
An Empirical Evaluation of the Influence of the
Load-Store Unit on WCET Analysis∗

Mohamed Abdel Maksoud and Jan Reineke

Saarland University
Saarbrücken, Germany
{mohamed,reineke}@cs.uni-saarland.de

Abstract
Due to the complexity of today’s micro-architectures, the micro-architectural analysis usually
constitutes the most time-consuming step in worst-case execution time (WCET) analysis.

In this paper, we investigate the influence of the design of the load-store unit (LSU) in the
PowerPC 7448 on WCET analysis. To this end, we introduce a simplified variant of the existing
design of the LSU by reducing its queue sizes. Using AbsInt’s aiT WCET analysis toolchain we
determine the resulting WCET bounds and analysis times.

For the modified version of the LSU with reduced queue sizes, analysis time is reduced by
more than 50% on a set of benchmarks from the Mälardalen suite, while there is little change in
the WCET bound.

1998 ACM Subject Classification B.8.2 Performance Analysis and Design Aids

Keywords and phrases empirical evaluation, architecture complexity effect, WCET analysis
precision, WCET analysis performance, PowerPC 7448, Load-Store Unit

Digital Object Identifier 10.4230/OASIcs.WCET.2012.13

1 Introduction

The increasing complexity of today’s micro-architectures makes the construction of sound
and precise timing models an increasingly time-consuming and error-prone task. Further-
more, the resulting, complex timing models lead to a state-explosion problem in the micro-
architectural (also known as low-level) analysis, drastically increasing overall WCET analysis
times.

Most micro-architectural innovations, causing this increase in complexity, like speculation
and out-of-order execution, are undertaken to improve average-case performance. In the
WCET community it is often argued that many of these innovations do not improve, or
even harm, a processor’s worst-case timing behavior. There is, however, little hard evidence
supporting such claims. This paper intends to contribute some hard evidence by performing
an empirical evaluation using AbsInt’s aiT WCET analysis toolchain.

The PowerPC 7448 is a high-performance microprocessor used in safety-critical real-time
scenarios featuring caches, pipelining, speculation and out-of-order execution. To support
speculation and out-of-order execution, the PowerPC 7448 includes a load-store unit (LSU),
maintaining queues of memory instructions in different execution states. We investigate the
influence of the lengths of these queues on both WCET bounds and WCET analysis times.

∗ The research leading to these results was partly supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS).

© Mohamed Abdel Maksoud and Jan Reineke;
licensed under Creative Commons License NC-ND

12th International Workshop on Worst-Case Execution Time Analysis (WCET 2012).
Editor: Tullio Vardanega; pp. 13–24

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2012.13
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


14 An Empirical Evaluation of the Influence of the Load-Store Unit on WCET Analysis

Binary
Executable

CFG Re-
construction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Micro-
architectural
Analysis

Path
Analysis

Legend:

Data

Phase

Figure 1 Main components of a timing-analysis framework and their interaction.

To this end, we introduce a simplified variant of the existing LSU, reducing its queue sizes
to a minimum.

We compare the simplified design with the original design on various benchmarks from
the Mälardalen benchmark suite. Surprisingly, we observe slightly decreased WCET bounds,
and, as expected, strongly reduced analysis times.

2 Background

2.1 WCET Analysis Flow
Over roughly the last decade, a more or less standard architecture for timing-analysis tools
has emerged. Figure 1 gives a general view of this architecture. The following list presents
the individual phases and describes their objectives.

1. Control-flow reconstruction [21] takes a binary executable to be analyzed, reconstructs
the program’s control flow and transforms the program into a suitable intermediate
representation. Problems encountered are dynamically computed control-flow successors,
e.g. those stemming from switch statements, function pointers, etc.

2. Value analysis [4] computes an over-approximation of the set of possible values in registers
and memory locations by an interval analysis and/or congruence analysis. The computed
information is used for a precise data-cache analysis and in the subsequent control-flow
analysis. Value analysis is the only one to use an abstraction of the processor’s arithmetic.
A subsequent pipeline analysis can therefore work with a simplified pipeline where the
arithmetic units are removed. There, one is not interested in what is computed, but only
in how long it will take.

