Problem Domain Oriented Approach for Program
Comprehension

Maria Joao Varanda Pereira!, Mario Berén2?, Daniela da Cruz?®,
Nuno Oliveira®, and Pedro Rangel Henriques?

1 Polytechnic Institute of Braganca
Braganga, Portugal
mjpQ@ipb.pt
2 National University of San Luis
San Luis, Argentina
mberon@unsl.edu.ar
3 Universidade do Minho
Braga, Portugal
{danieladacruz,nunooliveira,prh}@di.uminho.pt

—— Abstract

This paper is concerned with an ontology driven approach for Program Comprehension that
starts picking up concepts from the problem domain ontology, analyzing source code and, after
locating problem concepts in the code, goes up and links them to the programming language
ontology.

Different location techniques are used to search for concepts embedded in comments, in the code
(identifier names and execution traces), and in string-literals associated with I/O statements. The
expected result is a mapping between problem domain concepts and code slices. This mapping
can be visualized using graph-based approaches like, for instance, navigation facilities through a
System Dependency Graph.

The paper also describes a PCTool suite, Quixote, that implements the approach proposed.

1998 ACM Subject Classification 1.2.2 Automatic Programming

Keywords and phrases Program Comprehension, Ontology-based SW development, Problem
and Program domain mapping, Code Analysis. Software Visualization

Digital Object Identifier 10.4230/0ASIcs.SLATE.2012.91

1 Introduction

Software maintenance is known to be the most time-consuming and expensive phase on
the software life cycle [4, 15]. It is incepted by the emergence of new requirements and
entails a first phase to comprehend the program and a second to evolve it according to the
requirements. Software evolution (once it is comprehended) is a fast task because there is not
much expertise involved besides the programming basics. Program comprehension, however,
requires more advanced skills where source code analysis techniques play an important role.

Program comprehension theories sprang from cognitive and psychological sciences [36,
34]. Such theories state that cognition is achieved by the construction of a mental model as a
structured way of gathering knowledge about the program under analysis. Mental models are
constructed either (i) top-down [5], i.e., from the knowledge on the problem domain to the
knowledge embodied in the program domain, (i4) bottom-up [47], i.e., from the knowledge on
the program domain to an abstraction capable of being mapped into the problem domain

@@@@ © Maria Joao V. Pereira, Mario Berén, Daniela da Cruz, Nuno Oliveira, and Pedro Rangel Henriques;
TN licensed under Creative Commons License NC-ND

15t Symposium on Languages, Applications and Technologies (SLATE’12).
Editors: Alberto Simdes, Ricardo Queirds, Daniela da Cruz; pp. 91-105

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2012.91
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

92

Problem Domain Oriented Approach for Program Comprehension

or (i4i) hybrid [28, 31, 51], i.e., combining the other two, interchangeably. Nevertheless,
the majority of these theories agree that a complete understanding of a program is reached
when the analyst can relate the program domain—how statements are executed (operational
semantics)—with the problem domain—what are the effects caused by the execution of those
statements (logical semantics).

Program and problem domains are two sets of knowledge. The former aggregates con-
cepts related with the program, the action of programming and the programming language.
The latter gathers discourse-level concepts which are close to the humans’ perception because
of being fruit of empirical knowledge or expertise in the area where these concepts appear.
The knowledge in both domains may be represented in ontologies providing a systematic
way of mapping concepts of both domains, and therefore bring them closer.

At the beginning of a program comprehension activity, the problem domain is usually
known, i.e., it is possible to identify the main concept in which the program is centered.
Related concepts may come from the analyst’s empirical knowledge or from the description
of a requirement or a task for software maintenance. These descriptions are (usually) short
natural language statements performed as a discourse at the problem level. This way, the
identification of problem domain concepts is easy and enriches the analyst’s knowledge on the
problem domain. In a task-oriented approach for software maintenance, such descriptions
and the terms involved may be used to focus the analyst’s work. The number of concepts
involved per task is within what the human brain can handle. Therefore, it is possible to
search for them in the source code in desirable time. However these approaches are not
always easy to follow and may require more complex solutions. Moreover, tool support for
program comprehension is a requirement for automatize, systematize and make effortless
the cognitive process.

In this paper we propose an approach and a PCTool suite implementing it, that would
allow for a full comprehension of the program slice to maintain and its dependencies. It
takes advantage of both ontologies to knowledge representation and task-oriented approach
for concept location. We rely on the assumption that the problem domain is known and the
comprehension is achieved when the concepts of both program and problem domains are
mapped.

The main novelty of our approach is, therefore, the use of ontologies to formally describe
the problem and program domains and drive the comprehension by creating a systematic
way of mapping the concepts on both domains.

