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Abstract
Estimating the worst-case execution time (WCET) of real-time programs is pivotal in their veri-
fication. WCET estimation either yields a numeric value that represents the maximum execution
time of the program when executed on a specific hardware platform; or yields a parametric ex-
pression in the form of some function of the input which when instantiated with a particular
input value, gives a WCET estimation of the program when triggered by this input specifically
(on a specific hardware platform). Parametric WCET analysis provides extra accuracy as the
WCET estimation can be tuned to particular input values at runtime; and is usually of interest
to dynamic-scheduling schemes.

In this paper we use genetic programming as an alternative method to approach the prob-
lem of parametric WCET analysis. Parametric expressions are captured automatically by the
genetic program based on end-to-end executions of the program under analysis. The technique
is complementary to static parametric WCET analysis and more amenable to industrial prac-
tice. Experimental evaluation shows that the presented technique computes accurate parametric
expression in an almost negligible time.
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1 Introduction

WCET analysis can result in two types of WCET estimations: numeric values or parametric
expressions. WCET estimations in the form of numeric values are the predominant in the
literature; in this case the WCET analysis returns a single constant value that indicates the
maximum number of clock cycles (or other time-measurement units) that the program can
potentially spend during its lifetime execution on a specific hardware platform. On the other
hand, parametric WCET estimations come in the form of mathematical functions of the
inputs of the program.

Parametric WCET estimations are more useful than numeric-form estimations when
the scheduling algorithm — that uses the results of the WCET analysis — can utilize the
extra context-sensitivity provided by the parametric expression. In this case, the scheduling
algorithm can compute a constant WCET value wp(vi) for some program p with parametric
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expression wp(v) each time p consumes a new input vector v = vi, by instantiating the input
vi inside the parametric expression wp(v).

Parametric WCET analysis has been the subject of several research works whose most
common factor with respect to our work is that they are based on static analysis of program
code to determine the parametric expressions. In this paper, we present a novel approach for
the problem of parametric WCET estimation based on genetic programming, and is more
suitable for end-to-end WCET analysis used in the industry.

This paper is structured as follows. Section 2 introduces genetic programming. Section 3
explains the problem of parametric WCET analysis from the paper’s point of view. Section 4
explains the use of genetic programming to approach the problem of parametric WCET
analysis. Section 5 describes the experimental evaluation of our approach. Section 6 describes
related work in parametric WCET analysis. Section 7 contains concluding remarks and
directions for future work.

2 Genetic Programming

Genetic programming (GP) [8] is a bio-inspired computer algorithm that mimics natural
evolution of living organisms. It is similar to genetic algorithms with the exception that
individuals are computer programs as opposed to vectors of values.

The objective of GP is to evolve a computer program that solves a given problem. In order
to do so, a population of computer programs called individuals — that are randomly generated
initially — is evolved across a number of generations. The evolution of the population involves
the exchange of genetic material between the individuals through cross-over operations, and
the alteration of the genetic material of single individuals through mutation operations. A
selection strategy is applied to the individuals of a population in a given generation to decide
which ones are allowed to proceed to the next generation. Such selection is based on the
fitness of the individuals which is a problem-dependent value that specifies the goodness of
an individual in solving the problem at hand. The evolution continues until a good-enough
individual that solves the problem adequately is found, or until a maximum number of
generations is reached.

Each individual in the population is a program represented by its abstract-syntax tree
(AST). All non-leaf nodes of the AST represent operators, and leaf nodes represent problem
variables or constant values. Crossing-over two programs means taking one or more subtrees
from the first program and inserting them into the second program, and taking one or more
subtrees from the second program and inserting them into the first program (cross-overs can
be single-point or multiple-point). Mutating means changing the content of one or more
nodes in the AST.