3. Loop bound analysis [8, 14] identifies loops in the program and tries to determine bounds
on the number of loop iterations; information indispensable to bound the execution time.



Mohamed Abdel Maksoud and Jan Reineke 15

Problems are the analysis of arithmetic on loop counters and loop exit conditions, as well
as dependencies in nested loops.

4. Control-flow analysis [8, 20] narrows down the set of possible paths through the program
by eliminating infeasible paths or by determining correlations between the number of
executions of different blocks using the results of value analysis. These constraints will
tighten the obtained timing bounds.

5. Micro-architectural analysis [7, 23, 10, 5] determines bounds on the execution time of
basic blocks by performing an abstract interpretation of the program, combining analyses
of the processor’s pipeline, caches, and speculation. Static cache analyses determine
safe approximations to the contents of caches at each program point. Pipeline analysis
analyzes how instructions pass through the pipeline accounting for occupancy of shared
resources like queues, functional units, etc.

6. Path Analysis [17, 22] finally determines bounds on the execution times for the whole
program by implicit path enumeration using an integer linear program (ILP). Bounds of
the execution times of basic blocks are combined to compute longest paths through the
program. The control flow is modeled by Kirchhoff’s law. Loop bounds and infeasible
paths are modeled by additional constraints. The target function weights each basic
block with its time bound. A solution of the ILP maximizes the sum of those weights
and corresponds to an upper bound on the execution times. In the following, we refer to
the kind of path analysis described above as traditional ILP-based analysis.

The commercially available tool aiT by AbsInt, cf. http://www.absint.de/wcet.htm,
implements this architecture. It is used in the aeronautics and automotive industries and has
been successfully used to determine precise bounds on execution times of real-time programs
[10, 9, 24, 15].

S1

S2 S3

S2 S3S2 S3

50 c10 c

S4S4

S4

S5

20 c 50 c 80 c 10 c

10 c

b1: max 50

truefalse

b2: max 50 b3: max 80

b4: max 10

Figure 2 An example illustrating the
differences between traditional ILP-based
path analysis and prediction-file-based
ILP path analysis.

The ILP-based path analysis in aiT comes in
two variants depending on how micro-architectural
state graphs are constructed [2]:

1. Traditional ILP-based analysis, where an ILP
is solved to find the worst-case path through
the program, given worst-case timings of all ba-
sic blocks (possibly in various contexts). This
approach may be imprecise, because the worst-
case timings of some basic blocks may not occur
simultaneously on a single architectural path
through the program.

2. Prediction-file-based ILP analysis, where a
global state graph consisting of micro-archi-
tectural states is constructed, and an ILP is
solved to find the worst-case path. This re-
sults in a more precise WCET bound since
architecturally-infeasible paths are excluded.
However, it comes at the cost of a much larger
ILP to be solved.

To illustrate the difference between the two
path-analysis methods, consider the example anal-
ysis shown in Figure 2. An ILP-based path anal-
ysis computes a global WCET bound solely based

WCET’12

http://www.absint.de/wcet.htm


16 An Empirical Evaluation of the Influence of the Load-Store Unit on WCET Analysis

on the maximum number of execution cycles for each basic block. The WCET is therefore
140 cycles in this case, and the worst-case exeuction path is b1→b3→b4. However, this re-
sult implies an architecturally-infeasible execution trace: s1→s39s2→s4→s5, where trace
discontinuity is marked by 9.

On the other hand, the global state graph constructed in a prediction-file-based ILP
path analysis excludes such paths and produces a WCET bound of 110 cycles, with the
corresponding worst-case execution path: b1→b2→b4, and trace: s1→s3→s4→s5.

2.2 Motorola PowerPC 7448

Instruction Unit

Load/Store Unit

+ Effective Address Calculation 

Instruction Queue

Branch Processing 

Unit

Dispatch Unit

Finished Store Queue

Committed Store Queue

Load Miss Queue

Completion Unit
Completion Queue

Integer 

Units
Floating Point

Unit

Vector

Units

Instruction MMU

Data MMU

Figure 3 PowerPC 7448 Microprocessor Block Diagram.