In abstract, we start by collecting the concepts from task or requirement descriptions
(henceforth referred to as maintenance statements) using the problem domain ontology.
Meanwhile the source code is analyzed to extract information considered important to un-
derstand the meaning of each part of the program. Information retrieval techniques (applied
upon such information) are used to collect program blocks and program identifiers and as-
sociate them with the concepts involved in the maintenance statement. Later, the program
ontology concepts are mapped into the previous associations allowing for interpreting the
program elements involved in the maintenance task. Finally, the approach is endowed with
traditional software visualization techniques for exploration of the provided results. The
system is developed as it will be described along the paper.

Section 2 surveys related work, to support the appropriateness of our proposal and some
of the choices and decisions taken along the subjacent project (that will be discussed along
the paper). A detailed description of the approach is presented in section 3 in a very concise
style. In section 4, three developed tools are described. The first two tools perform the
static and dynamic source code analysis needed to implement some parts of the proposed

M. J. V. Pereira, M. Beron, D. Cruz, N. Oliveira, and P. R. Henriques

approach. Moreover a third tool for comment analysis is also described in this section. The
second part of our program comprehension system is concerned with software visualization
and it is described in section 5, right before the conclusion of the paper in section 6.

2 Related Work

The use of ontologies is spread into literature and it appears strongly related with the web
semantic area. In our case, we study the use of ontologies in program comprehension.

An ontology is informally described by several authors but the most known is Gruber
[21] with the following definition: An ontology is an explicit formal specification of a shared
conceptualization of a domain of interest. In order to use ontologies in Computer Science
it is required to be machine readable, accepted by a community and restricted to a given
domain. So, the formal definition of an ontology is based on a set of classes, a set of
instances (objects), a set of relations, a set of instances of relations and attributes (object
properties) [13]. Several representation languages can be used to describe an ontology: RDF,
RDF-schema, OWL.

Ontology learning (automatic, or semi-automatic support in ontology development) and
ontology population (the process of defining and instantiating a knowledge base) are the
main activities concerned about the use of ontologies [7, 6]. Following Jinsoo Park [25], data
resources may be textual data, dictionaries, knowledge bases, semi-structured schemata or
relational schemata. As information extraction techniques, the same authors refer natural
language processing, statistics and information retrieval. There are also some authors that
infer ontologies based on the comparison of other ontologies from the same domain [9)].
So, there are lots of research work on learning ontologies from texts, where text mining
(e.g. text categorization, text clustering, concept/entity extraction, production of granular
taxonomies, sentiment analysis, document summarization, entity relation modeling) is the
basic technique [25]. All these activities consist on collecting, selecting, grouping, classifying
the words extracted from the data resources, mapping them to concepts and analyzing a
set of possible relations. There are several tools for ontology extraction [25] like: OntoLT,
Text20nto, OntoBuilder, Doddle-owl, asium, soat, vetlan, Mok Workbench. Most of these
tools require the hands of a domain expert, operating, then, as semi-automatic.

In our case and at a first phase we consider that the problem domain ontology is already
constructed and we want to locate these concepts on source code trying to map them to
the program domain ontology. So, we need to explore deeply concept location techniques.
The most important work in this area is presented by Vaclav [46, 32]: The important task
is then to understand where and how the relevant concepts are implemented in the code.
The techniques can be based on a top-down process—it consists on analyzing the domain
to discover its concepts and then trying to match parts of the code with these concepts—or
in a bottom-up process—it consists on analyzing the code and trying to cluster the parts
that are most closely related according to a certain criteria. However, the most common
is a combination of both [37]. The techniques presented by Vaclac are based on string
pattern matching (grep), searching through the static code following call graphs and software
reconnaissance using code instrumentation in order to discover the parts of the program
that are related with each concept. Other technique is concerned with use of an information
retrieval system: for instance, the LSI (Latent Semantic Indexing) [33, 41, 12] method that
is based on queries to map external documentation to code. The work of Freitas described
in [17] uses this kind of techniques to identify the comments associated to each problem
domain concept.

93

SLATE’12

94

Problem Domain Oriented Approach for Program Comprehension

Other authors systematically transform program identifiers into fragments of natural
language sentences and then check whether the sentences are meaningful for humans using
Google web search engine [10].

Fry [19] concludes that there are many natural language clues in program literals iden-
tifiers and comments. Natural language analysis of source code complements traditional
program analysis. So, the idea is to use algorithms to automatically extract verb inform-
ation from program source code comments and methods signature using concept location
techniques.

The works described along this section were considered and influenced the design and
decisions behind our development proposal. Full program comprehension tools—such as
Alma [8], Alma2 [40], CodeCrawler [27], DA4Java [44], JIRiSS [45], Cerberus [14], Rigi [35],
SHriMP [49, 48], SHriMP with Creole [30]—described in our previous works [3] or [39]) were
also taken again in consideration, but the proposed ontology-based philosophy turns the
present approach into a novelty.