GP can be used to solve a variety of optimization problems amongst which is symbolic
regression that we shall describe here because it is the essence of our approach. To solve a
symbolic-regression problem (also known as function-discovery problem), the genetic program
(GP1) takes as input a set of m observations of values of some variable x, a set of observations
of values of some variable y, and tries to identify the function f0 such that y = f0(x) is
true for all pairs (x, y) in the m observations — and also true outside the m observations.
The function f0 to be determined is a computer program that will be evolved by the GP.
The initial population of the GP contains a number of n randomly-generated functions
f1, f2, · · · , fn — each represented as an AST e.g. Figure 1 shows the AST representation of

1 We use GP to refer to both “genetic programming” and “genetic program”.
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Figure 1 An example abstract-syntax tree corresponding to some function fi(x) = x3 + 2x + 5.

some function fi(x) = x3 + 2x + 5 in the GP. The functions will be crossed over and mutated
over generations to produce new fitter functions. The fitness of a function fi is calculated as
the sum of differences (|x− y|) for all pairs (x, y) in the m observations. At the end, the GP
either discovers f0 during evolution or another function of equal or inferior fitness. Notice
that the GP can derive some function f ′0 that satisfies y = f ′0(x) for all observed data pairs
(x, y) but does not satisfy y = f ′0(x) in the general case i.e. for some unobserved pairs (x, y)
the relation (y = f0(x) ∧ y 6= f ′0(x)) holds. This is a classic case of over-fitting and is usually
(partially) tackled by dividing the m observations into a training part used during evolution,
and a testing part used after evolution to give an indication of how well the derived function
f ′0 generalizes to new unseen data. Should the derived function not generalise well enough,
evolution is restarted with the derived function f ′0 injected in the initial population of the
new GP run.

3 Parametric WCET Analysis

The objective of parametric WCET analysis is to derive a function that expresses the WCET
of some program in terms of its input. These parametric expressions contain constant
factors and terms, and variable factors and terms. The constant factors and/or terms in the
parametric WCET expression refer to known entities in the analysis such as program-segment
execution times and program-segment execution counts. These are derived by (i) the WCET
analysis through its flow analysis (execution counts) or processor-behaviour analysis/runtime
measurements (execution times), (ii) input by the user (usually as execution counts in
the form of loop and recursion bounds, and sometimes as execution times of black-box
components or libraries not available for the analysis), or (iii) a mixture of analysis-derived
and user-input execution times and execution counts. We use the term program segment to
refer to program entities of interest to parametric WCET analysis e.g. a loop body whose
number of iterations is controlled by the input and which appears as a term ajxj in the
parametric expression — where aj is the execution time of the loop body and xj is its
execution count.

The variable factors and terms in the parametric expression can refer to the whole input,
parts of the input, and/or some of the input’s properties of interest. For example, in a
program that returns the factorial of a nonnegative integer, the whole input i.e. the integer
whose factorial is of interest becomes a variable in the parametric expression; and in a
program that sorts integers, the size of the input (which is a property of the input) becomes
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106 Evolutionary Techniques for Parametric WCET Analysis

a variable in the parametric expression. Here we use the word input to mean the type of the
input as opposed to a single instantiation of it e.g. an input is an array of n integers, is a
real number, etc.

Input can influence the execution time of the program in two different ways: by altering
the execution times of the program’s segments, and/or altering their execution counts. For
example, if part of the input is passed as one of the operands of some variable-latency
instruction such as multiplication, the WCET estimation will change according to the value
passed to the variable-latency instruction. In this case, input affects the execution time of
the program segment that contains the variable-latency instruction, and consequently affects
the overall program’s execution time. If part of the input contributes directly or indirectly to
the value of some variable that controls the number of iterations of some loop, the execution
time of the program will also change according to the value of this input. In this case, the
input affects the number of times a set of program segments executes, and consequently
affects the overall program’s execution time. Figure 2 shows example scenarios of how input
affects the execution time of the program. In line 32, input variable c affects the flow of the
program and consequently affects the execution time. Including c in the parametric WCET
expression of foo() will be in the form of a conditional statement. Formula (1) shows (a
very simplified) parametric WCET expression of function foo() of Figure 2. The function
fmul(a, b) gives the execution time of the multiplication operation in terms of its operands a

and b. Formula (1) is the ultimate form of WCET parameterization as it accounts for the
diverse ways by which the input affects the execution time.

