
Toward StaticTiming Analysis of Parallel Software∗

Andreas Gustavsson, Jan Gustafsson, and Björn Lisper

School of Innovation Design and Engineering, Mälardalen University, Sweden
{andreas.sg.gustavsson,jan.gustafsson,bjorn.lisper}@mdh.se

Abstract
The current trend within computer, and even real-time, systems is to incorporate parallel hard-
ware, e.g., multicore processors, and parallel software. Thus, the ability to safely analyse such
parallel systems, e.g., regarding the timing behaviour, becomes necessary. Static timing analysis
is an approach to mathematically derive safe bounds on the execution time of a program, when
executed on a given hardware platform. This paper presents an algorithm that statically ana-
lyses the timing of parallel software, with threads communicating through shared memory, using
abstract interpretation. It also gives an extensive example to clarify how the algorithm works.

1998 ACM Subject Classification F.3.2 [Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages–Program Analysis

Keywords and phrases Parallelism, BCET, WCET, Static analysis, Abstract interpretation

Digital Object Identifier 10.4230/OASIcs.WCET.2012.38

1 Introduction
Many safety-critical embedded systems have hard real-time requirements. For these, safe
bounds on the Best- and Worst-Case Execution Times (BCET/WCET) of the tasks in
the system are key measures. Together, they define an interval in time within which the
execution of the task is guaranteed to finish. In particular WCET bounds are needed by,
e.g., schedulability analyses.

For reasons of energy consumption and performance, development in hardware today
strives toward massively parallel architectures, like many-core, GPU and even special purpose,
heterogeneous platforms. Thus, it is very likely that software tasks in future real-time systems
will be parallel in order to utilise the provided computing power. Therefore, efforts must be
made in providing WCET analyses for such systems.

This paper focuses on analysing the timing behaviour of parallel software with dependent
sub-tasks, using a programming model with threads, shared memory, and locks. This kind
of programming model is commonly used in parallel software today. It is assumed that an
arbitrary underlying timing model, which can predict safe bounds on the BCET and WCET
of individual instructions given a certain system state, is provided. An algorithm to statically
derive the BCET and WCET of parallel software using abstract interpretation is presented.
A technical report [8] covers the details and correctness proofs of the algorithm.

The rest of this paper is organised as follows. Section 2 presents related work on static
timing analysis for parallel systems. Section 3 introduces a small model parallel language,
with threads, thread-local and global memory, and locks. We also give a formal semantics for
the language, including time, and we then present an analysis based on abstract interpretation.
Section 4 clarifies how the analysis works by instantiating it for a given example program.
Section 5 concludes the presentation with some discussion and directions for the future.

∗ This work was partly funded by the Swedish Research Council (VR) through project 2008-4650,
“Worst-Case Execution Time Analysis of Parallel Systems”.

© Andreas Gustavsson, Jan Gustafsson, and Björn Lisper;
licensed under Creative Commons License NC-ND

12th International Workshop on Worst-Case Execution Time Analysis (WCET 2012).
Editor: Tullio Vardanega; pp. 38–47

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2012.38
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A. Gustavsson, J. Gustafsson, and B. Lisper 39

2 Related Work
As far as we know, there have not been many attempts to statically analyse the execution
time of explicitly parallel software. The parMERASA project provides a timing analysable
multicore CPU with a system level software (c.f., operating system). In [11], a case study is
performed in which the WCET of a parallel 3D multigrid solver, executing on the MERASA
platform, is derived. In [7], model-checking is used to derive the WCET of a minimal
parallel program. It is shown that, since model-checking is based on exhaustive exploration
of concrete states, it is difficult to achieve scalability using only the presented approach. In
[9], abstract interpretation is combined with model-checking to avoid the found scalability
problems. This work does not focus on explicitly parallel (e.g., threaded) software, though.

In [3], an approach to directly calculate the BCET and WCET for sequential programs
using abstract execution [6] is presented. Our work takes basically the same approach, but
for explicitly parallel programs.

There is also some research on static low-level analysis of parallel systems. In [1] and [12],
static methods for analysing multicores with a shared L2 instruction cache are presented. In
[1], effects from timing anomaly influenced pipelines are also taken into account.

3 Timing Analysis
In this section, an algorithm for timing analysis of programs containing dependent parallel
threads will be defined. It is assumed that the underlying architecture consists of both
thread-private and global memory, referred to as registers, r ∈ Reg, and variables, x ∈ Var,
respectively, and that arithmetical operations etc. can be performed using values of registers.
It will also be assumed that shared resources that can be acquired in a mutually exclusive
manner by the threads are provided, and that the operations provided by the instruction
set (statements) may have variable execution times. (C.f., multicore CPU:s, where you have
local and global memory, a shared memory bus and mutual exclusion operations.) No further
assumptions on the underlying architecture, e.g., the number of CPU:s, the memory hierarchy
or whether an operating system is used, are made. Timing effects from such features should
not be considered in the software model but in the model of the underlying architecture.

