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Abstract
Timing anomalies make worst-case execution time analysis much harder, because the analysis will
have to consider all local choices. It has been widely recognised that certain hardware features
are timing anomalous, while others are not. However, defining formally what a timing anomaly
is, has been difficult.

We examine previous definitions of timing anomalies, and identify examples where they do not
align with common observations. We then provide a definition for consistently slower hardware
traces that can be used to define timing anomalies and aligns with common observations.
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1 Introduction

Developing reliable real-time systems requires that guarantees on the run-time of tasks can
be given, that hold under all circumstances i.e. regardless of the input data and previous
execution history of the system. Typically the Worst-Case Execution Time (WCET) is
the most important guarantee as it can be used to ensure the system responds in a timely
manner.

However, modern processors are not optimized for worst cases, but optimize for improving
the average case performance instead. This often makes their worst-case behaviour much
harder to predict, and thus makes it harder to give absolute guarantees. One often hoped for
property is that local worst-case timing choices will lead to the global worst-case timing —
when this is not the case it is dubbed a timing anomaly. The classic example of a timing
anomaly [6] is shown in Figure 1, where a cache miss for instruction A (bottom) is locally
slower but turns out not to be the globally slowest (the top trace is slower). The example
will be treated in greater detail later.

If an execution platform can be proven to be free of timing anomalies, very efficient
techniques exist for analysing the worst-case timing behaviour [11]. On the contrary, if the
execution platform exhibits timing anomalies there is little hope for using the same efficient
abstraction techniques [6].
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Figure 1 The canonical example of a timing anomaly from [6], where a cache miss (locally slower)
leads to a scheduling that is globally faster. LSU, IU and MCIU are the three functional units that
can execute out-of-order, but preference is given to older instructions.

Because of this, identifying timing anomalies has been an area of interest for some time,
and some observations have been broadly recognised as being true:

The LRU cache replacement policy is not timing anomalous.
Other cache replacement policies such as FIFO and MRU exhibit timing anomalies [2, 4].
In-order pipelines (without caches) are not timing anomalous.
Resource allocation decisions (such as those presented by out-of-order execution or cache
replacement) are a necessary condition for timing anomalies [10].

Using efficient abstraction techniques to compute the WCET is at the core of WCET analysis
tools. However, the most powerful abstractions are sound only for timing anomaly free
hardware. This explains why there have been some attempts to formally define timing
anomalies [6, 9], but the various definitions have not been related to each other thus far.

In this work we will argue that the previous attempts are either too coarse or too precise
to be used as universal definitions of timing anomalies. Each of the previous attempts
definitely have their merits for application in connection with different analysis techniques
(abstract interpretation, etc.), but a definition of timing anomalies should be as general as
possible, while still retaining the property that the existence of timing anomalies forces the
WCET analysis to consider more than one local choice.

Our Contribution

Our work is guided by the need for a definition of timing anomalies on the concrete model of
the processor, instead of abstractions thereof. Consequently, in the following we propose a
definition of timing anomalies that can be used in two different directions:
1. on hardware systems that are proven to be free of timing anomalies, the efficient abstraction

techniques used in most WCET analysis tools are sound;
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2. the definition we propose is based on the concrete reference hardware and only relates
comparable hardware traces in order to avoid spurious timing anomalous diagnostics (see
Section 4.2) resulting from abstraction of the hardware and/or of the hardware traces.

Without a definition of timing anomalies on the concrete reference hardware model, it is
impossible to prove that abstraction is sound. Therefore we define timing anomalies as a
property over different traces of the concrete hardware model.

But what traces should be comparable? We will argue that only traces resulting in the
same instruction stream, i.e. the same program execution, should be comparable, in particular
traces produced by different input data should not be comparable. It seems natural that
different input data can result in different control flows, and therefore different instruction
streams, where small changes in the input can result in much longer instruction streams, and
therefore much longer execution times.

Another consideration is what elements of the hardware traces should be compared.
Previous definitions have compared the timing of the first instruction with the timing of the
last instruction in the stream [6], or made comparisons at points where the two traces have
executed the same number of instructions [3]. We will argue that comparisons should be
made on the completion times of each instruction.

Outline of the Paper
This work is divided into five sections: In Section 2 we define hardware systems and execution
of programs on them. In Section 3 we define timing anomalies, and then examine related
work in Section 4. We then compare the different definitions in Section 5, before concluding
in Section 6.