wfoo =
{

n + m + fmul(x, x) + 1 if c = TRUE

n + fmul(x, x) + 2 if c = FALSE
(1)

In the parametric-WCET literature, the derived parametric expressions are in the form of
polynomial functions where the variables refer to input parts or properties that influence loop
iteration numbers. The derived parametric expressions are usually expressed conditionally
over subdomains of the input space. In the literature, if the derived parametric WCET of
some program p has the form wp = akxk + ak−1xk−1 + · · ·+ a0, it means that the program
have parts that have execution times ai, i ∈ [0..k] and are repeated xi, i ∈ [0..k] times where
x is a part or a property of the input to program p. In these types of expressions, x is a
variable that will control the iteration number of one or more loops in the program under
analysis. In this paper, we will focus on deriving parametric WCET expressions where the
final expression is polynomial. Deriving more complex parametric expressions that account
for variable-latency instructions or those that are expressed conditionally over input space is
left for future work.

4 Parametric WCET Analysis using Genetic Programming

Parametric WCET analysis requires knowledge about the input parts or properties that
affect the execution time of the program — and which will appear in the final parametric
expression. We assume in this paper that knowledge about the exact parts or properties
of the input that influence the WCET is available to us through some third-party analysis
or user-input; and we exclusively consider those that affect loop bounds and/or recursion
depths as we have discussed. We will refer to the input parts and properties that appear in
the final parametric expression as parameters.

The problem of deriving parametric WCET expressions reduces to a problem of symbolic
regression. Let p be the program under analysis. Program p is executed for a number of m
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1 // The input to this program is composed of the following fields:
2 // 1. two integer arrays,
3 // 2. an integer variable,
4 // 3. and a boolean variable.
5 private static int foo (Integer[] A, Integer[] B, int x, boolean c)
6 {
7 // The size of the array (n/m) is a property of the input.
8 // Assume that execution time of the following segment is l.
9 int n = A.length;

10 int m = B.length;
11
12 // This is a part of the program whose execution time depends on
13 // some property of the input. This is a case where the input
14 // affects execution counts.
15 for(int i=0; i<n; i++)
16 {
17 // Do something.
18 // Assume that execution time of this body is l.
19 }
20
21 // This is a part of the program whose execution time depends on
22 // some part of the input. This is a case where the input affects
23 // execution times directly assuming multiplication is variable-
24 // latency instruction in the target hardware.
25 // Assume that execution time of multiplication of a and b is
26 // f_{mul}(a,b).
27 int y = x*x;
28
29 // This is a part of the program whose execution time depends on
30 // some part of the input. This is a case where the input affects
31 // execution counts in a conditional manner.
32 if(c)
33 {
34 for(int i=0; i<m; i++)
35 {
36 // Do something.
37 // Assume that execution time of this body is l.
38 }
39 }
40 else
41 {
42 // Do something.
43 // Assume that execution time of this part is l.
44 }
45 return 0;
46 }

Figure 2 Some function foo() that illustrates different scenarios of how input influences the
execution time of a program.

inputs: in each run i ∈ [1..m] the values x1,i, x2,i, · · · , xn,i of all n parameters x1, x2, · · · , xn

are recorded together with p’s end-to-end execution time ti. After all runs have completed, we
obtain a m-by-(n + 1) matrix of real numbers. The objective then is to find the function wp

that satisfies ti = wp(Xi), i ∈ [1..m] where X is a vector defined as X =< x1, x2, · · · , xn >

and Xi is the value of X in run i i.e. Xi =< x1,i, x2,i, · · · , xn,i >. Let Xk be the vector that
contains the parameters x1, x2, · · · , xn raised to the power k i.e. Xk = xk