3 An approach for Program Comprehension

The Program Comprehension (PC) approach we advocate in this paper is:
Problem Domain oriented, because the PC process always starts with the terms
involved in the description of the maintenance task to accomplish (a natural language
statement, written as a discourse at the problem level); the idea is to locate these terms
in the program, actually in its source code.
NL supported, because maintenance task terms, before being located in the code, are
first located in the natural language sentences (NL-strings) embedded in the source
code, this is, in the comments and in the tert-messages that are included in the in-
put/output (I/0) statements in the form of string literal.
Ontology driven, because ontologies are used to represent the knowledge that charac-
terize both the Problem domain and the Program domain. This means that the main-
tenance task terms, we want to look for, should be formalized as concepts or relations
belonging to the Problem Ontology (PrbO); when located in the program source code,
these terms should be interpreted according to the concepts and relations in the Program
Ontology (PrgO), an extension of the Programming Language Ontology (PLO).

After this short characterization, we can describe our proposal more precisely decomposing

the approach into the following steps:
read the maintenance task statement (a natural language sentence) and identify in the
PrbO the terms (concepts and relations) that rigorously describe that task (sketch in
Figure 1);
pick up these terms from the PrbO and use an Information Retrieval (IR) engine to search
for all NL-strings (comments or I/0 string literals where the terms, or similar terms!,
appear more frequently (sketch in Figure 2);
go through the retrieved NL-strings read them and choose the code chunks associated
with the NL-strings that best fit the maintenance needs; use static or dynamic graphs
(like the System Dependency Graph, or Execution Trace Graphs) to help on that choice
(sketch in Figure 3);
select the identifiers contained in the retrieved code chunks that are more similar to the
terms used in the initial search (sketch in Figure 4);

! Dictionaries or Thesaurus shall be used to look for synonymous or translations.

M. J. V. Pereira, M. Beron, D. Cruz, N. Oliveira, and P. R. Henriques

use the PrgO to interpret these identifiers, recognizing in this way the program elements
involved in the maintenance task (sketch in Figure 5);

use traditional PC techniques—Ilike code visualizations and animation tools—to help in
a deeper analysis of those code chunks to get a better understanding of them (sketch in
Figure 6).

Manintenance
Statement

Term |dentification Term

Process List
Problem
Ontology
Figure 1 Term Process Identification Sub-system.
Term
List
Information
Retrieval] ML-Strings
System

Comments
and
Literals

Figure 2 Information Retrieval Sub-system.

Figure 7 depicts the PC approach proposed summarizing the detailed list of steps above
described.

To start the implementation of Quixote, we developed some tools combining several
approaches and techniques for source code analysis and for concept location using ontologies.
These tools will be described in the next sections, identifying the step where each one should
be integrated.

4 Source code analysis tools

Obviously the source code is the first information resource to be considered for understanding
a program.

In this section, a set of tools for analyzing Java source code is described. Each tool
extracts static or dynamic information from the source code and applies different strategies
to enable both the inspection and the comprehension of the software system under study.

Usually, the techniques employed in this context are centered in analyzing declarations
and statements to identify data structures and control-flow, building representations such
as: data/control-flow graphs, function-call graph, module dependency graph, etc. Strategies
for analyzing natural language information sources, for instance comments and literals asso-
ciated with I/O statements, are not commonly considered. However these program elements

95

SLATE’12

96 Problem Domain Oriented Approach for Program Comprehension

NL-Strings

Chunk | Source Code

Selector Chunks
F
Source Graph
Code _> Builder — Graphs
Figure 3 Chunk Selector Sub-system.
Term
List
h
Source Code Identifier - "
Chunks P selector Identifier
Figure 4 Identifier Selector Sub-system.
|dentifi er
w | Program
Interpreter y o Elements_>
Program
ontology
Figure 5 Interpreter Sub-system.
W Software
— \isualiztion
Elements Module

Figure 6 Visualization Sub-system.

97

iques

, and P. R. Henr

E Jeppng
m ﬁT Ilmgmu

ABo|ojup

iveira

M. J. V. Pereira, M. Berén, D. Cruz, N. Ol

wefoid spod
— X 324n05
U 1012B41X:
uolZiens|y, |ef— cu._m.&o__% J@1zadiaiul L4 h 4 E s|edsan Eum : v
e [es21M1 0/1
BEMHOS d8 yijuep| 4033835 l—— SAUNYD 4030835 P f pue
Hausp Jaynusp| 8p0D sNos Junys SjusLes JUsLILIoD

A

wasis
sbuiiis-N [LEIER]
uoljeuliou|

ABojoiuo
\ bl
/ JaLalels

33UBLSIUIUELY

N s53201d
WL uonesynuap| waL

SLATE’12

Figure 7 Program Comprehension Approach.