2 Execution of Programs on Hardware

Before turning to timing anomalies, we first need to formalise our notion of hardware systems
and how programs are executed on them. In order for our work to be applicable to a wide
variety of systems, we aim to make as few assumptions about the hardware as possible.
However, it usually consists of a processor and main memory (including caches). As usual,
the hardware can process (machine code) instructions, taken from the set Instructions, with
each instruction located in memory at some address. We let HardwareStates be the (finite)
set of possible hardware states and assume the hardware states contain the state of the
memory.

The semantics of a hardware system is given by a transition system that specifies how
the state of the hardware evolves in order to execute a program on given input data. We
only model transitions between hardware states that take an observable amount of time and
produce an observable result1, e.g., finishing execution of a (set of) instruction(s).

The observable results, in the set Observations, are not strictly necessary but are admitted
as a convenience for later developments. In our work, the typical observations of interest in
a given hardware system are the instructions that finish (in each cycle or time unit). We can
now give the formal definition of a hardware system.

I Definition 1 (Hardware System). A hardware system H is formalised as a stutter-free and
deterministic labelled transition system H = (HardwareStates,Time× Observations,→). The

1 Bus latency, speculative execution, pipeline flushes, etc., are not visible and may generate extra cycles
before an externally visible hardware state occurs.

WCET’12
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transition relation →⊆ HardwareStates× (Time× Observations)× HardwareStates describes
the time required to reach the next state and the externally visible observations produced by
a transition.

As usual, a transition (s, (t, o), s′) ∈→ is denoted s (t,o)−−−→ s′. The properties “stutter-free” and
“deterministic” can then be formulated as follows: if s (t,o)−−−−→ s′ then s 6= s′, and if s (t,o)−−−−→ s′

and s (t′,o′)−−−−−→ s′′ then t = t′, o = o′ and s′ = s′′. A run in the hardware system H is defined
to be a sequence σ = s0

(t1,o1)−−−−→ s1
(t2,o2)−−−−→ · · · (tn,on)−−−−→ sn such that for all 1 ≤ i ≤ n − 1 it

holds that si
(ti+1,oi+1)−−−−−−−→ si+1 (in the H transition system) and the length of the run is defined

as length(σ) = n. The trace of the run σ is trace(σ) = (t1, o1) : (t2, o2) : · · · : (tn, on); the time
trace of σ is time(σ) = t1 : · · · : tn, and the observation trace of σ is obs(σ) = o1 : o2 : · · · : on.

I Example 2. Observing the two traces shown in Figure 1 using “just finished instructions”
as observations, we obtain the following run for the first (top) part of the example:

h0
(2,{A})−−−−−→ h1

(1,{B})−−−−−→ h2
(1,{C})−−−−−→ h3

(4,{D})−−−−−→ h4
(4,{E})−−−−−→ h5

and the run below for the second (lower) example in Figure 1:

h0
(3,{C})−−−−−→ h1

(4,{D})−−−−−→ h2
(3,{A})−−−−−→ h3

(1,{B,E})−−−−−−→ h4

Note that the observation on the final transition above shows that the two instructions
labelled B and E finish simultaneously.

2.1 Execution of a Program on Hardware
We assume that all programs terminate. Given a program P and input data d in Data(P )
(the set of admissible input data for P ), the language semantics uniquely determine the
program trace, i.e. the sequence of instructions to be performed to compute the result of
program P on input d. In the following we need to be able to unambiguously identify specific
occurrences of instructions in a program trace (the same instruction can be performed several
times in the trace, for instance when loops are executed). Thus we formalise the program
trace for (P, d) to be a mapping that assigns a unique index to each instruction in the
program trace: ProgramTrace(P, d) : [1..k]→ Instructions where k is the length of the trace
and ProgramTrace(P, d)(j) gives the instruction executed at step j for each index 1 ≤ j ≤ k.

I Example 3. The program trace for the example in Figure 1 is: ProgramTrace(P, d) = [1 7→
A, 2 7→ B, 3 7→ C, 4 7→ D, 5 7→ E].