1 , xk
2 , · · · , xk

n.
The parametric expression wp is just a function that expresses the execution time of the

program p in terms of its parameters. It becomes a parametric WCET expression once the
m runs exercise different program segments in their worst-case execution scenarios. This
means that if the expression wp has the form wp = AkXk + Ak−1Xk−1 + · · · + A0 where
Ai, i ∈ [0..k] is a vector of constants, then wp is WCET expression if the values in the vectors
Ak, Ak−1, · · · , A0 — which correspond to program-segment execution times — are maximum.
This depends on the quality of testing which is a common issue in all measurement-based
and end-to-end WCET analyses. Here we will focus on using the GP’s symbolic regression to
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108 Evolutionary Techniques for Parametric WCET Analysis

learn a parametric expression as opposed to trying to prove that the factors Ak, Ak−1, · · · , A0
have their maximum-possible values — which is a separate problem to solve outside this
paper.

In order to discover the parametric expression, the GP is informed with the types of
operators and terminals (variables and constants) that can potentially appear in the derived
parametric expression. As we have discussed before, the operators will appear in the non-leaf
nodes and the terminals will appear in the leaf nodes of the AST representation of the
parametric expression. In our case, we have limited our attention to polynomials; which
by their mathematical definition allow addition and subtraction of terms, each term can be
composed by multiplying variables by variables or variables by constants, raising a variable to
the power of a constant, or dividing a variable by a constant. Therefore the set of operators
to consider is {addition, subtraction, multiplication, division}.

In addition to this, depending on implementation, the GP can benefit from knowledge
about the shape, depth, and size of the ASTs that represent the target parametric expressions.
A binary AST is usually the choice for symbolic regression problems where the target
expression is a polynomial. The depth of the binary AST will influence the order of the
polynomial. For example, the parametric expression of Figure 1 requires an AST of depth 5
(assuming root depth is 0) for a polynomial of order 3.

Notice that two runs of the GP (based on the same data set) that are performed to derive
the parametric expression wp of some program p are not guaranteed to derive the same
parametric expression i.e. they will potentially result in two expressions wp and w′p such that
wp 6= w′p. However, if the two runs of the GP are given the same resources (time, processing
power, memory, etc.) it is unlikely that the structure of the parametric expressions will be
different; but their constant factors are likely to differ slightly. The reason for this is that
GP is a search-based method that is based on some element of randomness in the genetic
operations such as cross over. The GP converges towards a solution of some fitness — after
a number of generations — which is often almost the same in different runs of the GP on
the same problem instance — as long as the GP has access to the same resources in these
different runs. Here, “almost the same” is seen in the form of parametric expressions that
have the same AST but have slightly-different constant factors.

5 Evaluation

To evaluate our approach, we use the Mälardalen WCET benchmarks [10] which have
historically been used to evaluate parametric WCET approaches in the literature. The
benchmarks have been modified to make them amenable to end-to-end testing — basically by
allowing the function main() to take input arguments, processing them using the function
atoi(), and passing them to the function of interest (e.g. factorial, insertion_sort,
etc.). The benchmarks we used are described in Table 1 and they include all benchmarks
used in [3, 16, 9, 11, 15, 6, 2, 5, 1] except those not available in [10]. The benchmark
janne_complex has been augmented with a new parameter c that substitutes the constant
value 30 used in the outermost loop — to make it more interesting to analyse.

Each benchmark program in Table 1 is compiled for the ARM architecture using a gcc
cross compiler and executed on Simplescalar [4] using the configuration shown in Figure 3.
The reason behind using Simplescalar instead of actual hardware is that we don’t have access
to actual hardware and accompanying execution-time measurement equipment. The reason
behind using the configuration of Figure 3 is to top the most complex hardware platform
used in parametric WCET analysis by [2] where the authors use MPC565 for evaluating
their work.
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Table 1 The benchmark programs used in the evaluation.

