
Heuristics for the routing of trucks with double
container loads∗

Michela Lai1, Massimo Di Francesco2, and Paola Zuddas3

1 Department of Mathematics and Computer Science, University of Cagliari
Via Ospedale 72, 09124, Cagliari, Italy
mlai@unica.it

2 Department of Land Engineering, University of Cagliari
Via Marengo 2, 09123, Cagliari, Italy
mdifrance@unica.it

3 Department of Mathematics and Computer Science, University of Cagliari
Via Ospedale 72, 09124, Cagliari, Italy
zuddas@unica.it

Abstract
This research addresses a problem motivated by a real case study. A carrier must plan the
routes of trucks in order to serve importers and exporters. What is original in this vehicle
routing problem is the impossibility to separate trucks and containers during customer service
and the opportunity to carry up to two containers per truck. Customers may demand more than
one container and may be visited more than once. Moreover, according to the carrier’s policy,
importers must be served before exporters. In order to address this Vehicle Routing Problem
with backhaul and splits, a linear integer programming model is proposed. This research aims
to show to what extent an exact algorithm of a state of the art solver can be used to solve this
model. Moreover, since some instances are too difficult to solve for the exact algorithm, a number
of heuristics is proposed and compared to this algorithm. Finally, the heuristics are compared to
the real decisions of the carrier who has motivated this problem.

1998 ACM Subject Classification H.4.2 Types of Systems Logistics

Keywords and phrases Split Vehicle Routing Problem, Backhaul, Drayage, Container transport-
ation, Heuristics

Digital Object Identifier 10.4230/OASIcs.SCOR.2012.84

1 Introduction

This paper addresses a vehicle routing problem, which is motivated by a real case study. A
carrier is in charge of planning the distribution of container loads by trucks and containers
based at a port. The carrier has a homogeneous fleet of trucks carrying up to two containers
and the planning of routes must be performed within 10 minutes. Two classes of customers
must be served: importers and exporters. The importers need to receive full container loads
from the port and the exporters need to ship container loads to the port. Typically customers
need to be served by more than one container and must be visited by more than one truck.

According to the carrier’s policy, trucks and containers cannot be uncoupled during
customer service, because truck drivers are required to check the right execution of operations.
As a result, in this problem there are no pickups or deliveries of loaded and empty containers:

∗ This work was partially supported by Grendi Trasporti Marittimi.

© Michela. Lai, Massimo Di Francesco, and Paola Zuddas;
licensed under Creative Commons License NC-ND

3rd Student Conference on Operational Research (SCOR 2012).
Editors: Stefan Ravizza and Penny Holborn; pp. 84–93

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SCOR.2012.84
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Lai, M. Di Francesco, and P. Zuddas 85

during customer service containers are filled or emptied and moved away by the same trucks
used for bringing containers to customers.

Moreover, since the container loads of exporters are typically not ready before the
afternoon, the carrier policy is to serve importers before exporters. As a result, empty
containers leaving from importers can be moved to exporters, where they are filled and
shipped to the port.

This problem belongs to the class of Vehicle Routing Problem (VRP) with backhauls,
because deliveries must be performed before pickups [1]. However, in classical VRP with
backhaul each customer must be visited only once, whereas in our problem multiple visits at
each customer are allowed. Therefore, although several solution methods exist in VRP with
backhauls [2], [3], [4], [5], they may be suboptimal because splits are not considered.

There are also some similarities to drayage problems, which consists of picking up and
delivering of full containers. Typically they are separated from trucks during customer service
[6], whereas this is not possible in this problem. The closest problem setting was probably
faced by Imai et al. [7], who studied the optimal assignment of own and chartered trucks
to a set of delivery and pickup pairs. As in our setting, tractors and containers cannot be
uncoupled, but the capacity of trucks is limited to one container only. Homogeneous fleets
with one container trucks are also considered in [8] and [9].

The objective of this paper is to propose an optimization model accounting for the
original characteristics of this problem. The model minimizes distribution costs, such that all
customers are served as requested, truck capacity constraints hold and importers are served
before exporters.

Since we are required to determine efficient solutions rapidly, this paper also aims to
propose a number of heuristics for this problem. The common idea between these heuristics
is to build an initial set of routes in which all customers are either importers or exporters.
Next, these routes are merged according to different criteria, one for each heuristic.

