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Abstract
Future embedded systems for performance-demanding applications will be massively parallel.
High performance tasks will be parallel programs, running on several cores, rather than single
threads running on single cores. For hard real-time applications, WCETs for such tasks must be
bounded. Low-level parallel programming models, based on concurrent threads, are notoriously
hard to use due to their inherent nondeterminism. Therefore the parallel processing community
has long considered high-level parallel programming models, which restrict the low-level models
to regain determinism. In this position paper we argue that such parallel programming models
are beneficial also for WCET analysis of parallel programs. We review some proposed models,
and discuss their influence on timing predictability. In particular we identify data parallel pro-
gramming as a suitable paradigm as it is deterministic and allows current methods for WCET
analysis to be extended to parallel code. GPUs are increasingly used for high performance ap-
plications: we discuss a current GPU architecture, and we argue that it offers a parallel platform
for compute-intensive applications for which it seems possible to construct precise timing models.
Thus, a promising route for the future is to develop WCET analyses for data-parallel software
running on GPUs.
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1 Introduction

There is an ever growing need for advanced functionality in embedded systems. As hardware
becomes more capable, new intelligent applications will emerge: some possible examples are
real-time image processing and object recognition, multiple-sensor information fusion, and
online spectral analysis for state-based maintenance. Some of these applications will have
hard real-time constraints, and these constraints will then have to be verified. This requires
a WCET analysis for the involved tasks.

High performance hardware is today invariably parallel, as this is the only way to meet
the demands for computational power. A high performance task will also have to be a parallel
program, thus utilizing the available computational resources. This raises the issue how to
estimate the WCET of a parallel program, consisting of a number of cooperating threads
synchronizing and exchanging data in some manner.

WCET analysis of parallel programs has hardly been studied up to now. Preliminary
work on such a WCET analysis, for a simple language with parallel threads communicating
through a shared memory and synchronizing with locks, is reported in [8]. A conclusion to
be drawn from this work is that while it certainly is possible to define such an analysis, and
prove its soundness, there will be issues to handle. One issue is that, since the functional
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semantics of the program now may be dependent on the timing, due to race conditions, it
is no more possible to divide the analysis into a distinct program flow analysis, low-level
analysis, and final calculation: the calculation has to be intertwined with the other phases to
find the possible outcomes of race conditions, which may in turn affect the possible orders
of writes, or acquirements of locks. Another issue is that the potentially many possible
executions of such a program, especially in the presence of potential race conditions, may
make the precision of the analysis sensitive to approximations. An overapproximated timing
interval for a write, for instance, may introduce a “false” order of writes in the analysis that
may in turn affect the estimated value of, say, a loop counter. This can in turn yield a very
poor precision for the resulting WCET bound.

Thus, it is interesting to investigate programming models for parallel computers that avoid
the nondeterminism of low-level, thread-based models, and that provide a more structured
way to write parallel programs for high performance applications. Such models have been
studied in the parallel computing community for the last 25 years, for two reasons: they
provide easier and less error-prone programming, and they yield the possibility to attach
abstract cost (performance) models to the parallel programming constructs. Both properties
should be of interest also for embedded real-time software, in particular if the cost models
can be sharpened to safe timing models.

In this position paper we argue that some of these parallel programming models provide
a suitable parallel programming discipline for time-critical applications as well. In particular,
we review the data parallel model, and we show how it restricts the patterns of parallelism
in such a way that a WCET analysis can be done in a more or less traditional fashion if
timing models are provided for the parallel constructs in this model. We identify for which
constructs it may be problematic to find tight timing bounds – methods to find good bounds
for them is a target for future research. We conclude by indicating how the data parallel
constructs can be mapped to the CUDA Graphics Processing Unit (GPU) architecture.

The rest of the paper is organized as follows: in Section 2 we review the background:
present and expected future development in embedded parallel computing, and the problems
with unrestricted thread- and process based parallelism. Section 3 introduces the Bulk
Synchronous Parallel model [21], which allows cost models that are valid over a wide range of
parallel architectures, and in Section 4 we review the data parallel model and discuss timing
models for the typical data parallel primitives. Section 5 introduces GPUs, and NVIDIA’s
CUDA model, and in Section 6 we discuss how the data parallel primitives can be mapped
to CUDA. Section 7 provides a discussion of related work. In Section 8, finally, we conclude
the paper and present future work.