The PowerPC 7448 is a reduced instruction set computer (RISC) superscalar processor
that implements the 32-bit portion of the PowerPC architecture and the SIMD instruction
set AltiVec architectural extension. It features a two-level memory hierarchy with separate
L1 data and instruction caches (Harvard architecture), a unified L2 cache, four independent
integer and four independent vector units for superscalar execution. It also features static
and dynamic branch prediction, and a sophisticated load-store unit with long buffers.

“The PowerPC 7448 provides virtual memory support for up to 4 PB (252) of virtual
memory and real memory support for up to 64 GB (236) of physical memory. It can dispatch
and complete three instructions simultaneously” [11]. It consists of the following execution
units, depicted in Figure 3:

Instruction Unit (IU): the IU provides centralized control of instruction flow to the
execution units. It contains an instruction queue (IQ), a dispatch unit (DU), and a
branch processing unit (BPU). The IQ has 12 entries and loads up to 4 instructions



Mohamed Abdel Maksoud and Jan Reineke 17

from the instruction cache in one cycle. The DU checks register dependencies and the
availability of a position in the completion queue (described below), and issues or inhibits
subsequent instruction dispatching accordingly. The BPU receives branch instructions
from the IQ and executes them early in the pipeline. If a branch has a dependency that
has not yet been resolved, the branch path is predicted using either architecture-defined
static branch prediction or PowerPC 7448 -specific dynamic branch prediction.
Completion Unit (CU): The CU retires an instruction from the 16-entry completion
queue (CQ) when all instructions ahead of it have been completed. The CU operates
closely with the IU to ensure that the instructions are retired in program order.
Integer, Vector, and Floating-Point Units: the PowerPC 7448 provides nine execution
units to support the execution of integer, fixed point, and AltiVec instructions.
Cache/Memory Subsystem: The PowerPC 7448 microprocessor contains two separate
32-Kbyte, eight-way set-associative level 1 (L1) instruction and data caches (Harvard
architecture). The caches implement a pseudo least-recently-used (PLRU) replacement
policy. In addition, the PowerPC 7448 features an integrated 1 MB level 2 (L2) cache.
Load-Store Unit (LSU): The LSU executes all load and store instructions and provides
the data transfer interface between registers and the cache/memory subsystem. The
LSU also calculates effective address and aligns data. This unit is described in detail in
the following section.

Load-Store Unit

The LSU provides all the logic required to calculate effective addresses, handles data align-
ment to and from the data cache, and provides sequencing for load-store string and load-store
multiple operations [11]. The LSU contains a 5-entry load miss queue (LMQ) which main-
tains the load instructions that missed the L1 cache until they can be serviced. This allows
the LSU to process subsequent loads. Unlike loads, stores cannot be executed speculatively:
a store instruction is held in the 3-entry finished store queue (FSQ) until the completion unit
signals that the store is committed, only then it moves to the 5-entry committed store queue
(CSQ). In order to reduce the latency of loads dependent on stores, the LSU implements
data forwarding from any entry in the CSQ before the data is actually written to the cache.
When a load instruction misses, its address is compared to all entries in the CSQ. On a hit,
the data is forwarded from the newest matching entry. If the address is also found in the
FSQ, however, the LSU stalls since the newest data at this address could be updated should
the store instruction in the FSQ be committed.

Analysis Model of the Load-Store Unit

During static analysis, crucial information on program execution such as register contents,
cache contents and bus clock offset cannot be decided exactly. The bus clock offset is defined
as the number of processor clock cycles until the next rising edge of the bus clock. When the
analysis flow depends on such information, the analysis has to proceed in all possible paths to
ensure a sound WCET bound in the presence of timing anomalies [18]. When the analysis is
to proceed in more than one path, the analysis state has to be split, with the consequence of
increasing the size of the state space during analysis and hence reducing analysis efficiency.
The analysis model of the load-store unit reflects its structure in the concrete processor
architecture, while accounting for non-determinism. In the load-store unit, the addresses of
different memory accesses are represented in terms of intervals, rather than exact numbers.
As we shall see in Section 4, the load-store unit is a significant source of splits in most cases,

WCET’12



18 An Empirical Evaluation of the Influence of the Load-Store Unit on WCET Analysis

and this is attributed to the long queues in this unit. As described in the previous section,
data forwarding involves a number of comparisons for each missed load instruction. This
number is proportional to the sizes of the load miss queue, committed store queue, and
finished store queue. These comparisons are performed on imprecise addresses, resulting
in potential splits when it cannot be decided whether addresses do alias or not. Moreover,
having long queues in the LSU indicates more pending memory accesses in the core waiting
to be served. Serving more accesses increases the possibility of querying non-exact bus
clock offset, hence representing another source of splits. These observations motivate our
experimental setup described in the following section.