The contributions of this paper are:
to present a problem with some original characteristics, which have not been investigated
in the rich VRP literature;
to model the problem by a linear integer programming formulation;
to propose and evaluate a number of heuristics with respect to an exact algorithm of a
state-of-art solver.

The paper is organized as follows. In Section 2 the problem description is presented. The
problem is modeled in Section 3. Solution methods are described in Section 4. The heuristics
are tested in Section 5. Section 6 presents a summary of conclusions and describes future
research perspectives in the field.

2 Problem description

Consider a fleet of trucks and containers based at a port. Trucks carry up to two containers
and serve two types of customer requests: the delivery of container loads from the port to
importers and the shipment of container loads from exporters to the same port. Typically
customers need to ship or receive more than one container load. Therefore, usually each
customer must be served by multiple containers and must be visited more than once.

A relevant characteristic of this problem is the impossibility to separate trucks and
containers during customer service. As a result, when importers receive container loads
by trucks, containers are emptied and moved away by the same trucks used for providing

SCOR’12

86 Heuristics for the routing of trucks with double container loads

container loads. Similarly, when exporters are served by empty containers, containers are
filled and moved away by the same trucks used for providing empty containers.

According to the carrier’s policy, importers must be served before exporters. As a result,
routes may consist in the shipment of container loads from the port to importers, the direct
allocation of empty containers from importers to exporters and the final shipment of container
loads from exporters to the port. Therefore, trucks can serve in a route up to four customers
(two importers and two exporters). Every pair of containers can be shipped in a truck. All
containers leaving from importers can be used to serve exporters, no incompability occurs
between customers and trucks, which can serve almost any customer, and there are no
priorities among importers and among exporters.

It is worth noting that the number of container loads to be picked up and delivered is
generally different. When the number of container loads delivered to importers is larger than
the number of container loads shipped by exporters, several empty containers must be moved
back to the port. When the number of container loads delivered to importers is lower than
the number of container loads shipped by exporters, several empty containers must be put
on trucks leaving from the port, in order to serve all customers.

The movement of trucks generate routing costs. In this problem, all trucks lead to the
same routing costs per unitary distance. Moreover, handling costs are paid to put containers
on trucks at the port. The objective is to determine the routes of trucks in order to minimize
routing and handling costs, such that customers are served as requested, truck capacity
constraints hold and importers are served before exporters.

3 Modeling

We consider a port p, a set I of importers, a set E of exporters, and a set K of different
trucks, whose transportation capacity is 2 containers. An integer demand of di ≥ 0 containers
is associated with each customer i ∈ I ∪ E. It represents the number of loaded containers
requested to serve import customer i ∈ I and it is also equal to the number of empty
containers returned by this customer. When i ∈ E, di represents the number of empty
containers requested to serve export customer i ∈ E and it is also equal to the number of
loaded containers shipped by this customer.

Consider a direct graph G = (N, A), where N = {p ∪ I ∪ E} and the set of arcs A

includes all allowed ways to move trucks:
from the port to any importer and any exporter;
from an importer to the port, any other importer and any exporter;
from an exporter to the port and any other exporter.

More formally, the set A is defined as A = A1 ∪A2, where

A1 ={(i, j)|i ∈ I ∪ p, j ∈ N, i 6= j}
A2 ={(i, j)|i ∈ E, j ∈ E ∪ p, i 6= j}

The operation cost cij for any truck traversing arc (i, j) ∈ A is supposed to be nonnegative.
Let hpj be the nonnegative handling cost of a container put on and picked from any truck at
the port p to serve node j ∈ N .

The following decision variables are defined:
xk

ij : Routing selection variable equal to 1 if arc (i, j) ∈ A is traversed by truck k ∈ K,
and 0 otherwise;
yk

ij : Integer variable representing the number of loaded containers moved along arc
(i, j) ∈ A by truck k ∈ K;

M. Lai, M. Di Francesco, and P. Zuddas 87

zk
ij : Integer variable representing the number of empty containers moved along arc

(i, j) ∈ A by truck k ∈ K.