2 Background

At this moment, multi-core processors are conquering the world. Current multi-cores have
a traditional shared-memory architecture with a few cores sharing a common memory,
connected via a shared bus. This architecture works reasonably well performance-wise for
concurrent, independent tasks, or moderately parallel computing, but it does not scale since
the shared bus and memory quickly become bottlenecks. As we go for higher performance,
the number of cores will have to increase, distributed memory must be provided, and the
bus must be replaced by a Network-on-Chip (NoC) that provides a wider communication
channel. Tilera already offers general purpose many-cores with up to 100 cores, a distributed
cache, and a mesh network1.

1 http://www.tilera.com/products/processors
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Another strand of development is provided by GPUs. Originally designed to accelerate
graphics, they are now rapidly turning into parallel general-purpose computational co-
processors. We can expect them to be integrated on chip. Thus, a future processor
architecture may have one part that is a conventional multi-core, with a few, relatively
powerful processors, and a powerful computational co-processor with many relatively simple
cores, connected through a NoC, and with local memories at different levels.

Now consider a time-critical, computationally intensive application, implemented by a
parallel program, whose timing constraints must be verified. How can we obtain safe WCET
estimates? Current practice in high performance computing it to write parallel software with
explicit threads or processes, either using a shared memory, synchronizing through locks or
semaphores (Pthreads [1], OpenMP [4]) or distributed memory, with synchronization and
communication effectuated through message-passing (MPI [6]). Unfortunately such low-level
parallel programming models are inherently nondeterministic, and race conditions create
dependencies between timing and functional behaviour. This makes WCET analysis hard.
Consider, for instance, the following example with parallel threads T1 and T2, sharing the
variable n:

T1: p; n = 100000000; halt
T2; q; n = 10; for i = 1 to n do r; halt

Here, there is a potential race condition for the assignment to n. If we know that
WCET (p) = 150 and BCET (q) = 200, however, then T2 will always “win” and the loop will
always iterate ten times. But if an imprecise timing analysis yields a WCET bound for p
that is greater than the BCET bound for q, then the analysis must assume that the loop can
iterate 108 times. This example demonstrates that it is no more possible to perform a loop
bounds analysis separately from the timing bounds calculation.

If we add synchronization through locks, then an imprecise analysis might even falsely
detect deadlocks. If BCET (p) > WCET (q) below then no deadlock is possible, but again an
imprecise timing analysis might fail to verify this and must then assume that a deadlock can
occur.

T3: p; lock l; halt
T4; q; lock l; r; unlock l; halt

Also an imprecise program flow analysis might yield similar problems, like false deadlocks.
Consider the two threads below, sharing a barrier b:

T5: m = expr1; for i = 1 to n do { a; barrier(b); c }
T6; m = expr2; for i = 1 to m do { x; barrier(b); y }

Assume that expr1 amd expr2 are such that they always evaluate to the same value.
However, a value analysis may fail to detect this: a WCET analysis using the results from
that value analysis for its loop bounds analysis will then have to assume that there is a
possibility that one thread will attempt to execute its barrier statement one time more
than the other one which then would cause it to deadlock. Thus, the analysis will have to
assume that a deadlock might appear. (In fact, any loop bounds analysis that only detects
upper loop bounds will not be strong enough to prove absence of deadlock for this example.)

These examples may be a bit contrived, but they are constructed to make a point. In
reality, the kind of problems exemplified above may appear in much more subtle ways, in
seemingly unproblematic code. The conclusion is that timing analysis of parallel software
will be difficult as long as the programs are written on this level. To alleviate the problem,
more disciplined parallel programming practices are needed that eliminate race conditions
and the risk of deadlock.
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Figure 1 A BSP superstep (following [20]).

3 Bulk Synchronous Programming

Bulk Synchronous Programming (BSP) [20, 21] is a model for parallel computing allowing
some performance analyzability over a wide range of target parallel architectures. The
BSP model assumes a hardware model of components that are connected by a router (a
network). The components can be processors or memories, and part of the router can connect
single processors locally with memories: thus, the model covers both distributed memory
architectures as well as shared (global) memory architectures, possibly with the memory
structured into different memory banks.