3.1 Abstract Interpretation
In general, a timing analysis based on the concrete semantic of a program is infeasible due to
the enormous number of states that must be explored. Abstract interpretation [2, 4, 10] is a
method for safely approximating the concrete program semantics and can be used to obtain
a set of possible abstract states for each point in a program. An abstract state describes,
and sometimes over-approximates, the information given by a set of concrete semantic states.
This means that an analysis based on abstractly interpreting the semantics of a program can
become less complex and more efficient, but might suffer from imprecision, compared to an
analysis based on the concrete semantics.

The concrete semantics of a programming language can be abstracted in many different
ways. The choice of abstraction is done by defining an abstract domain. An abstract domain
is essentially the set of all possible abstract states that fit the definition of the domain.
It is often shown that the abstract domain is a safe over-approximation of the concrete
domain by deriving a Galois connection (an abstraction function, α, and a concretisation
function, γ) between the two domains [10]. An example of an abstract value domain is
Intv = {[z1, z2] | intmin ≤ z1 ≤ z2 ≤ intmax ∧ z1, z2, intmin, intmax ∈ Z}, i.e., the set of
all intervals that “fit in” [intmin, intmax]. This domain can be used to over-approximate

WCET’12

40 Toward Static Timing Analysis of Parallel Software

P ::= T
∣∣P ‖ T

T ::= (N, s)

s ::= [halt]l
∣∣[skip]l

∣∣[r := a]l
∣∣[if b goto l′]l

∣∣ s1;s2
∣∣

[load r from x]l
∣∣[store r to x]l

∣∣[lock lck]l
∣∣[unlock lck]l

a ::= n
∣∣ r ∣∣ a1 + a2

∣∣ a1 - a2
∣∣ a1 * a2

∣∣ a1 / a2

b ::= true
∣∣ false

∣∣!b ∣∣ b1 && b2
∣∣ a1 == a2

∣∣ a1 <= a2

Figure 1 The parallel programming language.

stm(T , pc) 〈pc′, r′,x′, l′〉 Condition
[halt]pc 〈pc, r,x, l〉 −
[skip]pc 〈pc + 1, r,x, l〉 −
[r := a]pc 〈pc + 1, r[r 7→ A[[a]]r],x, l〉 −

[load r from x]pc 〈pc + 1,R(r, r, x,x),x, l〉 −
[store r to x]pc 〈pc + 1, r,x[x 7→ (x x)[T 7→ {(r r, t)}]], l〉 −
[if b goto l]pc 〈pc + 1, r,x, l〉 ¬B[[b]]r
[if b goto l]pc 〈l, r,x, l〉 B[[b]]r
[lock lck]pc 〈pc, r,x, l〉 own(l lck) 6= T
[lock lck]pc 〈pc + 1, r,x, l[lck 7→ (locked,T)]〉 own(l lck) = T

[unlock lck]pc 〈pc + 1, r,x, l[lck 7→ (unlocked,⊥thrd)]〉 −
where R(r, r, x,x) = r[r 7→ v] and {(v, t′)} =

⋃
T′∈Thrd((x x) T ′)

Figure 2 Semantics of concrete axiom transitions: 〈T , pc, r,x, l, t〉−−→
ax
〈pc′, r′,x′, l′〉.

the concrete domain {z | intmin ≤ z ≤ intmax ∧ z, intmin, intmax ∈ Z}, i.e., the set of all
integers between (and including) intmin and intmax. It is easy to show that there exists a
Galois connection between the domains Intv and P(Z) (see e.g., [4, 8, 10]), and thus the
approximation is safe, given the abstraction function αint(Z) = [min(Z),max(Z)] and the
concretisation function γint([z1, z2]) = {z ∈ Z | z1 ≤ z ≤ z2}.

3.2 A Parallel Programming Language
The analysis will be based on the parallel programming language defined in Fig. 1, which is
a set of operations using the discussed architectural features. P ∈ Prg denotes a program,
which simply is a number of threads, denoted by T ∈ Thrd. A thread is a pair of a
statement, s ∈ Stm, and a unique identifier, N ∈ ThrdID. This makes every thread unique
and distinguishable from other threads, even if several threads contain the same statement.
To increase the readability of the semantics, it will be assumed that the axiom-statements (all
statements except the sequentially composed statement, s1;s2) of each thread are uniquely
labelled with consecutive labels, l ∈ Lbl, and stored in an array-like fashion in ascending order
of their labels. a ∈ Aexp and b ∈ Bexp denote an arithmetic and a boolean expression,
respectively, n ∈ Val is an integer value, and lck ∈ Lck denotes a lock. Locks can be
acquired in a mutually exclusive manner using lock and released using unlock. Values can
be transferred between variables and registers using load and store. Conditional branching
is performed using if, a register is assigned a value using :=, a no-operation is performed
using skip, and halt stops the execution of the issuing thread. The arithmetical, boolean
and relational operators are self-explanatory and will not be discussed further.