The problem can be formulated as follows:

min
∑
k∈K

 ∑
(i,j)∈A

cijxk
ij +

∑
j∈N

hpj(yk
pj + zk

pj)

 (1)

s.t. ∑
k∈K

∑
l∈N

yk
il =

∑
k∈K

∑
j∈p∪I

yk
ji − di ∀i ∈ I (2)

∑
k∈K

∑
l∈N

zk
il =

∑
k∈K

∑
j∈p∪I

zk
ji + di ∀i ∈ I (3)

∑
l∈N

yk
il ≤

∑
j∈p∪I

yk
ji ∀i ∈ I, ∀k ∈ K (4)

∑
l∈N

zk
il ≥

∑
j∈p∪I

zk
ji ∀i ∈ I, ∀k ∈ K (5)

∑
k∈K

∑
l∈p∪E

yk
il =

∑
k∈K

∑
j∈N

yk
ji + di ∀i ∈ E (6)

∑
k∈K

∑
l∈p∪E

zk
il =

∑
k∈K

∑
j∈N

zk
ji − di ∀i ∈ E (7)

∑
l∈p∪E

yk
il ≥

∑
j∈N

yk
ji ∀i ∈ E,∀k ∈ K (8)

∑
l∈p∪E

zk
il ≤

∑
j∈N

zk
ji ∀i ∈ E,∀k ∈ K (9)

yk
ij + zk

ij ≤ 2xk
ij ∀(i, j) ∈ A,∀k ∈ K (10)∑

j∈N

xk
ji −

∑
l∈N

xk
il = 0 ∀i ∈ N, ∀k ∈ K (11)

∑
j∈N

xk
pj ≤ 1 ∀k ∈ K (12)

∑
k∈K

∑
i∈I∪E

zk
ip −

∑
k∈K

∑
i∈I∪E

zk
pi =

∑
i∈I

di −
∑
i∈E

di (13)

xk
ij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K (14)

yk
ij ∈ {0, 1, 2} ∀(i, j) ∈ A,∀k ∈ K (15)

zk
ij ∈ {0, 1, 2} ∀(i, j) ∈ A,∀k ∈ K (16)

Container handling and truck routing costs are minimized in the objective function (1).
Constraints from (2) to (5) concern the service to importers. Constraints (2) and (3)

are the flow conservation constraints of loaded and empty containers respectively at each
importer node. Constraints (4) and (5) check the number of loaded and empty containers in
each truck entering and leaving from importers: when a truck leaves from each importer, the
number of loaded containers cannot increase and the number of empty containers cannot be
reduced.

Constraints from (6) to (9) concern the service to exporters. Constraints (6) and (7)
are the flow conservation constraints of loaded and empty containers, respectively, for each

SCOR’12

88 Heuristics for the routing of trucks with double container loads

exporter node. Constraints (8) and (9) control the number of loaded and empty containers
in each truck entering and leaving from exporters: when a truck leaves from each exporter,
the number of loaded containers cannot be reduced and the number of empty containers
cannot be increased.

Constraint (10) imposes that the number of containers moved by each truck is not larger
than the transportation capacity. Constraints (11) are the flow conservation constraints for
trucks at each node. Constraint (12) guarantees that trucks are not used more than once.
Constraint (13) represents the flow conservation of empty containers at port p.

Finally, constraints (14), (15) and (16) define the domain of decision variables.

4 Solution methods

Several solution methods can be adopted to solve the previous problem. Generally speaking,
they can be divided into exact and heuristic methods. In this paper we illustrate to what
extent a well-known exact algorithm can be used to face this problem. This analysis is
performed by the solver Cplex, which solves integer programming models by a branch-and-cut
algorithm.

However, most Vehicle Routing Problems are NP-hard and, also in our problem, there is
little hope of finding exact solution procedures for large problem instances [11]. Therefore,
in this section we propose a number of heuristics, which can be used to tackle the problem
at hand.

All proposed heuristics are composed of two phases. The first phase, which is the same
for all heuristics, determines an initial solution, in which all routes serve either importers
or exporters. In the second phase, each heuristic implements a different rule to merge the
routes determined in the first phase. Finally, the best heuristic in terms of objective function
is selected.