BSP has a concept of virtual processors, where a physical processor in each computation
step will execute the instructions of several virtual processors. In each computation step, the
virtual processors execute independent tasks. To hide communication latencies it is assumed
that there are considerably more virtual processors than actual processors, i.e., that the
computation is massively parallel.

A BSP program executes in supersteps. In each superstep each component performs a
task consisting of an initial phase of local computation steps, followed by a communication
phase, followed by a final barrier synchronization. See Fig. 1.

The separation of computation, communication, and synchronization has some interesting
consequences for the performance analyzability. For the computation phase, it is easy to
estimate the execution time since the processors execute in an entirely local fashion. Similarly,
the execution time for barrier synchronization should be easy to bound. Also note that the
restriction to global barrier synchronization eliminates the risk of deadlock provided that all
local supersteps terminate.

The communication phase is the hardest to analyze, since its performance is very dependent
on the communication/access pattern, network topology, and distribution of processors and
memories. The BSP model assumes that the router has a permeability g such that if each
component (memory or processor) sends or receives at most h messages within a superstep,
then the time for the communication phase is O(gh). This assumption is easily violated
in real parallel systems due to hotspots and similar. But assuming random (or hashed)
distribution of data and computations such hotspots will be unlikely for a wide range of
network topologies, and the permeability model can be applied to average case complexity
calculations.

For WCET analysis it is clear that the separation into supersteps, with separate phases
for computation, communication, and synchronization, should be beneficial. If the time for
a superstep can be bounded, as well as the number of supersteps, then a coarse WCET
estimate can be found by multiplying these bounds. The most serious remaining hurdle is
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Elementwise application for all k in parallel do B[k] = f(A1[k],...,An[k])
Get communication for all k in parallel do X[k] = Y[G[k]]
Send communication for all k in parallel do X[G[k]] = Y[k]
Replication for all k in parallel do X[k] = Y
Masking for all k where B[k] in parallel do X[k] = ...k...
Reduce reduce(op, X) = X[0] op · · · op X[n − 1]
Scan scan(op, X) = [X[0], X[0] op X[1], . . . , X[0] op · · · op X[n − 1]]

Figure 2 Data parallel operations.

the communication phase, which will require a much more detailed analysis for bounding
the worst case tightly. Also, BSP does not preclude race conditions in this phase. Thus,
parallel programming models that provide more predictable and deterministic communication
primitives can be desirable from a timing analysis point of view.

4 The Data Parallel Programming Model

Data Parallel Programming is an instance of Collection-Oriented Programming [19], with roots
in APL [10]. Collection-oriented programming emphasizes programming with homogenous
data structures, such as arrays, lists, or sets. The core of the paradigm is a set of operations
that work directly on such structures rather than on the elements one by one. This has two
consequences: first, many loops can be replaced by such operations, rendering the programs
more succinct and easier to understand, and second these primitives often have highly
parallel implementations, with large numbers of small, independent computations. Thus,
collection-oriented languages are interesting candidates for programming parallel hardware.

Data parallel languages take the collection-oriented approach one step further by asso-
ciating each element in a data structure (often an array) with one virtual processor. The
implementation will then map the virtual processors to physical processors, creating a par-
tition of the data structure, and even effectuating a physical distribution in the case of a
distributed memory machine.

The data parallel primitives can be classified in six groups: elementwise application
applies a “scalar” function to each element in a data structure; get communication creates
a new data structure by reading (pulling) each element from a source location in another
data structure; send communication does likewise, but by sending (pushing) each element
to a destination; replication creates a data structure whose elements are copies of a “scalar”
value; masking will select part of a data structure for computation, using a boolean mask;
reduce, and scan, finally, are generalized “sums” (or arrays of partial sums) where a binary,
associative operator is successively applied to all elements in a data structure. See Fig. 2
for an informal definition, using a “for all . . . in parallel do” syntax ranging over all
virtual processors of the data structures.

If the elementwise applied functions are side effect-free, then all data parallel operations
except send communication are deterministic. (For send communication there are write
conflicts if G[k] = G[k’] for some k 6= k’: however, if G specifies a permutation then this
operation is also deterministic.) Thus, a deterministic language that is extended with data
parallel operations is still deterministic (with the small proviso above).