The semantics of the language is formally defined in Fig. 2 (individual axiom statements)
and 3 (system of threads). x ∈ Var → Thrd → P(Val × Time), l ∈ Lck → (Lckstt ×
Thrd ∪ {⊥thrd}), where Lckstt = {unlocked, locked}, and t ∈ Time are the states for
variables and locks, and the current time. For each thread, T , in the program, there is also
pcT ∈ LblT , rT ∈ RegT → Val, tr

T ∈ Time and ta
T ∈ Time, which are the states of the

program counter and registers of T , the relative execution time of T ’s active statement,
stm(T , pcT), and the accumulated execution time for T , respectively. The tuple collecting

A. Gustavsson, J. Gustafsson, and B. Lisper 41

∀T ∈ Thrdexe : 〈T , pcT , rT ,x, l
′′, ta

T
′〉−−→

ax
〈pc′

T , r
′
T ,x

′
T , l

′
T〉

〈{(T , pcT , rT , tr
T , ta

T) | T ∈ Thrd},x, l, t〉−−→
prg

〈{(T , pc′
T , r

′
T , tr

T
′, ta

T
′) | T ∈ Thrd},x′, l′, t′〉

where

tr
T

′ =
{

finTime(〈{(T , pcT , rT , tr
T , ta

T) | T ∈ Thrd},x, l, t〉,T) if t = ta
T

tr
T otherwise

t′ = min({ta
T + tr

T
′ | T ∈ Thrd})

ta
T

′ =
{

ta
T + tr

T
′ if t′ = ta

T + tr
T

′

ta
T otherwise

Thrdexe = {T ∈ Thrd | t′ = ta
T

′}

(x′ x) T =

{

(x′
T x) T

∅
for some T ∈ Thrdexe : ∃r ∈ RegT : stm(T , pcT) = [store r to x]pcT

for T ′ ∈ Thrd \ {T}, if such a T exists
(x x) T otherwise

l
′′ lck =

(unlocked,T) for some T ∈ Thrdexe : stm(T , pcT) = [lock lck]pcT , if such
T exists, stt(l lck) = unlocked and own(l lck) = ⊥thrd

l lck otherwise

l
′ lck =

l
′
T lck for some T ∈ Thrdexe : (stm(T , pcT) = [unlock lck]pcT ∨

(own(l′′ lck) = T ∧ stm(T , pcT) = [lock lck]pcT)), if such T exists
l lck otherwise

Figure 3 Semantics of concrete program transitions: 〈Ts,x, l, t〉−−→
prg
〈Ts′,x′, l′, t′〉.

T1

T2

T3

4 8 12 timet t′

ta
T3

ta
T2

ta
T1

ta
T3 + tr

T3
′

ta
T2 + tr

T2
′

ta
T1 + tr

T1
′

(a) c1: Thrdexe = {T2,T3}

T1

T2

T3

4 8 12 timet t′

ta
T3

ta
T2

ta
T1

ta
T3 + tr

T3
′

ta
T2 + tr

T2
′

ta
T1 + tr

T1
′

(b) c2: Thrdexe = {T1,T3}

Figure 4 Illustration of how Thrdexe is determined (c1−−→
prg

c2).

all these states will be referred to as a configuration, c, i.e., c = 〈{(T , pcT , rT , tr
T , ta

T) | T ∈
Thrd},x, l, t〉. Note that states are updated on transitions, i.e., when pc is updated.

The state for locks keeps track of the state and owner of each lock. The owner is ⊥thrd if
no thread currently has the lock acquired. The state for registers of thread T simply keeps
track of the current value of each register within T . The state for variables is not as intuitive.
To be precise, the abstraction of the state for variables will need to save write history, i.e.,
what abstract writes (a pair of value and time) have been performed by each thread on each
variable (see Section 3.3). Therefore, to derive a Galois connection (and hence implicitly get
a safe approximation), the concrete state for variables has to be defined accordingly. In the
concrete semantics, only one single write is saved for each variable, though. This write is
non-deterministically chosen from one of the threads, if any, writing the variable at any given
point in time (see Fig. 3). R is defined to return the value of the saved write (see Fig. 2).
A : Aexp → (Reg → Val) → Val and B : Bexp → (Reg → Val) → Bool evaluate

arithmetic and boolean expressions, respectively, given a particular register state. The details
of these functions are straightforward and can be found in [8]. finTime is assumed to be
provided by a timing-model of the underlying hardware. It should return a relative execution
time for the statement of thread T , i.e., stm(T , pcT), based on the current system state. The
set of threads to execute, Thrdexe, is determined based on t, tr ′ and ta. It simply consists
of the threads that will update their pc:s at the nearest point in time, t′. An illustration of
how tr

T
′, ta

T , t and t′ are used to determine Thrdexe is given in Fig. 4. For the arbitrary
configuration c1 in Fig. 4a, t′ = 6 and hence Thrdexe = {T2,T3}. For c2 (note that c1−−→prg

c2)