Given a hardware system H, a program P and input data d ∈ Data(P ), we let I(P, d) ⊆
HardwareStates be the hardware states that contain program P and input data d in memory,
and where the first instruction of P is about to start execution. For h0 ∈ I(P, d), executing
P with input d on H yields a unique sequence2 of transitions in the hardware: h0

(t1,o1)−−−−→
h1 · · ·hn−1

(tn,on)−−−−→ hn. As the hardware is deterministic, each observation oi can be taken to
be a set of indices in {1, . . . , k}: the indices uniquely identify the occurrences of instructions
of ProgramTrace(P, d) being completed at each step. We can now formalise what it means to
execute a program on a hardware system:

2 Which we assume to be correct with regard to the instruction semantics.
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I Definition 4 ((P, d, h0)-run). Let H be a hardware system, P a program, d input data,
and h0 ∈ HardwareStates. Then the run (in H) h0

(t1,o1)−−−−→ h1 · · ·hn−1
(tn,on)−−−−→ hn is called

a (P, d, h0)-run (in H) whenever h0 ∈ I(P, d) and oi is the set of (indices of) instructions
completed during the transition hi−1

(ti,oi)−−−−→ hi for 1 ≤ i ≤ n.

I Definition 5 (Completion Time). Let ProgramTrace(P, d) : [1..k] → Instructions be the
program trace of (P, d) and let σ be the corresponding (P, d, h)-run starting in h ∈ I(P, d)
with trace(σ) = (t1, o1) : · · · : (tn, on). By Ctime(ProgramTrace(P, d)[j], h) we denote the
completion time of instruction 1 ≤ j ≤ k finishing after transition m (i.e., j ∈ om) and define
it as follows Ctime(ProgramTrace(P, d)[j], h) =

∑m
i=1 ti.

We let Ctime(ProgramTrace(P, d), h) = max1≤j≤k Ctime(ProgramTrace(P, d)[j], h) denote
the maximal completion time for all instructions in the program and thus for completing the
entire program.

I Example 6. The first trace in the example in Figure 1 has the following completion times
for the 5 instructions: [2, 3, 4, 8, 12] and for the second trace: [10, 11, 3, 7, 11].

2.2 Exemplary Hardware Models
To be able to exemplify different phenomena we will use three different hardware models:
M1 is a single-stage pipeline with a data-cache. The instructions of interest are the memory

accesses, and the hardware model will be used to demonstrate timing anomalies with
different cache replacement policies such as LRU and FIFO. For this reason we will simply
denote instructions by the memory address they access.

M2 is the simplified PowerPC architecture described in [6]. It is an out-of-order processor
with three functional units: a Load/Store unit (LSU) communicating with a data cache,
a Multi-Cycle Integer Unit (MCIU) and an Integer Unit (IU). For a detailed description
see [6]. It is used for the classic example in Figure 1.

M3 is a single-stage pipeline with no caches, but with a multiplication instruction MUL that
takes 1 cycle if one of the operands is 0, and 2 cycles otherwise. This is a simplified
version of the processor model in [3]. We extend M3 with conditional execution of all
instructions as on the ARM architecture [1].

3 Formalising Timing Anomalies

Slightly simplified, our notion of timing anomaly is based on the idea that timing anomalies
only occur when a program is executed on a hardware system where no initial state gives rise
to worse (slower) execution time than all other initial hardware states (modulo “irrelevant”
parts of the hardware state). This approach requires us to formalise what it means for one
program execution to be slower than, or rather: consistently as slow as, another execution
(of the same program on the same data):

I Definition 7 (Consistently as slow). Let P be a program with input data d and let
ProgramTrace(P, d) : [1..k]→ Instructions be the program trace of (P, d). Let h, h′ ∈ I(P, d)
and σ (respectively σ′) be a (P, d, h)-run (respectively (P, d, h′)-run). Then h′ is said to be
consistently as slow as h, denoted h vtime h

′, if and only if

∀1 ≤ j ≤ k : Ctime(ProgramTrace(P, d)[j], h) ≤ Ctime(ProgramTrace(P, d)[j], h′)

WCET’12
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Intuitively the above definition compares the execution time of all prefixes of a program
trace and requires one to be consistently as slow as the other.

I Example 8. Consider the example in Figure 1, where h is the hardware state resulting in
the top run, and h′ the state resulting in the bottom run.

Ctime(ProgramTrace(P, d)[1], h) = 2 ≤ Ctime(ProgramTrace(P, d)[1], h′) = 10

meaning instruction A was slower in the bottom trace, but

Ctime(ProgramTrace(P, d)[5], h) = 12 6≤ Ctime(ProgramTrace(P, d)[5], h′) = 11

meaning instruction E was not slower in the top trace, thus h 6vtime h
′. However instruction

A in the bottom trace is still slower than in the top trace, so h′ 6vtime h.