3 Experimental Setup

To the end of reducing the number of splits, and thus improving analysis time, we modified
the PowerPC 7448 by cutting the queue sizes in the load-store unit. The LMQ, CSQ, and
FSQ sizes were reduced to 1, 2, and 1, respectively1. The benchmarks were selected from the
Mälardalen benchmark suite [13]. These are the benchmarks for which the WCET analysis
terminated successfully for both architectures. The analyzed programs are briefly described
in Table 1. The benchmarks marked with * were not found in the official documentation
although they are included in the test-suite distribution.

Table 1 List of benchmarks analyzed in the experiment.

Benchmark Description LOC
bs Binary search for the array of 15 integer elements. 114
cnt Counts non-negative numbers in a matrix. 267

expint Series expansion for computing an exponential integral function. 157
fac Computes the sum of factorials of a set of integers. 28

fibcall Simple iterative Fibonacci calculation, used to calculate fib(30). 72
janne_complex Nested loop program. 64

lcdnum Read ten values, output half to LCD. 64
loop3* Several loop patterns. 240

minmax* Simple program with infeasible paths. 58
qurt Root computation of quadratic equations. 166
sqrt Square root function implemented by Taylor series. 77

The aiT analyzer was configured to use traditional ILP-based path analysis (with the
CLP solver [1]) on all benchmarks and prediction-file based ILP path analysis only on some of
them. Although the latter produces more precise WCET bounds, it is more computationally
demanding as will be seen in the following section, and we were not able to finish the analysis
of all of the benchmarks in time for this submission.

The experiment was performed on a 64-bit AMD Opteron machine with 16 processor
cores at 2500 MHz and 64 GB of RAM. As the WCET analysis is not parallelized, we ran
multiple analyses concurrently on this machine. As performance metrics, we use the micro-
architectural-analysis time and the path-analysis time. On the analyzed benchmarks, these
two metrics constitute on the average about 80% and 75% of the whole analysis time for
the standard and reduced architectures, respectively.

1 This is the strongest simplification we could apply without having to make significant changes to the
micro-architectural analysis.



Mohamed Abdel Maksoud and Jan Reineke 19

4 Experimental Results and Analysis

The analysis results of selected benchmarks using prediction-file-based ILP path analysis
are shown in Table 2. We compute both the average of the relative changes (<average>)
and the relative change of the sum of the respective values (<weighted average>).

Looking first at the analysis performance metrics, we see that the state space in the
reduced architecture is significantly smaller than that of the standard architecture. This
is manifested in the consistently lower number of splits in the micro-architectural analysis
and path analysis time, cf. the janne_complex benchmark. For less memory-demanding
benchmarks, such as fac and fibcall, we do not see significant improvement in the analysis
performance.

Comparing the WCET bounds in both architectures yields a surprise: in half of the cases,
the reduced architecture achieves a WCET bound that is lower than that of the standard
architecture. A closer look at one of the benchmarks featuring this anomaly, minmax, reveals
the following:

There are no ambiguous memory accesses in this simple benchmark (i.e. all addresses
are exact), the effect of data-forwarding on the analysis precision is therefore ruled out.
The benchmark starts with several store instructions followed by a branch instruction.
The standard architecture with its long store queues accomodates more pending stores
and execute further instructions, including the branch. This results in more pending
memory requests, both data and instruction accesses, and hence it is more likely to
query non-exact bus clock offset.
On the other hand, the reduced architecture accomodates fewer pending stores, hence it
stalls on encountering more store instructions. This stalling is beneficial in that it leads
to fewer pending memory accesses and hence reduces the loss of precision caused by the
non-deterministic bus clock offset.

Using the less precise, yet significantly more efficient traditional ILP-based path analysis,
more benchmarks were analyzed. The analysis results and performance metrics are shown
in Table 3.