In the first phase, we face two vehicle routing problems with splits: the first has importers
only, whilst the second has exporters only. However, Split Vehicle Routing Problems are also
known to be difficult. Therefore, since an efficient metaheuristic for this class of problems
has been proposed by Archetti et al. [10], their algorithm has been chosen to determine
routes in the first phase.

The routes determined in the first phase are merged in the second phase according to
different saving-based heuristics. Savings represent the routing costs achieved by merging
two routes instead of leaving them separately. Given a route i with importers only and a
route j with exporters only, the saving generated by their merging is computed as sij =
c(i) + c(j)− c(ij), in which c(i) and c(j) are the respective costs of routes i and j, and c(ij)
is the cost of the merged route. Savings are saved in a matrix, in which the number of rows
is equal to the number of routes serving importers in the first phase and the number of
columns is equal to the number of routes serving exporters in the first phase.

In this paper, the order of visits between pairs of importers and pairs of exporters is not
changed after the merging. To clarify, let us consider for instance two importers i1 and i2
and two exporters e1, e2. Assume that the routes determined in the first phase are p, i1, i2,
p and p, e1, e2, p. If these routes are merged, the final route is p, i1, i2, e1, e2,p. Therefore,
the possibility of visiting importer i2 before importer i1 and exporter e2 before e1 is not
taken into account.

Some definitions are provided for the sake of clarity in the presentation of the heuristics:
Row i represents the i− th route of importers, as determined in the first phase;
Column j represents the j − th route of exporters, as determined in the first phase;

M. Lai, M. Di Francesco, and P. Zuddas 89

Entry sij >= 0 is the saving generated by the merging of routes i and j. Only nonnegative
savings are considered. When an entry sij takes value 0, the merging is not allowed.
Whenever two routes i and j are merged by a heuristic, the related saving sij is set to 0;

mi Number of columns (routes) that can be merged with the route represented by row i;
mj Number of rows (routes) that can be merged with the route represented by column j;
avrgi is the average of all savings in row i;
avrgj is the average of all savings in column j.

We propose eight heuristics, whose solution is denoted by s0,...,7:
Heuristic 0 (H0) This heuristic does nothing and returns routes as determined in the first

phase:
Step0 s0 = ∅.
Step1 For each row i, insert i into s0.
Step2 For each column j, insert j into s0.

Heuristic 1 (H1) This heuristic determines the maximum saving for each route of importers
and selects the best routes serving exporters:
Step0 s1 = ∅.
Step1 For each row i, select the largest sij . Merge routes i and j, if any, and insert the

new route into s1.
Step2 For each row i not involved in any merging, insert i into s1.
Step3 For each column j not involved in any merging, insert j into s1.

Heuristic 2 (H2) This heuristic determines the maximum saving for each route of exporters
and selects the best routes serving importers:
Step0 s2 = ∅.
Step1 For each column j, select the largest sij . Merge routes i and j, if any, and insert

the new route into s2.
Step2 For each row i not involved in any merging, insert i into s2.
Step3 For each column j not involved in any merging, insert j into s2.

Heuristic 3 (H3) This heuristic gives priority to routes of importers that can be merged
with a low number of other routes.
Step0 s3 = ∅.
Step1 Search for row i with the lowest value of mi. If any, go to Step2, otherwise go to

Step3.
Step2 Select the largest sij for i, merge routes i and j and insert the new route into s3.

Go to Step1.
Step3 For each row i not involved in any merging, insert i into s3.
Step4 For each column j not involved in any merging, insert j into s3.

Heuristic 4 (H4) This heuristic gives priority to routes of exporters that can be merged
with a low number of other routes.
Step0 s4 = ∅.
Step1 Search for column j with the lowest value of mj . If any, go to Step2, otherwise

go to Step3.
Step2 Select the largest sij for j, merge routes i and j and insert the new route into s4.

Go to Step1.
Step3 For each row i not involved in any merging, insert i into s4.
Step4 For each column j not involved in any merging, insert j into s4.

SCOR’12

90 Heuristics for the routing of trucks with double container loads

Heuristic 5 (H5) This heuristic gives priority to routes of both importers and exporters,
that can be merged with a low number of other routes:
Step0 s5 = ∅.
Step1 Search for row i with the lowest value of mi and the column j with the lowest

value of mj . If mi <= mj , go to Step2, otherwise go to Step3. If no routes can be
merged, go to Step4.