Benchmark Description Parameters and Ranges
bsort100 Bubble Sort (Triangular Loop) Size n of array to be sorted

n ∈ [1..100]
cnt Matrix Count Size n of side of square matrix

n ∈ [1..30]
crc Cyclic Redundancy Check Size n of input string

n ∈ [1..200]
fac Factorial Integer n

n ∈ [1..100]
fir Finite Impulse Responder Variables in_len, coef_len, and scale

in_len, coef_len, scale ∈ [1..700]
insertsort Insertion Sort Size n of array to be sorted

n ∈ [1..100]
janne_complex Nested Loop Program Variables a, b, and c

a, b, c ∈ [1..100]
matmult Matrix Multiplication Size n of side of square matrix

n ∈ [1..20]
sqrt Square Root Computation Integer n

by Taylor Series n ∈ [1..100]
st Statistics Program Size n of arrays to be processed

n ∈ [1..300]

# Pipeline -res:imult 1 -cache:il2 none
-fetch:ifqsize 4 -res:memport 2 -cache:dl2 none
-decode:width 1 -res:fpalu 1
-issue:width 1 -res:fpmult 1 # Branch Predictor
-issue:inorder false -bpred taken
-issue:wrongpath true # Cache
-lsq:size 2 -cache:il1 il1:128:16:2:1 # Default settings are used
-res:ialu 1 -cache:dl1 none # for everything else.

Figure 3 Configuration of the Simplescalar architecture used in the experiments.

The experimentation setup is straightforward. Each benchmark program p is executed
m = 10, 000 times using randomly generated inputs. The number m was chosen to be at
the same time large enough to allow more input diversity, and small enough not to affect
the GP’s runtime too severely — since the fitness function computes a sum of differences
of complexity Θ(m). In each run, the value Xi of the parameters of interest X and the
end-to-end execution time ti, i ∈ [1..m] of p are captured by reading the value sim_cycle
generated by Simplescalar at the end of each execution of the program under analysis. It
is worth noting that the end-to-end execution time corresponds to the entire program, not
just the function of interest and consequently the parametric timing expression corresponds
to the function main() — including the use of the function atoi() and all initializations
such as array initialization; and the function of interest. Measuring the end-to-end execution
time of the actual function of interest inside the benchmark program reduces to parsing
the Simplescalar trace (generated via -ptrace). This adds an unnecessary overhead to

WCET’12



110 Evolutionary Techniques for Parametric WCET Analysis

Table 2 The results of the experimental evaluation.

Benchmark p Expression wp by Eureqa Error ep Time to find wp

bsort100 35n2 + 917n + 5.55e4 ±0.20 2 minutes
cnt 988n2 + 100n + 5.82e4 ±0.22 2 minutes
crc 180n + 2.04e5 ±0.20 1.5 minute
fac 52n + 5.60e4 ±0.0012 10 seconds

fir (*) 1706in_len + 4.45e4 ±0.57 10 minutes
insertsort 13n2 + 970n + 5.54e4 ±0.28 2.5 minutes

janne_complex 20.78c− 17.46a + 5.80e4 ±0.05 10 seconds
matmult 189n3 + 1753n2 + 74n + 6.24e4 ±0.02 4 minutes

sqrt 31n + 5.76e4 ±0.13 5 seconds
st 2302n + 5.93e4 ±0.26 2.5 minutes

the experiment because the parametric expression can be derived regardless of whether the
end-to-end execution times are measured at the function level, or the whole-program level.

After the m executions, we pass the resulting m-by-(n + 1) data matrix Mp of data to the
GP to perform symbolic regression. We use the rows [1..0.9m] for training i.e. evolution, and
the remaining [0.9m + 1..m] for testing i.e. measuring the error of the derived parametric
expression when applied to unseen data. For the GP, we used both Eureqa Formulize v0.96
(a standalone application based on [12] and freely downloadable from [7]) and gptips v1.0
(a library for MATLAB based on [14] and freely downloadable from [13]). The results we
show in this paper are those obtained by Eureqa because it runs faster than the MATLAB-
based gptips, and it also comes with the paid option of using a cloud cluster to accelerate
computation. However we did not use the cloud cluster in our experiments, but it would be
interesting to use it for future work. It is worth noting that gptips is open-source and allows
more customization of the GP such as introducing specialized functions to use in symbolic
regression, and also user-crafted genetic operators. Such customization ought to accelerate
evolution, but we have not tested this. The experiments took place in a desktop computer
of the specifications Intel(R) Core(TM)2 Duo CPU @2.80 GHz running 32-bit Windows 7
Professional with 4Gb of RAM.