We observe an increased average speed-up of the micro-architectural analysis for the
reduced architecture compared with the results for the prediction-file-based analysis. The
increased average speed-up is attributed to analyzing more memory intensive benchmarks
such as bs and cnt. The micro-architectural analysis time varies slightly from that in
Table 2 for some benchmarks, likely due to interference on shared resources between multiple
analyses running concurrently on the machine.

The path-analysis contribution to the total analysis performance is insignificant, com-
pared to that of the micro-architectural analysis. In the traditional ILP-based approach,
path-analysis time is expected to be independent of the complexity of the underlying micro-
architecture. Unsurprisingly, we observe little differences between the standard and the
reduced architecture.

The “WCET anomaly”, i.e. lower WCET bounds for the reduced architecture, is more
pronounced using this path-analysis method. This is not surprising since a larger number of
paths with different timings through basic blocks, as is the case for the standard architecture,
makes it more likely for the path analysis to compute an architecturally infeasible worst-case
execution path. This adds up to the precision loss observed in the standard architecture.

WCET’12



20 An Empirical Evaluation of the Influence of the Load-Store Unit on WCET Analysis

Ta
bl
e
2
W
C
E
T

bo
un

ds
an

d
pe

rf
or
m
an

ce
m
et
ric

s
us
in
g
pr
ed

ic
tio

n-
fil
e-
ba

se
d
IL
P

pa
th

an
al
ys
is
.

B
en
ch
m
ar
k

W
C
ET

bo
un

d
µ
ar
ch
.
an

al
ys
is

sp
lit
s

µ
ar
ch
.
an

al
ys
is

tim
e

Pa
th
-a
na

ly
sis

tim
e

To
ta
la

na
ly
sis

tim
e

in
cy
cl
es

in
se
co
nd

s
in

se
co
nd

s
in

se
co
nd

s
st
d.

re
d.

∆
%

st
d.

re
d.

∆
%

st
d.

re
d.

∆
%

st
d.

re
d.

∆
%

st
d.

re
d.

fa
c

3,
32
1

3,
34
3

0.
7

1,
61
0

1,
58
6

-1
.5

0.
6

0.
6

-0
.8

0.
1

0.
1

-7
.1

1.
1

1.
1

fib
ca
ll

3,
34
6

3,
32
5

-0
.6

84
4

78
9

-6
.5

0.
5

0.
5

-0
.2

0.
1

0.
1

1.
9

0.
9

0.
9

ja
nn

e_
co
m
pl
ex

20
,0
05

19
,8
46

-0
.8

10
7,
22
2

4,
59
9

-9
5.
7

21
.4

1.
1

-9
4.
8

34
45
.4

0.
9

-1
00
.0

34
70
.1

2.
5

lc
dn

um
1,
96
9

1,
99
6

1.
4

20
,5
33

8,
50
6

-5
8.
6

3.
2

1.
4

-5
5.
5

1.
5

0.
6

-6
2.
0

5.
1

2.
4

lo
op

3
39
,3
29

41
,1
99

4.
8

8,
38
0

5,
94
2

-2
9.
1

4.
5

3.
8

-1
5.
9

0.
7

0.
4

-3
8.
6

8.
2

7.
2

m
in
m
ax

1,
62
9

1,
50
0

-7
.9

2,
92
5

1,
10
6

-6
2.
2

1.
7

0.
8

-5
2.
7

1.
0

0.
1

-9
1.
0

3.
1

1.
2

qu
rt

17
,8
17

17
,9
53

0.
8

98
,8
59

25
,4
59

-7
4.
2

62
.7

14
.0

-7
7.
7

54
.5

10
.8

-8
0.
2

12
0.
8

26
.4

sq
rt

5,
09
6

4,
97
6

-2
.4

26
,4
15

7,
76
8

-7
0.
6

15
.6

3.
4

-7
7.
9

13
.0

2.
3

-8
1.
9

29
.8

6.
5

<
av
er
ag
e>

-0
.5

-4
6.
9

-4
9.
8

-5
7.
3

<
w
ei
gh

te
d
av
g.
>

1.
8

-7
6.
7

-7
9.
1

-9
9.
6

µ
ar
ch
.
an

al
ys
is

sp
lit
s

:=
th
e
to
ta
ln

um
be

r
of

sp
lit
s
in

th
e
m
ic
ro
-a
rc
hi
te
ct
ur
al

an
al
ys
is
,

∆
%

(b
,<

m
ea
su
re
>

)
:=

<
m
ea
su
re
>

re
d.