98

Problem Domain Oriented Approach for Program Comprehension

are important because they can provide information related with the problem domain, and
it is well known that discover the concepts and relations of that domain is a hard task.

The tools that will be described in the following subsections were developed considering
the arguments above mentioned.

4.1 Static Source Code Analysis

The first tool implements an innovative approach to work with static system information.

This approach builds as usual a parser tree and a rich symbol table where all the identi-
fiers extracted from the code are associated with their context (scope and code block) and
with their role or class according to the concepts defined in the Programming Language
Ountology (PLO); in this way a Program Ontology (PrgO) is built. The PrgO is a useful
internal representation of the knowledge inferable from the source code at a programming
level (program domain). It allows the user to navigate through the programming language
concepts down to their instances (identifiers) in the code, or from the instances up to the
programining concepts.

In parallel we are working over the set of detected identifiers exploring them lexically
and morphologically in order to enable the discovery of similarities with the concepts of the
problem domain. For that purpose, several techniques are used: splitting identifiers into
terms; expanding terms; and looking for translations, synonyms or Word__net meanings.

In this case, AnTLR [42], a well known compiler construction tool, was used to parse the
code and to extract program identifiers (names of classes, interfaces, methods, variables,
etc), but other tools like LISA [23], E1i [20], JavaCC [26], CoCo/R [24], lex/yacc [29] could
have been used for the same purpose.

This tool will be used in steps, Identifier Selector Sub-system and Interpreter Sub-system,
shown in Figures 4 and 5, in order to aid in the interpretation of the identifiers according
to the PrgO. Till the moment this part of the system copes with C and Java programs.

4.2 Dynamic Source Code Analysis

The second tool is based on dynamic information [22]. Code Instrumentation (CI) is a
strategy for gathering this kind of information. CI consists of inserting specific sequences of
statements (inspectors) in strategic locations of the source code with the goal of capturing the
system behavior. This task is performed automatically by parsing the source program. In [3]
a tool called PICS was developed to inspect C programs using exactly the same methodology.
Now we are interested to cope with object-oriented code.

JDIE (Java Dynamic Information Extractor) is a tool aimed at extracting dynamic inform-
ation from Java programs using CI. In order to carry out this task, two factors must be
taken into consideration:

1. The information to extract;
2. The source code places where this information can be recovered.

Considering the first factor, JDIE extracts information related with methods. This in-
formation is useful because it allows to detect which were the methods actually employed
for a specific scenario. Concerning the second factor, the places selected are: the beginning
and the end of each system method. With the observations previously mentioned, the in-
strumentation was carried out by inserting the inspectors at the beginning and at the end
of each system method. These inspectors record the name of the method when its execution
starts and finishes. This simple approach, that is effective for imperative languages like C,
rise some limitations when applied to an object-oriented language like Java. Methods can

M. J. V. Pereira, M. Beron, D. Cruz, N. Oliveira, and P. R. Henriques

finish with return statements that contain invocations to other methods inside them. In
this case, the strategy does not work because the execution traces recorded are not correct.
The solution to this problem is carried out by applying the following transformation to each
return statement:
1. Create a local variable, rvalue, with the following characteristics:
a. The type of rvalue is the method type (i.e., the type of the value returned by that
method);
b. The value of rvalue is determined by assigning to it the expression found inside the
return statement.
2. Modify the statement return replacing the expression inside its body by the variable
rvalue defined in previous step.

This approach works well. However, several problems appear when the methods have loops.
Observe, the source code shown below.

for (i=0; i<30.000; i++) {
g(x);
h(x);

}

The instrumentation strategy will inform 30.000 times that function g begins and ends its
execution. Similar information will be recorded 30.000 times for function h. In other words,
a huge amount of information will be produced. One possible way for solving the problem
presented by loops consists in the use of a stack. This stack contains in its top a value that
indicates the number of times that the functions used inside the loop shall be registered.
This stack is necessary because the iterations can be nested. The value is decremented at
the end of each iteration. When it is zero, no more information concerned with this method
will be registered. When the loop finishes its execution, the top of the stack is deleted.
To sum up, the instrumentation strategy can be fully described by the following al-
gorithm: For each method M found in the source code, do:
1. Insert an extraction statement at the beginning of M.
2. For each statement return found in M, do:
a. Create a local variable, rvalue, with the following characteristics:
i. The type of rvalue is the method type (i.e., the type of the value returned by that
method);
ii. The value of rvalue is determined by assigning to it the expression found inside the
return statement.
b. Modify the statement return replacing the expression inside its body by the variable
rvalue defined in previous step.
3. Imsert an extraction statement at the end of M.