Table 2 summarizes the findings. The GP is run for each benchmark program’s data
matrix for 10 minutes. Notice that the GP can be left running indefinitely over some data
matrix Mp until an optimal symbolic expression wp is obtained. We argue that 10 minutes
is a reasonable time to leave the GP running for the relatively-small problems dealt with in
this work — which (i) have small numbers n of independent variables that affect the size of
the ASTs generated by the GP, (ii) have small numbers of observations m that affect the cost
of the fitness operation, and (iii) have a known polynomial structure and consequently the
GP’s search space is pruned because only relevant operators are used during evolution. The
best solution after 10 minutes is the one shown in Table 2. The error ep in the parametric
expression wp is also computed and it is the average of the sum of |wp(Xi)− ti| in the 0.1m

unseen runs. So if the error in the parametric expression is ep = 0.01, it means that the
average value for the difference |wp(Xi)− ti| per unseen run is 0.01. The recorded execution
time of the GP in Table 2 is the first instant in time in which the best solution is found. For
example, for the benchmark program bsort100, the derived expression that is shown in
Table 2 has been found after 2 minutes, and did not improve over the remaining 8 minutes
during the 10-minute execution of the GP.

The sources of the errors ep in the table come from the execution-time variations imposed
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by the hardware architecture. For example, let program p contain a flat loop — and no
other loop — that iterates x times where x is some input variable to p; then its parametric
expression has the shape wp = ax + b where a is the execution time of the body of the loop,
and b is the execution time of everything else outside the loop. In this case, it is perfectly
possible to witness the following scenarios during execution: (i) when x = 2, a = 100; (ii)
when x = 3, a = 95; and (iii) when x = 4, a = 110. This could happen if x controls some
conditional statement before the execution of the loop, and hence alters the execution history
prior to the execution the loop which leads to different values of the execution time a of
the loop’s body. In cases like this, it is very hard if not impossible for the GP to derive an
expression wp with error ep = 0 because of the complex program-hardware interaction that
creates what can be referred to as “noise” in the data matrix Mp.

The GP was unable to find an accurate parametric expression for the benchmark program
fir with the three parameters specified in Table 1 (error had average magnitude efir = 52)
because of the complex interactions between these variables and their effect on program flow
— which cannot be captured by a polynomial. The set of parameters was reduced to one
element namely in_len while the other two parameters were fixed to their original values 35
and 285 in [10]. The one-parameter expression is the one shown in Table 2 which still has
the worst accuracy.

Other than that, the GP was able to approximate the parametric expressions of the
benchmark programs with great accuracy despite the hardware exhibiting variations in
execution times due to the presence of out-of-order execution, cache, and branch prediction.
The expressions were derived in a record time which never exceeded few seconds/minutes per
benchmark program. The shape of the parametric expressions corresponds to loops and loop
nests in the benchmark programs, and their ASTs are isomorphic with the ASTs derived for
the same programs using static parametric WCET in the literature. The obvious differences
are in the constant terms and factors which correspond to execution times — which are
expected to be different because (i) the hardware platform is different, and (ii) end-to-end
testing is used instead of static analysis.

6 Related Work

A relatively recent review on WCET analysis is provided by [17] where different analysis
methods, calculation techniques, and available tools are described and compared. In this
section we shall exclusively review parametric WCET analysis which has been the topic of
research in [3, 16, 9, 11, 15, 6, 2, 5, 1].

Bernat and Burns [3] present a tree-based approach for parametric timing analysis where
they derive algebraic expressions for parts of the code, link them together according to
the tree structure to build larger expression, and then use software tools such as Maple to
simplify the parametric expressions. The technique is manual as no tool was implemented
for it, it takes information about the parameters affecting the WCET through a system of
code annotation, and uses a timing model supplied by the user or a third-party analysis.