WCET’12

42 Toward Static Timing Analysis of Parallel Software

stm(T , pc) 〈pc′, r̃′, x̃′, l′〉 Condition

[halt]pc 〈pc, r̃, x̃, l〉 −
[skip]pc 〈pc + 1, r̃, x̃, l〉 −
[r := a]pc 〈pc + 1, r̃[r 7→ Ã[[a]]r̃], x̃, l〉 −

[load r from x]pc 〈pc + 1, r̃[r 7→ read(x̃, x,T , t̃)] x̃, l〉 −
[store r to x]pc 〈pc + 1, r̃,write(T , x̃, x, (r̃ r, t̃)), l〉 −
[if b goto l]pc 〈pc + 1, B̃R[[!b]]r̃, x̃, l〉 B̃R[[!b]]r̃ 6= ⊥̃reg

[if b goto l]pc 〈l, B̃R[[b]]r̃, x̃, l〉 B̃R[[b]]r̃ 6= ⊥̃reg

[lock lck]pc 〈pc, r̃, x̃, l〉 own(l lck) 6= T
[lock lck]pc 〈pc + 1, r̃, x̃, l[lck 7→ (locked,T)]〉 own(l lck) = T

[unlock lck]pc 〈pc + 1, r̃, x̃, l[lck 7→ (unlocked,⊥thrd)]〉 −
where B̃R[[b]]r̃ = αreg({r ∈ γreg(r̃) | B[[b]]r})

Figure 5 Semantics of abstract axiom transitions: 〈T , pc, r̃, x̃, l, t̃〉−̃−→
ax
〈pc′, r̃′, x̃′, l′〉.

in Fig. 4b, t′ = 10 and hence Thrdexe = {T1,T3}.
The behaviour of locks needs to be explained. Assume that some threads in Thrdexe

execute a lock-statement on some lock, lck, and that lck is unlocked in the given configuration.
In the resulting configuration, stt(l′ lck) = locked and the owner will be one of the threads
that tried to acquire lck. The chosen thread is given by own(l′′ lck); note that l′′ is only used
to control the behaviour of the rules for lock in Fig. 2. This thread will have incremented
its pc and thus moved on to executing its next statement. All other threads that tried to
acquire lck will again try to acquire lck since their pc:s are not changed. Note that the latter
would also be the case for all threads in Thrdexe that try to acquire an already locked lock
that is not owned by themselves. Also note that a thread who owns a lock is allowed to
repeatedly acquire this lock any number of times.

3.3 Abstractly Interpreting the Language Semantics
First, it must be decided what parts of the system state to interpret in an abstract way. To
allow for the hardware timing-model to be abstracted as well, Time will be approximated
using the interval domain, i.e., Tim̃e = Intv. This approach is also taken by Chattopadhyay
et al. [1] to approximate the execution time of pipeline stages in order to deal with timing
anomalies in multicore platforms. Val will also be abstracted using intervals, i.e., Vãl = Intv,
to allow for an efficient handling of data flow. Since Thrd, Lbl, Var, Reg, Lck, Aexp
and Bexp are defined by the software, it does not make any sense to abstract them for the
defined analysis (see Section 3.4). And, since Lckstt is comparable to Bool, an abstraction
of it would not be very beneficial. The states implicitly affected by the abstractions of
Time and Val are r, x, tr , ta, t, and thus c. The abstraction of these will be referred
to as r̃, x̃, t̃r, t̃a, t̃ and c̃, respectively. In [8], it is shown that Galois connections (with
the corresponding abstraction and concretisation functions) can be established between the
concrete and abstract domains for these states, and thus, that the approximations are safe.
It is also shown that the abstract axiom transition rules (including the abstract version of A,
i.e., Ã) in Fig. 5 are safe approximations of the concrete rules in Fig. 2, and that the boolean
restriction function, B̃R, is safe. Note that the concretisation of B̃R[[b]]r̃ will always contain
(at least) the concrete stores, derived from r̃, in which b evaluates to true.

x̃ ∈ Var→ Thrd→ P(Vãl×Tim̃e) can save any number (i.e., the history) of abstract
writes, w̃ ∈ Vãl × Tim̃e, for each thread that occur on some variable. This is done to
increase the precision in the analysis, since then, sequence (within each thread) and timing
information (between threads) can be used to get a tight value when reading a variable.
write(T , x̃, x, w̃) is thus defined to simply add the write, w̃, to the set of write-history for

A. Gustavsson, J. Gustafsson, and B. Lisper 43

T1

T2

t̃1 t̃2 time
Figure 6 The time-stamps of the writes considered by read(x̃, x,T1, t̃1) and read(x̃, x,T2, t̃2).