The “consistently as slow” ordering is a pre-order (see below). However, it is not a partial
order since two hardware states, which differ only in parts that are irrelevant to a given
program, will still give rise to identical instruction completion times:

I Lemma 9. For all programs P and input data d the relation vtime is a pre-order on
I(P, d).

We can now propose a formal definition for timing anomalies:

I Definition 10 (Timing Anomaly Free). A hardware system, H, is said to be free of timing
anomalies with respect to program P and input d, if and only if there exists a maximal
element, W ∈ I(P, d): ∀h ∈ I(P, d) : h vtime W.

Note that the maximal element is not necessarily unique: consider the case of LRU caches
with no useful elements in them, hence all references resulting in cache misses.

The following lemma characterises (the absence of) timing anomalies in terms of upper
bounds for arbitrary pairs of states. As shown in Section 5, this characterisation can be
convenient when proving the presence of timing anomalies.

I Lemma 11. A hardware system H is free of timing anomalies with respect to program P

and input data d if and only if ∀h, h′ ∈ I(P, d) : ∃h′′ ∈ I(P, d) : h vtime h
′′ ∧ h′ vtime h

′′.

Proof. The “only if” direction is trivial and the “if” direction is proved by induction in the
size of I(P, d). J

Note that this does not require all hardware states to be ordered under vtime, but only
requires that for any pair of states a third state exists that gives rise to a consistently as
slow run as both; i.e. it should be an upper bound for the pair of states.

Consider the example in Figure 2 where two runs of a LRU cache are not ordered either
way, but we would still like to characterise LRU as not timing anomalous; there exists a
consistently slower initial state than both, namely the empty cache.

Having defined timing anomaly free-ness for a given program and input data, it is
straightforward to generalise the definition to cover entire hardware systems:

I Definition 12 (Timing Anomaly Free Hardware System). A hardware system, H, is said to
be free of timing anomalies for program P if and only if it is timing anomaly free for each
d ∈ Data(P ). Hardware H if free of timing anomalies if and only if it is timing anomaly free
for all programs P (valid for H).
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Cache contents: {E,C,A}
1 2 3 4 5 6 7 8 9 10

LSU A B (evicts C) C

Cache contents: {B,C,E}
1 2 3 4 5 6 7 8 9 10

LSU A B C

Figure 2 Two runs of the program LD A; LD B; LD C on hardware model M1 with a LRU cache.
The cache contents are ordered sets of data elements, from newest to oldest.

Finally we relate our definition of “consistently as slow as” to the definition of the WCET
for a program P on hardware H.

I Definition 13 (Worst Case Execution Time (WCET)). The worst case execution time for a
program P (on H) is defined as follows:

WCETH(P ) = max
h∈I(P,d),d∈Data(P )

{Ctime(ProgramTrace(P, d), h)}

If H is free of timing anomalies for P , only a maximal element in I(P, d) need be considered.
Indeed, if h vtime h

′, then Ctime(ProgramTrace(P, d), h) ≤ Ctime(ProgramTrace(P, d), h′).
Definition 13 is then reduced to computing maxd∈Data(P ){Ctime(ProgramTrace(P, d), h)|
h maximal in I(P, d)}.

4 Related Work

4.1 Defining Timing Anomalies by Changes in Instruction Latency
Timing anomalies were first discovered by Lundqvist and Stenström in [6, 5]. Their definition
is re-used in [10], and we formulate it here in our framework.

Assume a sequence of instructions π = i1 : · · · : in, with corresponding latencies τπ(ij),
and total execution time C. Consider a situation where there exists a latency variation,
∆t, such that the same sequence of instructions, but with a modified latency for the first
instruction τ ′π(i1) = τπ(i1) + ∆t, results in a different sequence of instruction latencies
τπ(i1) + ∆t : τπ(i2) : · · · : τπ(in) and thus a possible different total execution time C ′, and
thus a timing difference of ∆C = C ′ − C.

I Definition 14 (Timing Anomalies by Changes in Instruction Latency [10]). A timing anomaly
is defined as a situation where according to the sign of ∆t one of the following cases become
true:
a) Increase of the latency: ∆t > 0 =⇒ (∆C > ∆t) ∨ (∆C < 0)
b) Decrease of the latency: ∆t < 0 =⇒ (∆C < ∆t) ∨ (∆C > 0)
This definition has some drawbacks:

As pointed out in [9] there is an underlying assumption that the latency change of the
first instruction does not influence the latencies of the subsequent instructions. This is
not always the case.