(b
)−

<
m
ea
su
re
>

st
d.

(b
)

<
m
ea
su
re
>

st
d.

(b
)

×
10

0,

<
av
er
ag
e>

(<
m
ea
su
re
>

)
:=

∑
b
∈

b
en

ch
m

ar
ks

∆
%

(b
,<

m
ea
su
re
>

)

|b
en

ch
m
ar
ks
|

,a
nd

<
w
ei
gh

te
d
av

g.
>

(<
m
ea
su
re
>

)
:=

∑
b
∈

b
en

ch
m

ar
ks
<
m
ea
su
re
>

re
d.

(b
)−

∑
b
∈

b
en

ch
m

ar
ks
<
m
ea
su
re
>

st
d.

(b
)

∑
b
∈

b
en

ch
m

ar
ks
<
m
ea
su
re
>

st
d.

(b
)

×
10

0.



Mohamed Abdel Maksoud and Jan Reineke 21

5 Related Work

While there is an abundance of work proposing more predictable or analyzable micro-
architectures, there is not a lot of work that empirically studies the impact of simplifi-
cations of micro-architectures on WCET analysis time. Exceptions include the work of
Grund et al. [12] and Burguière and Rochange [3].

Grund et al. [12] investigate several modifications of the branch target instruction cache
of the PowerPC 56x. They observe that using LRU in place of FIFO replacement reduces
analysis time drastically, as more memory accesses can be classified as hits or misses, thereby
reducing the number of splits.

Burguière and Rochange [3] investigate the modeling complexity of various dynamic
branch prediction schemes. Here, the modeling complexity is measured by the number of
constraints, the number of variables, and the sizes of constraints in an ILP formulation of
the behavior of the respective branch prediction schemes. This analysis is based on the
assumption that the modeling complexity is strongly-correlated with the resulting analysis
complexity. However, the actual analysis times are not analyzed.

Heckmann et al. [15] focus on the difficulty in modeling various architectural components,
including caches and pipelines, and their influence on the precision of the resulting analyses.
From their experience in modeling various processors they derive several recommendations
regarding the design of processors for real-time systems. Later, Wilhelm et al. [26] describe
properties of memory hierarchies, pipelines, and buses, which make timing analysis more
complex and/or reduce its precision. Neither Heckmann et al. nor Wilhelm et al. provide
an empirical evaluation of their recommendations.

Approaches aiming at improving predictability or analyzability include the EU projects
Predator, Merasa [25], the PRET project [6], and the Java-Optimized Processor JOP [19].
These projects present entirely new processor designs. This makes it difficult to evaluate
the impact of individual design choices on WCET analysis times. In the context of the
JOP project, Huber et al. [16] analyze the influence of different object cache configurations on
worst-case execution time estimates, varying several cache parameters and the background
memory. They do not, however, analyze the impact of the design choices on analysis times.

6 Conclusions and Future Work

In this paper, we have investigated the influence of the design of the load-store unit on
WCET analysis, in terms of analysis times and WCET bounds. Reducing the complexity of
the LSU results in significantly shorter analysis times, and, surprisingly, sometimes even in
slightly lower WCET bounds. We plan to investigate the influence of further components
to get a more complete view of how strongly various components and their configurations
influence WCET analysis.

Regarding the “WCET anomaly” found in some benchmarks analyzed in this paper, we
are uncertain whether it is a product of analysis imprecision, or whether it corresponds to
actual behaviors of the respective architectures. It will be future work to shed more light
on this question.

WCET’12



22 An Empirical Evaluation of the Influence of the Load-Store Unit on WCET Analysis

Ta
bl
e
3
W
C
E
T

bo
un

ds
an

d
pe

rf
or
m
an

ce
m
et
ric

s
us
in
g
tr
ad

iti
on

al
IL
P
-b
as
ed

pa
th

an
al
ys
is
.