Step2 Select the largest sij for i, merge routes i and j and insert into s5. Go to Step1.
Step3 Select the largest sij for j, merge routes i and j and insert into s5. Go to Step1.
Step4 For each row i not involved in any merging, insert i into s5.
Step5 For each column j not involved in any merging, insert j into s5.

Heuristic 6 (H6) This heuristic differs from the previous one in the selection of savings: we
choose the closest saving to the average of all available savings, instead of the largest one:
Step0 s6 = ∅.
Step1 Search for row i with the lowest value of mi and the column j with the lowest

value of mj . If mi <= mj , go to Step2, otherwise go to Step3. If no routes can be
merged, go to Step4.

Step2 Select the closest sij to avrgi, merge routes i and j and insert into s6. Go to
Step1.

Step3 Select the closest sij to avrgj , merge routes i and j and insert into s6. Go to
Step1.

Step4 For each row i not involved in any merging, insert i into s6.
Step5 For each column j not involved in any merging, insert j into s6.

Heuristic 7 (H7) This heuristic merges the routes with the largest saving in the matrix:
Step0 s7 = ∅.
Step1 Select for the largest sij in the saving matrix. If any, go to Step2, otherwise go

to Step3.
Step2 Merge routes i and j and insert the new route into s7. Go to Step1.
Step3 For each row i not involved in any merging, insert i into s7.
Step4 For each column j not involved in any merging, insert j into s7.

After the execution of all heuristics, we select the best one in terms of objective function.

5 Experimentation

In this section we test the previous heuristics on artificial and real instances. The real
instances are provided by a shipping company operating in the port of Genoa (Italy).

Tests are performed on both artificial and real instances. Five classes of artificial instances
have been generated:

10 customers;
20 customers;
30 customers;
40 customers;
50 customers.

In each class the coordinates of nodes are fixed. The instances of a class differ in the
number of importers and exporters. The heuristics are implemented in the programming
language C++. Tests are performed by Cplex 12.2 running on a four-CPU server 2.67 GHz

M. Lai, M. Di Francesco, and P. Zuddas 91

64 GB RAM. Since a major requirement of this problem is to determine solutions in a few
minutes, Cplex is set to stop after 10 minutes. Computational results are indicated in Table
2, in which the following notation is used:
|I|: Number of importers;
|E|: Number of exporters;
H0, . . . , H7: Objective function returned by Heuristic 0,. . . , Heuristic 7;
t(s): The total execution time (in seconds) to solve the related instance, i.e. it represents
how long it takes to run the first phase plus the time spent to run all heuristics H0, . . . ,
H7;
% Gap from CPLEX : gap between the best heuristic and the best upper bound provided
by CPLEX within 10 minutes;
Optimality gap: Optimality gap between lower and upper bounds in Cplex after 10
minutes.

The string n.s. means that Cplex cannot provide a feasible solution within 10 minutes.
Table 2 shows that only one instance with 10 customers can be optimally solved. Cplex

does not provide feasible solutions within 10 minutes for all instances with 40 and 50
customers, whereas all heuristics can solve these instances within 10 minutes. Generally
speaking, the heuristic H7 is the most promising in terms of the objective function.

Real instances, which have about 40 customers, have no feasible solutions by Cplex within
10 minutes. In this case we compare the best heuristic to the carrier’s decisions in terms of
total travelled distances. Results on the real instances are shown in Table 1, in which the
following notation is used:

Instances The instance considered;
|I| Number of importers;
|E| Number of exporters;
|K| Number of trucks;
Carrier’s decisions The total travelled distance according to the carrier’s decisions (km);
Decisions The total travelled distance according to the best heuristic (km);
% Improvement: gap between the best heuristic and the carrier’s decisions;
Criterion The heuristic(s) providing the best solution;

Table 1 The solutions of real instances.