WCET’12
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1 2 3 4 5 6 7 8 9 10

A B C

(a)

1 2 3 4 5 6 7 8 9 10

A B

(b)

Figure 3 Example program run on M3. The program is A: MUL R0, R0, R1; B: BRZ R0, C, where
C is a linear, data-independent, subprogram summarised into one instruction. The instruction BRZ
is interpreted as “branch to C if R0 is zero”. The two traces are (a) where R0 = 0, and (b) where
R0 = 1.

In [6] the change in latency can be unrelated to a change in hardware state, resulting in
the definition deeming a hardware platform to suffer from timing anomalies, while the
actual platform does not.

In [10] the second point is alleviated as the change in latency is assumed to be associated
to two different initial hardware states, which are further assumed to be “almost identical”.
However without a formalisation of “almost identical” it could be argued that the two LRU
caches in Figure 2 are almost identical, and thus would be deemed timing anomalous.

4.2 Defining Timing Anomalies by Abstract Models
In [9] a formal definition of timing anomalies is given. It however states that “Non-determinism
– which is necessary for timing anomalies – is only introduced by abstraction”, and goes on to
define timing anomalies in terms of non-deterministic hardware models. We note that timing
anomalies as demonstrated originally in [6] do not involve non-determinism, but instead
involve concrete traces run on the same concrete (deterministic) hardware model.

We will argue that non-determinism is not necessary for timing anomalies to occur.
Indeed, there is a strong link between the presence of timing anomalies and the existence
of a sound deterministic over-approximating model of the timing of the hardware, but the
causality is not both ways. In some cases timing anomalies can even occur as artefacts of the
abstraction, even though they are not present in the concrete hardware.

As an example consider the two traces in Figure 3. Here different input data results in
very different instruction streams, sharing similarities with timing anomalous traces. In our
opinion this should not be characterised as a timing anomaly, as this would render practically
all programs accepting input on all platforms to be timing anomalous. The definition in [9]
requires that the two traces must have the same instruction streams, and thus Figure 3 is
not a timing anomaly by that definition.

We however note that the same instruction stream can still result in two very different
timing behaviours, when given different input data. As an example, the ARM architecture
allows the conditional execution of most instructions. We can thus derive an example where
the same instruction stream gives rise to timing anomalous behaviour on different input data,
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1 2 3 4 5 6 7 8 9 10

A C D

(a)

1 2 3 4 5 6 7 8 9 10

A C D

(b)

Figure 4 The example from Figure 3, but instead of branching it uses conditional execution.
Therefore the two instruction streams are the same, but the processor treats C as a no-op in (b).
The program is A: MUL R0, R0, R1; C: MULNZ R2, R2, R1; D: MULNZ R2, R2, R1 , where we let A set
the condition flags. Thus C and D only gets executed if R0 is not 0.

as seen in Figure 4.
According to the definition in [9] this would be timing anomalous, as there exists a

non-local worst-case path (the A instruction in (a)) resulting in a globally longer path, than
all local worst-case paths (b).

In [8] a slightly relaxed definition from [9] is given, which is used to compute upperbounds
on the the possible error in WCET estimation between two hardware states. However, with
regards to the examples we consider there is no difference.

In the same line [3] describes a method to identify timing anomalies in a processor
using bounded model checking. This is done by comparing the execution time of the
same instruction stream on two different processors: the real processor, and an (abstract)
“always-worst case” performing processor. If the “worst-case” processor can overtake the real
processor, the processor is deemed to have timing anomalies.

However [3] uses abstraction of input data and thus ends up comparing execution traces
which can only result from different input data: The trace given in [3] (a) cannot occur on
the real processor with the same input data as the trace in (b). For trace (a) to occur one
of the operands (R4 and R6 in this case) needs to be 0, that is R4 = 0 ∨R6 = 0. However
for trace (b) to occur none of the operands can be 0, thus R4 6= 0 ∧R6 6= 0. As these two
conditions are the negation of one another, the two traces cannot occur with the same input
data. Since the two traces cannot occur with the same input data, they will be incomparable,
per our Definition 7. Of course, hardware can be viewed abstractly. For timing analysis it is
very important that these abstractions are sound, i.e. overapproximating the timing.

IDefinition 15 (More Favorable Hardware). HardwareH with hardware states HardwareStates
is more favorable than hardware H′ with hardware states HardwareStates′, written H v H′,
if there exists a mapping α : HardwareStates→ HardwareStates′ ∀P,∀d ∈ Data(P ) : h vtime
α(h), where vtime is extended across different hardware systems.