The reader can see [1] for more details about the instrumentation scheme described above.

The result of this instrumentation work is a sequence of function calls. Usually trace sum-
marization techniques must be used in order to reduce the amount of extracted information.
Over that summarized information several analysis are performed—graph based analysis
(for instance, to discover sequence of calls) and identifier analysis—aimed at understanding
the behavior of the code under study.

Besides the classic use of this instrumentation tool, there is the possibility of relating the
traces extracted (graphs) with the identifiers in the PrgO, upgrading both. Moreover, the
dynamic traces can be used in conjunction with the module for concept location in strings

99

SLATE’12

100

Problem Domain Oriented Approach for Program Comprehension

(comments and literals), aiding the user choosing the sequence of strings to read and relate
to code.

This tool will be used in the step of our proposal that is described in Figure 3, Chunk
Selector Sub-system, in order to construct the graphs. Additionally static and dynamic
analysis can help to infer the actual types of input/output data in generic programs that
will also be useful in program comprehension tasks.

4.3 Comment Analysis

Comments are interspersed by the Programmer among code lines, at software development
phase. They are scattered all over the source code, sometimes wrapping a block of code
(placed at the beginning or at its end), other times complementing a single statement. It
is important to remember that comments are inserted by a programmer with two main
purposes: to help himself during the development phase (and in this case they are not too
much useful); to help other programmers, at the maintenance phase, in understanding his
ideas. In that case, comments will contain, for sure, concepts associated with the problem
domain, and they will be very relevant for PC tools.

The third tool we want to introduce, Darius, is responsible for locating automatically
concepts in comments extracted from source code. The approach adopted is aimed at
finding a relevant code chunk? using information retrieval techniques to locate problem
domain concepts within comments. Darius extracts all the comments and classifies them
per type (inline, block or JavaDoc comment), keeping their context, i.e., the code lines
before/after the comments.

Picking up concepts from the ontology that describes the problem, it is possible to find all
the comments that contain that concept (similar words) and rate them. Reading comments
from the retrieved list, the programmer can select those that seem to him meaningful and
dive directly into the associated chunk. Our idea, building this tool, is not to analyze
comments to understand the associated statements. In the other way around, we propose to
locate problem domain concepts on comments, and then identify the relevant code chunks
associated with them. This approach is based on the ontology that describes the problem
domain.

Darius [17] is precisely a tool developed to corroborate the previous statement.

In order to address the concept assignment problem, Darius follows standard IR strategies
many times referred in the literature. To accomplish its task, we built it up from the following
components:

the document database builder that constructs the logical view of the documents (that

in this case are the source program comments) and stores all of the relevant information

associated with the comments;

the IR engine (actually two models are available) that explore the information of the

document database, and retrieve documents according to the queries the users provide;

the graphical interface that provides all the interaction with the system and displays the
results of finding Problem Domain concepts using comment information.
All the technical details regarding the development of each one of these components can be
seen in [17]3.

2 The code block where the programmer should focus the attention for some software maintenance
purpose.

3 This thesis is available at the URL http://www3.di.uminho.pt/~gepl/QUIXOTE/
FreitasJL2011thesis.pdf.

http://www3.di.uminho.pt/~gepl/QUIXOTE/FreitasJL2011thesis.pdf
http://www3.di.uminho.pt/~gepl/QUIXOTE/FreitasJL2011thesis.pdf

M. J. V. Pereira, M. Beron, D. Cruz, N. Oliveira, and P. R. Henriques

Moreover, Darius provides some features to study the frequency of comment occurrences
in the source files of a given project (for more details, see [18]). The data extracted and
the measurements performed allow the user to compute some statistical information that is
useful to verify if the source code contains enough comments that make this PC approach
worthwhile*. Darius identifies and extracts inline, block and javadoc comments and provides
some metrics useful to appraise the commentary policy followed by the program authors.

Clearly, this tool will be incorporated in step, Information Retrieval Sub-system, shown
in Figure 2, in order to aid in locating problem concepts in the comments.

5 Visualization

To build Software Visualization components (for the sake of simplicity represented in Fig-
ure 6 as just one module in the last step), visualization techniques—concerned with scaling,
drawings, coloring and processing speed—for graphs (flowcharts, function graph, module
graph, system dependency graph, etc.), for trees (tree function, treemaps, and so on), for
textual representations (source code structure or emphasized blocks, program metrics), for
graphics, and animations will be fully exploited. Easy to use and advanced navigation fea-
tures enabling the interconnection among all the above described visual artifacts and the
interaction with the user, will be included to aid in the location of the code chunks and in
the mapping between domains.