∀T ∈ Thrdexe : 〈T , pcT , r̃T , x̃, l
′′, t̃a

T
′〉−̃−→

ax
〈pc′

T , r̃
′
T , x̃

′
T , l

′
T〉

〈{(T , pcT , r̃T , t̃r
T , t̃a

T) | T ∈ Thrdc̃}, x̃, l, t̃〉 ˜−−→
prg

〈{(T , pc′
T , r̃

′
T , t̃r

T
′, t̃a

T
′) | T ∈ Thrdc̃}, x̃′, l′, t̃′〉

where

t̃r
T

′ =
{

AbsFinTime (〈{(T , pcT , r̃T , t̃r
T , t̃a

T) | T ∈ Thrdc̃}, x̃, l, t̃〉,T) if t̃ ũt t̃a
T 6= ⊥̃t

t̃r
T otherwise

t̃′ = αt({tmin, tmax}) where tmin = min{min(γt(t̃a
T +t t̃r

T
′)) | T ∈ Thrdc̃}

tmax = min{max(γt(t̃a
T +t t̃r

T
′)) | T ∈ Thrdc̃}

t̃a
T

′ =
{

t̃a
T +t t̃r

T
′ if t̃′ ũt(t̃a

T +t t̃r
T

′) 6= ⊥̃t

t̃a
T otherwise

Thrdexe = {T ∈ Thrdc̃ | t̃′ ũt t̃a
T

′ 6= ⊥̃t}
(x̃′ x) T = (x̃′

T x) T
l

′′ lck = . . . (same as in Fig. 3)
l

′ lck = . . . (same as in Fig. 3)

Figure 7 Semantics of abstract program transitions: 〈T̃s, x̃, l, t̃〉−−→
prg
〈T̃s′, x̃′, l′, t̃′〉.

thread T , i.e., to ((x̃ x) T). Using the sequence and timing information, read(x̃, x,T , t̃) is
defined to only take the writes that might be valid at t̃ (the point in time when T issues the
read) into consideration for its returned value ṽ ∈ Vãl. These writes, w̃ = (ṽ′, t̃′), come
from two categories. The first category covers the writes on x for threads T ′ 6= T whose
“time-stamps” overlap in time with t̃, i.e., t̃ ũt t̃′ 6= ⊥̃t. The second category covers the most
recent write on x for all threads (including T) such that its time-stamp overlaps with the
overall most recent write of any write, not belonging to the first category. Note that any
write for thread T with a time-stamp that begins after the beginning of t̃ is discarded. So is
any write for T ′ 6= T such that its time-stamp completely succeeds t̃. This is because such
writes can simply not have occurred at the time of the read (and will thus usually not be
included in x̃ at all). An illustration of the time-stamps of the writes on x, by some threads
T1 and T2, stored in x̃, that must be considered by read(x̃, x,T1, t̃1) (lines with arrow heads
pointing left) and read(x̃, x,T2, t̃2) (lines with arrow heads pointing right) is given in Fig.
6. The returned value, ṽ, is the least upper bound of the values of the considered writes.

The abstract transition rule for program configurations in Fig. 7 is an approximation
of the concrete rule in Fig. 3. The abstract rule now defines a window in time, t̃′, that
determines which threads are included in Thrdexe. The window reaches from the earliest
point in time when some thread might update its pc, to the earliest point in time when some
pc must be updated. AbsFinTime is assumed to be a safe approximation of finTime.

The abstract rule in Fig. 7 is a safe approximation of the concrete rule in Fig. 3 only
if some certain conditions are met. It is safe given that |Thrdc̃| = 1, or if a load-,
lock- or unlock-statement is not executed by any thread in Thrdexe [8]. This is easy
to see since if these conditions are met, the threads in Thrdexe execute independently
from each other. If some thread in Thrdexe would execute for example a load-statement,
dependencies are introduced between the threads, and the read function could return a
value for which all possible writes have not been taken into account. Let’s assume that
Thrdexe = {T1,T2}, stm(T1, pcT1) = [load r from x]pcT1 , stm(T2, pcT2) = [skip]pcT2

WCET’12

44 Toward Static Timing Analysis of Parallel Software

1: function abstractExecution(c̃, t̃to)
2: workset ← {c̃}, finalset ← ∅
3: repeat
4: c̃@〈{(T , pcT , r̃T , t̃r

T , t̃a
T) | T ∈ Thrdc̃}, x̃, l, t̃〉 ← choose(workset)

5: workset ← workset \ {c̃}
6: if isTimeout(c̃, t̃to) ∨ isFinal(c̃) then
7: finalset ← finalset ∪ {c̃}
8: else
9: Thrdload ← loadThrd(c̃)
10: if Thrdload 6= ∅ ∧ |Thrdc̃| > 1 then
11: for all T ′ ∈ Thrdload do
12: t̃r

T′
′ ← AbsFinTime(c̃,T ′)

13: x← getVarLoad(stm(T ′, pcT′)), r ← getRegLoad(stm(T ′, pcT′))
14: ṽ ← ⊥̃val, c̃′ ← 〈{(T , pcT , r̃T , t̃r