B
en
ch
m
ar
k

W
C
ET

bo
un

d
µ
ar
ch
.
an

al
ys
is

sp
lit
s

µ
ar
ch
.
an

al
ys
is

tim
e

Pa
th
-a
na

ly
sis

tim
e

To
ta
la

na
ly
sis

tim
e

in
cy
cl
es

in
se
co
nd

s
in

se
co
nd

s
in

se
co
nd

s
st
d.

re
d.

∆
%

st
d.

re
d.

∆
%

st
d.

re
d.

∆
%

st
d.

re
d.

∆
%

st
d.

re
d.

bs
11
,0
82

9,
80
7

-1
1.
5

16
6,
46
6

18
,4
58

-8
8.
9

20
1.
6

15
.8

-9
2.
1

0.
0

0.
0

7.
7

20
1.
8

16
.1

cn
t

44
,2
85

38
,3
99

-1
3.
3

20
,4
89
,5
62

83
0,
78
4

-9
5.
9

16
84
2.
5

48
9.
4

-9
7.
1

0.
1

0.
1

-1
2.
3

16
84
3.
8

49
0.
7

ex
pi
nt

13
,6
10

13
,5
36

-0
.5

4,
12
7

2,
87
3

-3
0.
4

2.
5

2.
0

-2
0.
6

0.
1

0.
1

3.
7

3.
6

3.
1

fa
c

4,
17
3

4,
01
5

-3
.8

1,
61
0

1,
58
6

-1
.5

0.
6

0.
6

-1
.7

0.
0

0.
0

0.
0

1.
0

1.
0

fib
ca
ll

3,
68
5

3,
53
0

-4
.2

84
4

78
9

-6
.5

0.
5

0.
5

5.
1

0.
0

0.
0

0.
0

0.
8

0.
9

ja
nn

e_
co
m
pl
ex

28
,1
72

21
,0
34

-2
5.
3

10
7,
22
2

4,
59
9

-9
5.
7

19
.8

1.
1

-9
4.
7

0.
0

0.
0

0.
0

20
.1

1.
3

lc
dn

um
2,
53
8

2,
50
6

-1
.3

20
,5
33

8,
50
6

-5
8.
6

3.
0

1.
3

-5
5.
3

0.
0

0.
0

-1
0.
5

3.
3

1.
7

lo
op

3
53
,9
86

53
,8
79

-0
.2

8,
38
0

5,
94
2

-2
9.
1

4.
2

3.
6

-1
5.
5

0.
1

0.
1

0.
0

7.
2

6.
5

m
in
m
ax

1,
98
7

1,
89
8

-4
.5

2,
92
5

1,
10
6

-6
2.
2

1.
7

0.
8

-5
1.
4

0.
0

0.
0

8.
3

1.
9

1.
1

qu
rt

26
,3
63

21
,7
42

-1
7.
5

98
,8
59

25
,4
59

-7
4.
2

60
.5

13
.5

-7
7.
6

0.
1

0.
1

27
.5

61
.5

14
.5

sq
rt

7,
12
0

5,
57
6

-2
1.
7

26
,4
15

7,
76
8

-7
0.
6

14
.6

3.
2

-7
7.
9

0.
0

0.
0

0.
0

15
.1

3.
7

<
av
er
ag
e>

-9
.4

-5
2.
6

-5
5.
8

2.
2

<
w
ei
gh

te
d
av
g.
>

-1
0.
7

-9
6.
9

-9
5.
7

2.
2



Mohamed Abdel Maksoud and Jan Reineke 23

References
1 COIN-OR Linear Programming: http://www.coin-or.org/Clp.
2 AbsInt Angewandte Informatik GmbH. AbsInt Advanced Analyzer for PowerPC MPC7448

(Simple Memory Model): User Documentation.
3 Claire Burguière and Christine Rochange. On the complexity of modeling dynamic branch

predictors when computing worst-case execution time. In Proceedings of the ERCIM/DE-
COS Workshop On Dependable Embedded Systems, August 2007.

4 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pages 238–252, New York, NY, USA, 1977. ACM Press.

5 Christoph Cullmann. Cache persistence analysis: a novel approach theory and practice. In
Jan Vitek and Bjorn De Sutter, editors, LCTES, pages 121–130. ACM, 2011.

6 Stephen A. Edwards and Edward A. Lee. The case for the precision timed (PRET) machine.
In DAC, pages 264–265. IEEE, 2007.