Instances |I| |E| |K| Carrier’s Best Heuristic
decisions Decisions % Improvement Criterion

Instance 1 7 34 41 16503 16196 -1.90 7
Instance 2 10 28 31 13369 11701 -14.26 7
Instance 3 3 31 39 13702 13602 -0.74 1, 3, 7
Instance 4 6 34 36 13263 12328 -7.58 7
Instance 5 3 28 41 13180 12869 -2.42 1, 3, 7

Table 1 shows that in each instance the best heuristic always improves the carrier’s
decisions. The improvement seems to be particularly relevant when |I| increases and becomes
closer to |E|, due to the larger search space of feasible routes.

SCOR’12

92 Heuristics for the routing of trucks with double container loads

6 Conclusion

This paper has investigated a vehicle routing problem with some original characteristics, such
as the opportunity to carry two containers per truck and the impossibility to separate trucks
and containers during customer service. We have formulated an integer linear programming
model for this problem. An exact algorithm was used to solve several artificial instances,
but it was able to solve only instances with few customers. Several heuristics are proposed
and tested on both artificial and real instances. According to our tests, the most promising
heuristic in terms of objective function is H7, because high-quality routes are built from the
beginning by the maximum saving.

The comparison with the carrier’s decisions shows that the heuristics represent a promising
instrument to improve its current decision-making process, because they yield significant
savings in distances travelled by trucks.

Research is in progress to face problems with heterogeneous fleets of trucks, time windows
and larger transportation capacities. New heuristics will be developed accounting for the
specific characteristics of these problems.

Acknowledgements The authors want to thank professor Claudia Archetti, who made
available her Tabu Search code for the Split Vehicle Routing Problem. The authors are also
grateful to Antonio Musso, managing director of Grendi Trasporti Marittimi, who introduced
to them the application that motivated this research.

References
1 P. Toth, D. Vigo. The Vehicle Routing Problem. SIAM Monographs on Discrete Mathem-

atics and Applications, Philadelphia, USA, 2002.
2 S. Anily. The Vehicle Routing Problem with Delivery and Back-haul Options. Naval Re-

search Logistic Quarterly, 43, 415-434, 1996.
3 A. Mingozzi, S. Giorgi and R. Baldacci. An Exact Method for the Vehicle Routing Problem

with Backhauls. Transportation Science, 33, 315-329, 1999.
4 P. Toth, D. Vigo. An Exact Algorithm for the Vehicle Routing Problem with Backhauls.

Transportation Science, 31, 372-385, 1997.
5 P. Toth, D. Vigo. A Heuristic Algorithm for the Symmetric and Asymmetric Vehicle Rout-

ing Problem with Backhauls. European Journal of Operational Research, 113, 528-543,
1999.

6 R. Zhang, W.Y. Yun, I.K. Moon. Modeling and optimization of a container drayage problem
with resource constraints. International Journal of Production Economics, 133, 351-359,
2011.

7 A. Imai, E. Nishimura, J. Current. A Lagrangian relaxation-based heuristic for the vehicle
routing with full container load. European Journal of Operational Research, 176, 87-105,
2007.

8 A. Caris, G.K. Janssens. A Local search heuristic for the pre- and end-haulage of intermodal
container terminals. Computers and Operations Research, 36, 2763-2772, 2009.

9 R. Namboothiri and A.L. Erera, Planning local container drayage operations given a port
access appointment system. Transportation Research Part E: Logistics and Transportation
Review, 44, 185-202, 2008.

10 C. Archetti, M. G. Speranza, A. Hertz. A Tabu Search Algorithm for the Split Delivery
Vehicle Routing Problem. Transportation science, 40, 1, 64-73, 2006.

11 C. H. Papadimitriou. Computational Complexity. Addison Wesley Longman, 1993.

M. Lai, M. Di Francesco, and P. Zuddas 93

Ta
bl
e
2
T
he

so
lu
tio

ns
of

ar
tifi

ci
al

in
st
an

ce
s.