T , t̃a
T) | T ∈ Thrdc̃ \ {T ′}}, x̃, l, t̃〉

15: C̃f
T′ ← abstractExecution(c̃′, (t̃a

T′ +t t̃r
T′

′) ũt t̃to)
16: for all 〈T̃s, x̃′, l′, t̃′〉 ∈ C̃f

T′ do
17: ṽ ← ṽ t̃val read(x̃′, x,T ′, t̃a

T′ +t t̃r
T′

′)
18: end for
19: pc′

T′ ← pcT′ + 1, r̃
′
T′ r′ ←

{
ṽ if r = r′

r̃T′ r′ otherwise
20: end for
21: c̃′ ← 〈{(T , pcT , r̃T , t̃r

T , t̃a
T) | T ∈ Thrdc̃ \Thrdload} ∪

{(T , pc′
T , r̃

′
T , t̃r

T
′, t̃a

T +t t̃r
T

′) | T ∈ Thrdload}, x̃, l, t̃〉
22: workset ← workset ∪ {c̃′}
23: else
24: C̃ ← {c̃′ | c̃ ˜−−→

prg
c̃′}

25: C̃′ ← {〈T̃s,trim(x̃, t̃), l, t̃〉 | 〈T̃s, x̃, l, t̃〉 ∈ C̃}
26: workset ← workset ∪ C̃′

27: end if
28: end if
29: until workset = ∅
30: return finalset
31: end function

Figure 8 An algorithm for abstract execution.

and stm(T2, pcT2 + 1) = [store r′ to x]pcT2 +1. When a transition occurs, the load- and
skip-statements are considered. However, if the execution time of the store-statement (the
abstract “point” in time when the thread’s pc is updated) overlaps with the execution time
of the load-statement, the resulting value of r in T1 should be affected by the value of r′ in
T2, but this will not be the case. A similar reasoning holds for lock- and unlock-statements.

3.4 Analysis by Abstract Execution
Since the abstract transition rule, ˜−−→

prg
, of Fig. 7 is not safe, one cannot simply use fixpoint-

iterations [4, 10] on the abstract semantic rules to find a safe approximation to the concrete
program semantics. Instead, a worklist algorithm will be defined that uses ˜−−→

prg
in a safe

way and handles the unsafe cases explicitly. The function abstractExecution in Fig. 8
defines such an algorithm; the ‘@’ symbol is used for denoting two ways of expressing the
same thing (c.f., the “read as” operator in Haskell). Given a configuration, c̃, and a timeout,
t̃to, the function explores all the possible abstract transitions, until only final (all threads are
standing on a halt-statement) and timed-out (all threads will update their pc:s at a point in
time succeeding t̃to) configurations remain. The function returns a set containing all the final
and timed-out configurations. If a configuration is not final or timed-out, a transition will be
performed. The threads executing load-statements are extracted and handled separately.

A. Gustavsson, J. Gustafsson, and B. Lisper 45

thread T_1: thread T_2: thread T_3:
[load r from x]1;[1 ,5] [load r from y]1;[1 ,6] [if r <=3 goto 3]1;[1 ,3]
[store r to y]2;[1 ,3] [store r to z]2;[2 ,3] [store r to x]2;[2 ,3]
[halt]3 [halt]3 [halt]3

Figure 9 Example program.

This is done by recursively using abstractExecution for each such thread to simulate
how the rest of the threads in the configuration can affect the read value. When the effects
have been derived, they are merged and put in the target register for the thread that issues
the load -statement. Next, a new configuration, in which the load:s have been performed, is
added to the worklist. Note that trim is used to remove parts of the history from x̃ that
cannot affect a load-statement in any thread at time t̃. This is to lower the space complexity
of abstractExecution. Further details on the algorithm, definitions of the used functions
and correctness proofs can be found in [8]. Note that this algorithm cannot safely analyse
programs acting on locks. The algorithm will be extended with this ability (see Section 5).

Assuming that abstractExecution has been applied to some c̃ and that t̃to = [0,∞],
safe bounds on the corresponding concrete BCET and WCET can be extracted from the
resulting set of configurations (details can be found in [8]).

4 Example
In this section, the program in Fig. 9 is analysed (the results of AbsFinTime are given after
the non-halt-statements). Initially, let c̃ = 〈{(T1, 1, r̃T1 , [0, 0], [0, 0]), (T2, 1, r̃T2 , [0, 0], [0, 0]),
(T3, 1, r̃T3 , [0, 0], [0, 0])}, x̃, l, [0, 0]〉, where r̃T3 r = [2, 4], ((x̃ x) T2) = ((x̃ x) T3) = ∅ and
((x̃ x) T1) = {([1, 1], [0, 0])}, ((x̃ y) T1) = ((x̃ y) T2) = ∅ and ((x̃ y) T3) = {([5, 5], [0, 0])},
and ((x̃ z) T2) = ∅, is analysed. abstractExecution(c̃, [0,∞]) is summarised in Fig. 10.