To produce these different visualizations, and address all the described features (actually
not only concerned with the final results and restricted to the last process phase, but spread
out all over the system), we rely on our strong background in this field. Theoretical works
like the thesis [43, 11, 3, 38, 8] gave the support to the applications developed under the
program comprehension project PCVIA [50]. Tools like Alma (8], Alma2 [40], PICS [2] and
WebAppViewer [16] provide graphical features to expose information of both program and
problem domains.

In Quixote PCTool suite, we plan to create visualizations for the three ontologies — PrbO,
PLO, PrgO— as well as for the program source code, and the system dependency graph.
Adequate navigation techniques among them will allow the visualization of the envisaged
mapping.

6 Conclusion

It is well known that a programmer understands programs when he can relate the problem
and program domains. Nevertheless, it is recognized that such relation is difficult to reach
and build. Having present this inconvenient, and with the purpose of providing a new
solution to this challenge, several approaches in the literature were analyzed. From that
study it came out that basically all of the approaches rely on the use of static and dynamic
information to build program representations and to infer problem concepts.

Strategies, based on knowledge representation techniques enabling semantic directed
manipulation for precise definition of the concepts used in both the problem and program
domains, are rare in the literature.

In this paper a novel ontology-based approach for Program Comprehension was presen-
ted. Here, ontologies allow for a precise description of a domain in terms of its concepts and
relations.

4 Notice that this approach has no meaning if source code is not interleaved with comments.

101

SLATE’12

102

Problem Domain Oriented Approach for Program Comprehension

The approach mentioned above uses four inputs for mapping problem domain concepts
into system source code. The first one is the Problem Domain Ontology. It describes the
problem concepts and the relations between them. The second one, Maintenance Statement,
is used for identifying the problem domain concepts involved in a maintenance task. The
third one, Source Code, is an important information resource employed by several tools
concerned with the extraction of identifiers and concepts location. The fourth one, Program
Ontology, is used to take advantage of the semantic provided by the relation between the
program elements linked with programming language ontology.

The program domain ontology (PrgO) is built automatically and is based on the program-
ming language ontology (PLO) and on the source code. The PLO is previously developed
and by default incorporated in our PCTools suite.

The information provided by the inputs previously mentioned are processed for: (i) link-
ing the problem concepts with chunks of source code that implement them and (i7) providing
several views for helping the programmer to understand there behavior. The processing refer-
enced before implies: (7) extraction of static and dynamic information and (i¢) interpretation
of the information gathered, in order to understand how the system works.

On the one hand, the information extraction is carried out by applying several techniques
of static and dynamic analysis and strategies of natural language processing. On the other
hand, the interpretation phase is accomplished using the program ontology and identifier
list appropriately filtered. At the end of the processing phase, it is possible to visualize,
from several perspectives, the chunks of code that implement the problem domain concepts
involved in the maintenance task. As a final remark, the approach described makes a deeper
exploration of information of both the problem and program domains for reaching clear and
robust relations between them.

—— References

1 Hernan Bernardis, Daniel Riesco, Carlos Salgado, Mario Beron, and Pedro Rangel Hen-
riques. Analisis dinamico para la creacion de estrategias de comprension de programas. In
WICC 2012 - XIV Workshop de Investigadores en Ciencias de la Computacion, Misiones,
Argentina, April 2012.

2 M. Berén, P. Henriques, M. Varanda, and R. Uzal. PICS un sistema de comprension
e inspeccion de programas. Congreso Argentino de Ciencias de la Computacion CACIC
2007, 13:462-473, 2007.

3 Mario Marcelo Berén. Program Inspection to interconnect the Behavioral and Operational
Views for Program Comprehension. PhD thesis, National University of San Luis & Univer-
sity of Minho, Nov. 2009.

4 Barry W. Boehm. Software Engineering Economics. Prentice Hall PTR, 1981.

5 Ruven E. Brooks. Towards a theory of the comprehension of computer programs. Interna-
tional Journal of Man-Machine Studies, 18(6):543-554, Nov. 1983.

6 P. Cimiano, A. Hotho, and S. Staab. Learning concept hierarchies from text corpora using
formal concept analysis. Journal of Artificial Intelligence Research, (24):305-339, 2005.

7 Philipp Cimiano. Ontology Learning and Population from Text. Springer-Verlag New York
Inc., 2010.

8 Daniela da Cruz, Pedro Rangel Henriques, and Maria Joao Varanda Pereira. Construct-
ing program animations using a pattern-based approach. ComSIS — Computer Science
an Information Systems Journal, Special Issue on Advances in Programming Languages,
4(2):97-114, 2007.