H
E
U
R
IS
T
IC

S
C
P
LE

X

|I
|

|E
|

H
0

H
1

H
2

H
3

H
4

H
5

H
6

H
7

t(
s)

%
G
ap

fr
om

C
P
LE

X

%
O
pt
im

al
ity

G
ap

10
C
LI
E
N
T
S

2
8

24
17

0.
26

20
87

2.
07

21
39

2.
98

20
67

2.
07

21
39

2.
98

22
98

5.
55

22
98

5.
55

20
67

2.
07

6
0.
00

4.
06

5
5

23
67

4.
27

21
54

4.
40

20
91

6.
21

22
41

1.
33

20
06
6.
19

20
72

9.
28

21
13

1.
93

19
96

0.
83

0
0.
00

0.
00

8
2

24
06

7.
78

23
52

8.
75

21
10

9.
77

23
17

5.
59

21
10

9.
77

21
28

9.
41

22
86

3.
04

21
10

9.
77

0
1.
95

4.
04

20
C
LI
E
N
T
S

2
18

46
43

6.
64

41
56

6.
04

43
63

9.
35

40
76

6.
04

43
63

9.
35

43
31

9.
77

43
31

5.
09

40
76

6.
04

0
-2
.9
3

7.
51

5
15

46
20

4.
46

36
87

3.
01

42
74

3.
03

36
23

3.
01

41
84

5.
95

40
63

6.
38

40
37

8.
63

36
23

3.
01

0
-4
.4
8

7.
91

10
10

46
32

6.
75

34
75

1.
04

36
25

6.
89

35
27

7.
56

36
60
8.
49

35
97

6.
40

38
12

7.
17

33
09

2.
29

0
4.
20

4.
40

15
5

46
20

4.
46

40
02

1.
52

37
33

6.
19

40
22

2.
93

38
19
6.
39

40
48

0.
64

42
46

3.
88

37
26

1.
67

0
-1
.0
8

6.
29

18
2

46
20

4.
46

44
01

9.
68

43
05

0.
79

44
87

7.
00

43
05
0.
79

44
45

9.
09

44
75

3.
25

42
97

5.
11

42
-2
.4
1

7.
02

30
C
LI
E
N
T
S

2
28

69
12

1.
47

63
70

8.
18

66
75

0.
74

62
72

8.
18

66
73

0.
74

66
87

1.
79

66
68

2.
33

62
72

8.
18

3
-6
.3
8

9.
52

5
25

69
90

6.
97

60
01

9.
63

66
36

5.
54

59
42

3.
33

65
46
8.
45

64
80

9.
86

66
86

3.
83

59
35

9.
63

2
-1
.7
6

6.
66

10
20

70
70

4.
03

54
77

4.
37

60
57

4.
18

54
74

0.
43

59
58
7.
76

58
58

1.
67

64
04

7.
55

54
12

9.
24

1
-5
.6
3

14
.2
7

15
15

70
90

5.
38

52
09

2.
61

50
93

4.
97

52
68

7.
38

53
34
0.
51

51
17

2.
63

60
81

6.
68

49
21

8.
46

1
-4
.4
4

10
.3
7

20
10

70
90

5.
38

59
17

0.
97

55
00

4.
74

60
57

6.
35

55
57
4.
39

58
99

8.
61

63
80

8.
75

54
75

7.
12

1
n.
s

n.
s.

25
5

69
48

1.
27

66
69

5.
13

61
07

5.
33

66
55

4.
36

61
07
5.
33

64
53

8.
63

65
97

7.
58

61
07

4.
67

2
-1
3.
11

15
.5
1

28
2

68
98

2.
30

69
90

6.
35

67
21

7.
27

68
56

3.
65

67
21

7.
27

68
36

1.
82

68
36

1.
82

67
21

7.
27

3
-5
.1
7

9.
93

40
C
LI
E
N
T
S

2
38

10
13

02
.1
1

95
64

5.
86

99
69

5.
34

93
98

5.
86

10
00

62
.5
1

96
29

1.
21

96
95

2.
05

93
98

5.
86

17
n.
s

n.
s.

5
35

10
18

52
.5
5

88
76

4.
09

91
65

4.
05

88
24

4.
09

92
05

3.
54

95
49

8.
95

99
40

1.
32

88
22

4.
09

11
n.
s

n.
s.

10
30

10
15

82
.6
8

76
19

4.
52

82
99

9.
48

75
96

8.
82

85
44

2.
09

86
62

1.
65

90
62

6.
66

75
11

7.
98

49
n.
s

n.
s.

15
25

10
17

76
.1
0

70
92

0.
95

76
01

6.
82

70
34

7.
44

75
51

8.
30

74
98

0.
22

89
36

8.
12

68
48

4.
46

3
n.
s

n.
s.