The tuples in the chart represent program points, defined as 〈pcT1 , pcT2 , pcT3〉. As can
be seen, for 〈1, 1, 1〉, T1 and T2 both execute a load-statement. This means that two new
instances of abstractExecution are created, one for each thread in Thrdload. Within
each of these instances, a new instance is created since one other thread also executes a
load-statement. A ‘_’ within the tuple indicates that the corresponding thread is removed
from the configuration to evaluate the effects it might see. Next to each tuple and transition
arrow, there is a comment stating what happens at the corresponding step. The found
bounds on the BCET and WCET are 3 and 9, respectively. Note that AbsFinTime is
assumed to be defined somewhere outside the scope of this paper. Also note that programs
containing loops can be analysed, but due to space reasons, this is not illustrated here.

5 Discussion & Future Work
The algorithm in Fig. 8 is based on synchronously advancing the threads of a program
between their respective program points. This, together with the defined abstract domain for
variables, has the advantage that the analysis result will be the same as for the sequential case
[6], when P = T . Another advantage is that the complexity of the algorithm becomes more
dependent on the number of program points than on the timing behaviour of the program.
To further reduce the time complexity of the algorithm, merging of configurations could be
performed. Using the control flow graph (CFG) of the program, suitable merge-points within
each thread can be found [5]. Typically, such points have multiple incoming edges.

A drawback for the algorithm in Fig. 8 is that termination is not guaranteed if a program
consists of infinite loops. This could be resolved by adjusting the initial timeout, though.

Our current focus is to extend the algorithm to support programs using locks and then to

WCET’12

46 Toward Static Timing Analysis of Parallel Software

abstractExecution(c̃, [0,∞])
〈1, 1, 1〉 Thrdload = {T1,T2}, t̃r

T1 = [1, 5], t̃r
T2 = [1, 6], t̃r

T3 = [1, 3]

abstractExecution(c̃1, [1, 5])
〈_, 1, 1〉 Thrdload = {T2}, t̃r

T2 = [1, 6], t̃r
T3 = [1, 3]

abstractExecution(c̃1.2, [1, 5])
〈_,_, 1〉 Thrdload = ∅
↙ ↓ r̃T3 r← [2, 3] (B̃R[[r <= 3]]r̃T3 6= ⊥̃reg)
↓ 〈_,_, 3〉 final (t̃a

T3 = [1, 3]), no effects
↘ r̃T3 r← [4, 4], t̃a

T3 ← [1, 3] (B̃R[[!(r <= 3)]]r̃T3 6= ⊥̃reg)
〈_,_, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈_,_, 3〉 final (t̃a
T3 = [3, 6]), x affected

↓ r̃T2 r← [5, 5] (no effects on y from T3), t̃a
T2 ← [1, 6]

〈_, 2, 1〉 Thrdload = ∅, t̃r
T2 = [2, 3], t̃r

T3 = [1, 3]
↙ ↓ r̃T3 r← [2, 3], ((x̃ z) T2)← {([5, 5], [3, 9])},
↓ 〈_, 3, 3〉 final (t̃a

T2 = [3, 9], t̃a
T3 = [1, 3]), z affected

↘ r̃T3 r← [4, 4], ((x̃ z) T2)← {([5, 5], [3, 9])}, t̃a
T2 ← [3, 9], t̃a

T3 ← [1, 3]
〈_, 3, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈_, 3, 3〉 final (t̃a
T2 = [3, 9], t̃a

T3 = [3, 6]), x and z affected

abstractExecution(c̃2, [1, 6])
〈1,_, 1〉 Thrdload = {T1}, t̃r

T1 = [1, 5], t̃r
T3 = [1, 3]

abstractExecution(c̃2.1, [1, 5])
〈_,_, 1〉 Thrdload = ∅
↙ ↓ r̃T3 r← [2, 3]
↓ 〈_,_, 3〉 final (t̃a

T3 = [1, 3]), no effects
↘ r̃T3 r← [4, 4], t̃a

T3 ← [1, 3]
〈_,_, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3) = {([4, 4], [3, 6])}

〈_,_, 3〉 final (t̃a
T3 = [3, 6]), x affected

↓ r̃T1 r← [1, 4] (effects on x from T3), t̃a
T1 ← [1, 5]

〈2,_, 1〉 Thrdload = ∅, t̃r
T1 = [1, 3], t̃r

T3 = [1, 3]
↙ ↓ r̃T3 r← [2, 3], ((x̃ y) T1)← {([1, 4], [2, 8])},
↓ 〈3,_, 3〉 final (t̃a

T1 = [2, 8], t̃a
T3 = [1, 3]), y affected

↘ r̃T3 r← [4, 4], ((x̃ y) T1)← {([1, 4], [2, 8])}, t̃a
T1 ← [2, 8], t̃a

T3 ← [1, 3]
〈3,_, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈3,_, 3〉 final (t̃a
T1 = [2, 8], t̃a

T3 = [3, 6]), x and y affected
↓ (T1 sees effects on x and z, and T2 sees effects on x and y.)
↓ r̃T1 r← [1, 4], r̃T2 r← [1, 5], t̃a