9 Jan Jurjens Daniel Ratiu, Martin Feilkas. Extracting domain ontologies from domain
specific. 2008.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

. J. V. Pereira, M. Beron, D. Cruz, N. Oliveira, and P. R. Henriques

Lars Heinemann Daniel Ratiu. Utilizing web search engines for program analysis. 18th
IEEFE International Conference on Program Comprehension, 2010.

Eva Ferreira de Oliveira. Caracteristicas de um sistema de visualiza cdo para compreensao
de programas web. Master’s thesis, University of Minho, Sep. 2006.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing
by latent semantic analysis. Journal of the American Society for Information Science,
41(6):391-407, 1990.

Lucas Drumond and Rosario Girardi. Extracting ontology concept hierarchies from text
using markov logic. In SAC, pages 1354-1358, 2010.

Marc Eaddy, Alfred V. Aho, Giuliano Antoniol, and Yann-Gaél Guéhéneuc. CERBERUS:
Tracing requirements to source code using information retrieval, dynamic analysis, and
program analysis. In ICPC ’08: Proceedings of the 2008 The 16th IEEE International
Conference on Program Comprehension, pages 53—62, Washington, DC, USA, 2008. IEEE
Computer Society.

R. K. Fjeldstad and W. T. Hamlen. Application program maintenance study: Report to
our respondents. In Proceedings GUIDE /8, Apr. 1983.

Ruben Fonseca, Daniela da Cruz, Pedro Henriques, and Maria Jo ao Varanda Pereira.
How to interconnect operational and behavioral views of web applications. In IEEE, ed-
itor, ICPC’08 - 16th International Conference on Program Comprehension. Amsterdam,
Holanda, June 2008.

José Luis Freitas. Comments Analysis for Program Comprehension. Master’s thesis, Dec
2011.

José Luis Freitas, Daniela da Cruz, and Pedro Rangel Henriques. The role of Comments on
Program Comprehension. In Luis Caires and Raul Barbosa, editors, INForum’11 — Sim-
pdsio de Informdtica (CoRTA’11 track), Coimbra, Portugal, September 2011. Universidade
de Coimbra.

Z. P. Fry, D. Shepherd, E. Hill, L. Pollock, and K. Vijay-Shanker. Analysing source code:
looking for useful verb-direct object pairs in all the right places. Natural Language in
Software Engineering, IET Software, 2(1):27-36, 2008.

R. Gray, V. Heuring, S. Kram, A. Sloam, and W. Waite. Eli: A complete, flexible compiler
construction system. Research report, Univ. of Colorado at Boulder, Oct. 1990.

T. Gruber. Towards principles for the design of ontologies used for knowledge sharing. L.
of Human and Computer Studies, 43:907-928, 1994.

Bernardis H. Instrumentacion de programas escritos en java para interconectar los dominios
del problema y del programa. In Universidad Tecnologica Nacional, editor, 40 Jornadas
Argentinas de Informatica e Investigacion Operativa. 40 JAIIO. Concurso Estudiantil. EST
2011., volume 40, 2011.

Pedro Henriques, Maria Joao Varanda, Marjan Mernik, Mitja Lenic, Jeff Gray, and Hui
Wu. Automatic generation of language-based tools using lisa system. IEE Software Journal,
152(2):54-70, April 2005.

Pedro R. Henriques and Jose Joao Almeida. O Gerador de Compiladores COCO. Relatério
de instalagao, G.D. Ciéncias da Computagao, D.I./ Univ. Minho, Mar. 1990.

Sangkyu Rho Jinsoo Park, Worchin Cho. Evaluating ontology extraction tools using a
comprehensive evaluation framework. DataédKnowledge Engineering, 69:1034-1061, 2010.
Viswanathan Kodaganallur. Incorporating language processing into java applications: A
javacc tutorial. IEEE Software, 21:70-77, 2004.

Michele Lanza and Stéphane Ducasse. A categorization of classes based on the visualization
of their internal structure: the class blueprint. In Proceedings of OOPSLA 2001, pages 300—
311, 2001.

103

SLATE’12

104

Problem Domain Oriented Approach for Program Comprehension

28

29

30

31

32

33

34

35

36
37
38

39

40

41

42

43

44

45

S. Letovsky and E. Soloway. Delocalized plans and program comprehension. Software,
IEEE, 3(3):41-49, 1986.

J.R. Levine, T. Mason, and D. Brown. Lex & Yacc. Ed. Dale Dougherty. O'Reilly &
Associates Inc., 1992.

Rob Lintern, Jeff Michaud, Margaret-Anne Storey, and Xiaomin Wu. Plugging-in visualiz-
ation: experiences integrating a visualization tool with eclipse. In SoftVis ‘03: Proceedings
of the 2003 ACM symposium on Software visualization, pages 47-56, New York, NY, USA,
2003. ACM.