20
20

10
18

95
.2
7

76
52

5.
84

71
51

4.
12

76
94

1.
13

71
70

9.
14

75
64

1.
02

89
04

4.
40

70
79

5.
53

2
n.
s

n.
s.

25
15

10
23

49
.9
2

83
73

3.
24

76
74

9.
41

83
26

7.
22

76
80

5.
40

87
50

5.
43

95
38

7.
34

76
26

1.
72

5
n.
s

n.
s.

30
10

10
12

86
.4
3

91
83

8.
75

85
77

2.
27

92
56

0.
11

85
88

8.
37

91
85

1.
87

95
24

3.
18

85
50

6.
14

6
n.
s

n.
s.

35
5

10
17

35
.7
5

99
05

7.
56

95
07

2.
84

97
82

8.
28

95
07

2.
84

98
09

5.
70

10
03

64
.9
4

95
07

2.
84

11
n.
s

n.
s.

38
2

10
07

22
.4
7

10
02

65
.0
5

97
73

6.
69

99
51

6.
60

97
73

6.
69

10
01

09
.3
2

10
01

09
.3
2

97
73

6.
69

11
n.
s

n.
s.

50
C
LI
E
N
T
S

2
48

13
20

95
.2
0

12
52

33
.9
7

13
06

17
.3
5

12
45

13
.9

7
13

07
61

.4
5

13
08

57
.7
3

13
09

59
.0
3

12
45

13
.9

7
20

n.
s

n.
s.

5
45

13
14

32
.4
6

12
06

17
.9
6

12
62

58
.0
8

12
01

97
.9

6
12

57
86

.4
1

12
54

47
.2
0

12
83

93
.5
0

12
01

97
.9

6
23

n.
s

n.
s.

10
40

13
20

98
.1
9

11
31

27
.9
6

11
60

88
.3
3

11
26

87
.9

6
11

63
48

.4
3

12
04

67
.7
3

12
41

13
.7
6

11
26

87
.9

6
15

n.
s

n.
s.

15
35

13
34

59
.7
2

10
23

04
.6
7

11
30

48
.4
6

10
07

70
.4

8
11

30
85

.0
1

11
13

24
.6
1

12
15

95
.9
4

10
08

37
.8
9

8
n.
s

n.
s.

20
30

13
26

73
.5
2

94
27

9.
48

98
96

6.
22

92
08

9.
72

10
36

20
.2
9

99
57

5.
14

11
34

07
.8
9

91
54

2.
11

5
n.
s

n.
s.

25
25

13
18

59
.5
3

84
80

7.
36

91
31

8.
81

83
25

4.
21

92
80

7.
30

86
02

8.
26

11
21

55
.5
1

82
37

3.
34

5
n.
s

n.
s.

30
20

13
19

07
.7
3

89
85

4.
06

86
23

9.
26

88
10

5.
14

86
86

5.
49

90
23

7.
42

11
19

15
.4
7

83
92

3.
10

6
n.
s

n.
s.

35
15

13
20

79
.7
0

10
34

80
.4
3

96
40

5.
91

10
40

61
.1
7

96
67

2.
63

10
62

94
.6
3

11
70

55
.9
4

95
77

1.
71

8
n.
s

n.
s.

40
10

13
14

50
.6
0

11
42

21
.9
0

10
60

93
.4
0

11
67

02
.3
4

10
69

20
.7
6

11
54

79
.3
8

12
45

21
.9
8

10
59

76
.9

2
10

n.
s

n.
s.

45
5

13
27

93
.7
0

12
31

51
.7
3

11
30

13
.9
8

12
24

72
.6
4

11
42

08
.5
7

12
36

25
.2
2

12
47

87
.3
3

11
27

04
.7

2
19

n.
s

n.
s.

48
2

13
28

92
.8
8

12
79

84
.2
8

12
24

62
.3

7
12

62
29

.3
9

12
24

62
.3

7
12

81
70

.9
3

13
02

64
.7
9

12
24

62
.3

7
35

n.
s

n.
s.

SCOR’12

	Introduction
	Problem description
	Modeling
	Solution methods
	Experimentation
	Conclusion

