 J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
8 I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. Efficient Access

Mechanisms for Tabled Logic Programs. Journal of Logic Programming, 38(1):31–54, 1999.
9 K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-Order

Stratified Logic Programs. ACM Transactions on Programming Languages and Systems,
20(3):586–634, 1998.

10 V. Santos Costa, R. Rocha, and L. Damas. The YAP Prolog System. Journal of Theory
and Practice of Logic Programming, 12(1 & 2):5–34, 2012.

11 Z. Somogyi and K. Sagonas. Tabling in Mercury: Design and Implementation. In Interna-
tional Symposium on Practical Aspects of Declarative Languages, number 3819 in LNCS,
pages 150–167. Springer-Verlag, 2006.

12 T. Swift and D. S. Warren. XSB: Extending Prolog with Tabled Logic Programming.
Theory and Practice of Logic Programming, 12(1 & 2):157–187, 2012.

13 Neng-Fa Zhou. The Language Features and Architecture of B-Prolog. Journal of Theory
and Practice of Logic Programming, 12(1 & 2):189–218, 2012.

14 Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Implementation of a Linear
Tabling Mechanism. In Practical Aspects of Declarative Languages, number 1753 in LNCS,
pages 109–123. Springer-Verlag, 2000.

	Introduction
	Standard Linear Tabled Evaluation
	Linear Tabling Strategies
	Dynamic Reordering of Alternatives
	Dynamic Reordering of Execution

	Propagation of Solutions in Re-evaluation Rounds
	Implementation Details
	Table Space
	Tabling Operations

	Experimental Results
	Conclusions