Vivancos et al. [16] use a path-based approach where parametric expressions are derived
using fixed-point caching behaviour. The technique is not described in great detail because
of the focus on applications of parametric timing analysis. However, the authors do mention
limitations in their technique namely the ability to only handle well-structured non-recursive
code, and inability to handle cases where there are nested parametric expressions inside loop
nests.

Van Engelen et al. [15] introduce a method for parametric WCET analysis using Newton-

WCET’12
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Gregory formulae that handles rectangular and non-rectangular loop nests of seemingly
arbitrary structures. Unfortunately, the work is purely theoretical and lacks evaluation on
actual benchmark programs with the exception of small code snippet. The work here is
included in the review for the sake of completeness only.

Coffman et al. [6] use a summation solver called Emtadel that automatically derives the
number of times the body of a traingular loop nest executes; in the form of a polynomial
expression involving the use of min/max operators. The use of Emtadel comes as the answer
to the problem of nested parametric loops the authors encountered in [16]. The main problem
with this approach is that there is no reference to where to download Emtadel or similar
software to reproduce the results obtained by the approach.

Altmeyer et al. [2] present an automatic technique for performing parametric WCET
analysis of executable code based on dependency analysis between program variables and
parameters. The technique identifies the parameters automatically by performing a simple
read/write analysis of memory cells and CPU registers, and using the variables that are read
from before written to as the analysis parameters. The dependency analysis is used to form
relationships between the variables that control loop iterations and the parameters of the
program.

Althaus et al. [1] present a parametric-analysis technique that exploits the usually-regular
structure of code written for critical real-time applications — in particular where loops have
single entries. They present an algorithm of polynomial-time complexity in practice and
exponential-complexity in theory which works on executable code and derives the parametric
expressions of loops. For code that does not satisfy the single-entry loop property, they
present transformation techniques to force the property which unfortunately adds to the
complexity of the approach.

Lisper et al. [9, 5] use polyhedral flow analysis together with symbolic integer-linear
programming to derive parametric WCET expressions. The analysis is very accurate but
at the cost of prohibitive complexity: the derived parametric-WCET expressions are too
complicated to be evaluated instantly during runtime — unless manual simplifications are
applied to them. In addition to this, the analysis requires extensive resources as it failed for
some problem instances.

The technique we present is different from all previous techniques in the sense that
it is based on end-to-end runtime measurements as opposed to static analysis, and uses
off-the-shelf GP tools which gives it the advantage of amenability to industrial use. Table 3
shows a comparison of our technique with the techniques in the literature using the following
metrics (columns in Table 3).

Input. This metric refers to the way by which the parametric analysis identifies the
variables that appear in the parametric expression i.e. they are derived automatically,
semi-automatically, or manually.

Automation. This metric refers to whether or not the parametric analysis (excluding
input information) is fully-automatic, semi-automatic, or manual.

Operators. This metric refers to the operators supported in the final parametric
expression namely arithmetic operators (+, −, ×, ÷), the conditional operator, and the
max/min operators.

Limitations. This metric refers to the main drawbacks of the method that might hinder
its use in practice.
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7 Conclusions and Future Work

In this paper we have shown how to perform parametric timing analysis using genetic
programming. End-to-end execution times of the program are recorded together with values
of parameters that trigger them, and are then input to the genetic program which performs
symbolic regression to discover the parametric expressions. The technique has been successful
in deriving accurate parametric expressions.

Genetic programming can be used in conjunction with static-analysis methods for para-
metric timing analysis to validate their results, and should be of great interest to industry
where end-to-end measurements are the way forward to performing WCET estimation. The
technique can be explored further in the the following directions (to list but a few): (i)
investigate the use of the method on more substantial case studies, (ii) augment the proposed
technique by automatic identification of parameters that affect the WCET, (iii) apply the
method on programs that run on actual hardware, and (iv) incorporate variable-latency
instructions in the parametric expressions.
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