7 Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time Analysis. PhD
thesis, Dept. of Information Technology, Uppsala University, 2002.

8 Andreas Ermedahl and Jan Gustafsson. Deriving annotations for tight calculation of exe-
cution time. In Euro-Par, pages 1298–1307, 1997.

9 C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. The-
sing, and R. Wilhelm. Reliable and precise WCET determination for a real-life processor.
In International Conference on Embedded Software, volume 2211 of LNCS, pages 469–485,
2001.

10 Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior prediction
for real-time systems. Real-Time Sys., 17(2-3):131–181, 1999.

11 Freescale Semiconductor. MPC7450 RISC Microprocessor Family Reference Manual.
12 Daniel Grund, Jan Reineke, and Gernot Gebhard. Branch target buffers: WCET analysis

framework and timing predictability. Journal of Systems Architecture, 57(6):625–637, 2011.
13 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET

benchmarks – past, present and future. pages 137–147, Brussels, Belgium, July 2010. OCG.
14 C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van Engelen. Supporting timing

analysis by automatic bounding of loop iterations. Real-Time Sys., pages 129–156, 2000.
15 Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. The

influence of processor architecture on the design and the results of WCET tools. Proceedings
of the IEEE, 91(7):1038–1054, 2003.

16 Benedikt Huber, Wolfgang Puffitsch, and Martin Schoeberl. Worst-case execution time
analysis-driven object cache design. Concurrency and Computation: Practice and Experi-
ence, 24(8):753–771, 2012.

17 Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software using
implicit path enumeration. In Proceedings of the 32nd ACM/IEEE Design Automation
Conference, pages 456–461, 1995.

18 Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen
Eisinger, and Bernd Becker. A definition and classification of timing anomalies. In Pro-
ceedings of 6th International Workshop on Worst-Case Execution Time (WCET) Analysis,
July 2006.

19 Martin Schoeberl. A java processor architecture for embedded real-time systems. Journal
of Systems Architecture, 54(1-2):265 – 286, 2008.

20 Ingmar Stein and Florian Martin. Analysis of path exclusion at the machine code level. In
Proceedings of the 7th Intl. Workshop on Worst-Case Execution-Time Analysis, 2007.

WCET’12



24 An Empirical Evaluation of the Influence of the Load-Store Unit on WCET Analysis

21 Henrik Theiling. Control-Flow Graphs For Real-Time Systems Analysis. PhD thesis, Saar-
land University, Saarbrücken, Germany, 2002.

22 Henrik Theiling. ILP-based interprocedural path analysis. In International Conference on
Embedded Software, volume 2491 of LNCS, pages 349–363. Springer, 2002.

23 Stephan Thesing. Safe and Precise WCET Determinations by Abstract Interpretation of
Pipeline Models. PhD thesis, Saarland University, Saarbrücken, Germany, 2004.

24 Stephan Thesing, Jean Souyris, Reinhold Heckmann, Famantanantsoa Randimbivololona,
Marc Langenbach, ReinhardWilhelm, and Christian Ferdinand. An abstract interpretation-
based timing validation of hard real-time avionics software systems. In Proceedings of
the 2003 Intl. Conference on Dependable Systems and Networks, pages 625–632. IEEE
Computer Society, 2003.

25 Theo Ungerer, Francisco J. Cazorla, Pascal Sainrat, Guillem Bernat, Zlatko Petrov, Chris-
tine Rochange, Eduardo Quiñones, Mike Gerdes, Marco Paolieri, Julian Wolf, Hugues
Cassé, Sascha Uhrig, Irakli Guliashvili, Michael Houston, Florian Kluge, Stefan Metzlaff,
and Jörg Mische. Merasa: Multicore execution of hard real-time applications supporting
analyzability. IEEE Micro, 30(5):66–75, 2010.

26 ReinhardWilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and Chris-
tian Ferdinand. Memory hierarchies, pipelines, and buses for future architectures in time-
critical embedded systems. IEEE Transactions on CAD of Integrated Circuits and Systems,
28(7):966–978, 2009.


	Introduction
	Background
	WCET Analysis Flow
	Motorola PowerPC 7448

	Experimental Setup
	Experimental Results and Analysis
	Related Work
	Conclusions and Future Work