David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. Mental models
and software maintenance. J. Syst. Softw., 7(4):341-355, 1987.

Radu Vanciu Maksym Petrenko, Vaclav Rajlich. Partial domain comprehension in software
evolution and maintenance. 16th IEEE International Conference on Program Comprehen-
ston, 2008.

Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan Maletic. An information
retrieval approach to concept location in source code. WCRE 200/ - 11th IEEE Working
Conference on Reverse Engineering, 2004.

Thomas P. Moran and Stuart K. Card. Applying cognitive psychology to computer systems:
A graduate seminar in psychology. In Proceedings of the 1982 conference on Human factors
in computing systems, pages 295—298, New York, NY, USA, 1982. ACM.

H. A. Miller and K. Klashinsky. Rigi-a system for programming-in-the-large. In ICSE ’88:
Proceedings of the 10th international conference on Software engineering, pages 80-86, Los
Alamitos, CA, USA, 1988. IEEE Computer Society Press.

Ulric Neisser. Cognitive Psychology. Appleton-Century-Crofts, New York, 1967.

Timothy Lethbridge Nicolas Anquetil. Extracting concepts from filenames. 1998.

Nuno Oliveira. Improving program comprehension tools for domain specific languages.
Master’s thesis, University of Minho, Braga, Portugal, October 2009.

Nuno Oliveira, Pedro Rangel Henriques, Daniela da Cruz, Maria Joao Varanda Pereira,
Marjan Mernik, Tomaz Kosar, and Matej Crepindek. Applying program comprehension
techniques to karel robot programs. In Proceedings of the International Multiconference on
Computer Science and Information Technology - 2nd Workshop on Advances in Program-
ming Languages (WAPL’2009), pages 697-704, Mragowo, Poland, October 2009. IEEE
Computer Society Press.

Nuno Oliveira, Maria Jodo Varanda Pereira, Pedro Rangel Henriques, and Daniela da Cruz.
Visualization of domain-specific program’s behavior. In Proceedings of VISSOFT 2009, 5th
IEEE International Workshop on Visualizing Software for Understanding and Analysis,
pages 37-40, Edmonton, Alberta, Canada, September 2009. IEEE Computer Society.
Pocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. On the equival-
ence of information retrieval methods for automated traceability link recovery. 18th IEEE
International Conference on Program Comprehension, 2010.

Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages. The
Pragmatic Bookshelf, Raleigh, 2007.

Maria Jodo Varanda Pereira. Sistematizacio da Animaciao de Programas. PhD thesis,
University of Minho, Nov. 2003.

M. Pinzger, K. Grafenhain, P. Knab, and H. C. Gall. A tool for visual understanding of
source code dependencies. In Program Comprehension, 2008. ICPC 2008. The 16th IEEE
International Conference on, pages 254-259, 2008.

Denys Poshyvanyk, Andrian Marcus, and Yubo Dong. Jiriss - an eclipse plug-in for source
code exploration. In ICPC ’06: Proceedings of the 14th IEEE International Conference on
Program Comprehension, pages 252-255, Washington, DC, USA, 2006. IEEE Computer
Society.

46

47

48

49

50

51

. J. V. Pereira, M. Beron, D. Cruz, N. Oliveira, and P. R. Henriques

Vaclav Rajlich and Norman Wilde. The role of concepts in program comprehension. ITWPC-
10th IEEE International Workshop on Program Comprehension, 2002.

Ben Shneiderman and Richard Mayer. Syntactic/semantic interactions in programmer be-
havior: A model and experimental results. International Journal of Parallel Programming,
8(3):219-238, Jun. 1979.

Margaret-Anne Storey. Designing a software exploration tool using a cognitive framework of
design elements. In Kang Zhang, editor, Software Visualization: From Theory to Practice,
pages 113-148. Springer, 2003.

Margaret-Anne Storey, Casey Best, Jeff Michaud, Derek Rayside, Marin Litoiu, and Mark
Musen. SHriMP views: an interactive environment for information visualization and nav-
igation. In CHI °02: CHI ’02 extended abstracts on Human factors in computing systems,
pages 520-521, New York, NY, USA, 2002. ACM.

Maria Jodo Varanda and Pedro Henriques. Program comprehension by visual inspection
and animation.

A. von Mayrhauser and A. M. Vans. From program comprehension to tool requirements
for an industrial environment. In In Proceedings of IEEE Workshop on Program Compre-
hension, pages 7886, 1993.

105

SLATE’12

	SLATe2012Quixote-vf
	Introduction
	Related Work
	An approach for Program Comprehension
	Source code analysis tools
	Static Source Code Analysis
	Dynamic Source Code Analysis
	Comment Analysis

	Visualization
	Conclusion

	blank-page