T1 ← [1, 5], t̃a
T2 ← [1, 6]

〈2, 2, 1〉 Thrdload = ∅, t̃r
T1 = [1, 3], t̃r

T2 = [2, 3], t̃r
T3 = [1, 3]

↙ ↓ r̃T3 r← [2, 3], ((x̃ y) T1)← {([1, 4], [2, 8])}, ((x̃ z) T2)← {([1, 5], [3, 9])}
↓ 〈3, 3, 3〉 final (t̃a

T1 = [2, 8], t̃a
T2 = [3, 9], t̃a

T3 = [1, 3]), y and z affected
↘ r̃T3 r← [4, 4], ((x̃ y) T1)← {([1, 4], [2, 8])}, ((x̃ z) T2)← {([1, 5], [3, 9])}
〈3, 3, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈3, 3, 3〉 final (t̃a
T1 = [2, 8], t̃a

T2 = [3, 9], t̃a
T3 = [3, 6]), x, y and z affected

Figure 10 The steps taken by abstractExecution when analysing the program in Fig. 9.

A. Gustavsson, J. Gustafsson, and B. Lisper 47

implement and evaluate it. Allowing the use of locks introduces a risk for deadlocks (both in
the analysed program and thus the algorithm). However, deadlocks could easily be detected
and handled by the algorithm, because all threads, not standing on a halt-statement, would
be waiting to acquire a lock that is locked and not owned by themselves. Thus, this detection
allows termination of the analysis (with a resulting WCET of ∞) even if deadlocks occur.

References
1 Sudipta Chattopadhyay, C.-L. Kee, Abhik Roychoudhury, Timon Kelter, Peter Marwedel,

and Heiko Falk. A unified WCET analysis framework for multi-core platforms. In
18th IEEE Real-time and Embedded Technology and Applications Symposium (RTAS’12),
Beijing, China, April 2012.

2 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc. 4th

ACM Symposium on Principles of Programming Languages, pages 238–252, Los Angeles,
January 1977.

3 Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Deriving WCET bounds by ab-
stract execution. In Chris Healy, editor, Proc. 11th International Workshop on Worst-Case
Execution Time Analysis (WCET’2011), Porto, Portugal, July 2011.

4 Jan Gustafsson. Analyzing Execution-Time of Object-Oriented Programs Using Abstract
Interpretation. PhD thesis, Dept. of Information Technology, Uppsala University, Sweden,
May 2000.

5 Jan Gustafsson and Andreas Ermedahl. Merging techniques for faster derivation of WCET
flow information using abstract execution. In Raimund Kirner, editor, Proc. 8th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET’2008), Prague, Czech
Republic, July 2008.

6 Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Björn Lisper. Automatic
derivation of loop bounds and infeasible paths for WCET analysis using abstract execution.
In Proc. 27th IEEE Real-Time Systems Symposium (RTSS’06), pages 57–66, Rio de Janeiro,
Brazil, December 2006. IEEE Computer Society.

7 Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson. Towards
WCET analysis of multicore architectures using UPPAAL. In Björn Lisper, editor, Proc.
10th International Workshop on Worst-Case Execution Time Analysis (WCET’2010), pages
103–113, Brussels, Belgium, July 2010. OCG.

8 Andreas Gustavsson, Jan Gustafsson, and Björn Lisper. Toward static timing analysis of
parallel systems – technical report. Technical Report 2796, Dept. of Computer Science and
Engineering, Mälardalen University, April 2012.
URL: http://www.mrtc.mdh.se/index.php?choice=publications&id=2796.

9 Mingsong Lv, Nan Guan, Wang Yi, and Ge Yu. Combining abstract interpretation with
model checking for timing analysis of multicore software. In Scott Brandt, editor, Proc. 31th

IEEE Real-Time Systems Symposium (RTSS’10), pages 339–349, San Diego, CA, December
2010. IEEE.

10 Flemming Nielson, Hanne Ries Nielson, and Chris Hankin. Principles of Program Analysis,
2nd edition. Springer, 2005. ISBN 3-540-65410-0.

11 Christine Rochange, Armelle Bonenfant, Pascal Sainrat, Mike Gerdes, Julian Wolf, Theo
Ungerer, Zlatko Petrov, and Frantisek Mikulu. WCET analysis of a parallel 3D multigrid
solver executed on the MERASA multi-core. In Björn Lisper, editor, Proc. 10th Inter-
national Workshop on Worst-Case Execution Time Analysis (WCET’2010), pages 90–100,
Brussels, Belgium, July 2010. OCG.

12 Jun Yan and Wei Zhang. WCET analysis for multi-core processors with shared L2 instruc-
tion caches. In Proc. 14th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’08), pages 80–89, June 2008.

WCET’12

	Introduction
	Related Work
	Timing Analysis
	Abstract Interpretation
	A Parallel Programming Language
	Abstractly Interpreting the Language Semantics
	Analysis by Abstract Execution

	Example
	Discussion & Future Work