Typically α is an abstraction function. Clearly, if H v H′, then for any program P ,
WCETH(P ) ≤ WCETH′(P ). H′ is thus a sound abstraction for computing the WCET
of any program. The technique presented in [3] is a very valuable tool in finding sound

WCET’12



10 What is a Timing Anomaly?

abstractions, however, the unsoundness of an abstraction cannot be translated into the real
hardware exhibiting timing anomalies.

5 Results

We will now compare the different definitions of timing anomalies, and how they hold for
and apply to different examples:

Our Definitions 10, 12 Latency change [6, 10] Abstraction [3, 9, 8]
Classic Ex. [6] (Fig. 1) Yes, Lemma 16 Yes Yes
LRU Cache No, Lemma 19 Inapplicable1) No
FIFO Cache Yes, Lemma 20 Inapplicable1) Yes4)

Branching (Fig. 3) No, Lemma 17 Inapplicable2) No4)

Conditional exec. (Fig. 4) No, Lemma 18 Yes Yes4)

MUL 0-speedup [3, Fig. 3] No Yes3) Yes4)

1) Because the latency change can in general not be limited to, or contained within, the first
instruction.

2) Because the sequence of instructions are not the same.
3) If we allow the latency change to occur on the second instruction.
4) Depends on the abstraction.

I Lemma 16. The classic example in Figure 1 is timing anomalous by Definition 10.

Proof. We will show that none of the two initial hardware states is consistently worse than
the other, per Definition 7, and thus no upper bound can exist, per Definition 10. The only
two initial hardware states that are relevant to consider is the cache where the data item
referenced by A is in the cache, and a state where the data item referenced by A is not in the
cache. Since there are only two initial hardware states, one or both of them would have to
be consistently slower than the other. In Example 8 we already showed that none of the two
traces is consistently slower than the other. Therefore, Definition 10 cannot be fulfilled. J

I Lemma 17. The control-flow example in Figure 3 is not timing anomalous by Definition 10.

Proof. Since M3 has no cache, there is actually only one initial hardware state, h0, where
the first instruction is able to enter the processor in the first cycle: the empty pipeline. For
every program P and data d there is therefore only one element in I(P, d). By Definition 10
and the reflexivity of vtime the hardware system is timing anomaly free. J

I Lemma 18. The “branching by conditional execution” example in Figure 4 is not timing
anomalous by Definition 10.

Proof. The argumentation is the same as for Lemma 17. J

I Lemma 19. LRU caches are not timing anomalous by our Definition 12.

Proof. A stronger statement can actually be proven: that the empty cache is always the worst
initial hardware state for LRU caches [7]. By Definition 10 this satisfies Definition 12. J

I Lemma 20. FIFO caches are timing anomalous by our Definition 12.

Proof. Consider the two traces in Figure 5, none of which are consistently slower than the
other. By Lemma 11 an upper bound should exist. An upper bound would have to have
misses for all accesses. By enumeration of all distinct initial caches, none of them have misses
for all accesses, and thus no upper bound for the two traces exist. J
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d e b a
a a d x b a
c c a x c b x
a c a a c x
b b c x b a x
c b c c b x
a a b x a c x
b a b b a x
c c a x c b x

Figure 5 Example of a timing anomaly for the FIFO cache on M1, adopted from [2]. The first
line is the initial state of the cache for the two traces. The first column is the access sequence, and
the x’es indicate cache misses.

6 Conclusion and Future Work

In this work we have looked at previous definitions of timing anomalies, and identified flaws
in them. Specifically in their applicability to various types of known timing anomalies, but
also in what examples they deem to be timing anomalies. We have proposed a definition of
timing anomalies in terms of the existence of a consistently worst initial hardware state, in
the concrete model of the hardware and shown that it coincides with common knowledge
about timing anomalies.

The next step is to provide an operational definition of timing anomalies that enables
us to effectively check whether some hardware is timing anomalous, and if it is, identify a
set of initial hardware states, such that they are consistently worse than all other hardware
states. This would enable a WCET analysis by simulating the execution of these initial
states. The framework we have proposed can also be used to take advantage of the efficient
abstraction techniques to over-approximate WCET on timing anomalous platforms: given
H which is timing anomalous, define H′ that soundly approximates H and show that H′ is
timing anomaly free.
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