It follows that a sequential language extended with data parallel primitives allows a
conventional WCET analysis, with separate flow- and low-level analysis and calculation
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phases, provided that the execution times for the data parallel operations can be bounded.
The timing bounds for the data parallel operations will depend strongly on how well the

pattern of communication for an operation matches the communication capabilities of the
network. This pattern in turn depends strongly on how the memory is organized, and how
data is allocated in memory. Assume there are n virtual processors being executed on k

physical processors. If communication can be done in unit time, then the execution time
for elementwise application is O(n/k) since the individual applications can be done in any
order, on any processor. This bound will hold in particular if the data accessed by each
virtual processor already resides in local memory for its physical processor. Under similar
conditions reduce and scan can be done in O(n/k + log k) time, given that the network
provides efficient support for tree-balanced summation. Masking will not add more than a
small constant cost, and can be implemented for instance with predicated instructions. The
remaining operations all concern general communication, for which a more detailed analysis
of the actual access and communication patterns will be needed to bound the execution time
reasonably well. However data parallel languages tend to offer specialized communication
primitives, like array shifts, which provide efficient and predictable communication on a wide
range of parallel hardware. For such primitives it will be easier to find tight timing bounds,
and a parallel program that can use them instead of the general communication operations
will likely be more timing predictable.

As for BSP, the strict division into communication, computation, and synchronization
helps formulating the timing models. The data parallel paradigm has the additional advantage
that it provides a set of distinct deterministic parallel operations: this helps timing analysis
since timing bounds for these operations can be used directly in a conventional WCET
calculation.

5 GPUs: the CUDA Model

GPUs have rapidly emerged as computational co-processors that provide high performance
computing capabilities at low cost. A GPU is typically designed to run many similar,
independent threads at high speed, using massive parallelism (up to hundreds of cores). It
will have several levels of local memory, distinct from the host memory. Data is moved from
host to local memory, and between different levels of local memory, by explicit operations.
The host will issue jobs, consisting of a number of threads to execute to completion, to the
GPU. The jobs can either block the host until completion, or allow that the host continues
to execute concurrently.

Two rather similar application programming interfaces have emerged for GPUs: OpenCL,
and NVIDIA’s CUDA [14]. Both also provide a computation model. We now review CUDA
and we also discuss briefly the current underlying execution model for NVIDIA GPUs.

The basic units of execeution in CUDA are threads. The threads are grouped into thread
blocks. A multithreaded CUDA program logically specifies a number of thread blocks: these
are then scheduled in some unspecified, possibly parallel order on the GPU cores, where
the execution of a thread block is done by executing its threads on a single core in some
unspecified, possibly interleaved order. If there are no dependencies between the threads in
a set of thread blocks, then the semantics will be independent of the order in which they
are executed. This yields considerable flexibility in how thread blocks are executed, and the
execution can easily adapt to the number of available cores in the GPU.

A thread within a block has a local unique ID within that block, and the block itself has
a global unique ID: both can be accessed by the thread, and thus it can decide, e.g., which
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part of an array that it will work on.
There is no synchronization available between thread blocks. Threads within a block can,

however, synchronize through local barriers.
CUDA has a memory hierarchy, with memory at different levels of locality. Each thread

has its own private memory. Each thread block has shared memory, with the same lifetime
as the block, which is visible to all the threads in the block: variables residing in this memory
are explicitly declared. There is also global, shared memory visible in all thread blocks. Local
shared memory can be expected to be much faster than global shared memory. Furthermore,
the CUDA model assumes that the GPU executes as co-processor to a host, and that their
memories are distinct. Transfers between host and co-processor memory are done explicitly,
through calls to the CUDA runtime system. A thread executing on the co-processor can only
access memory that is located on that processor: data to be processed thus has to be copied
from the host to the co-processor, and results must be copied back.

CUDA C extends C with kernels. These are C functions for which, when called, N

instances are executed in parallel in N different CUDA threads. A special call to the kernel
will issue the execution of the threads on the GPU.

A CUDA C program will alternatingly execute in sequential and parallel phases. In a
sequential phase, the C program is executing as usual on the host. A call to a kernel invokes
a parallel phase where the kernel is executed in parallel, in a number of thread blocks, on the
co-processor (the GPU). When the kernel call returns, the sequential execution will resume.

Under some circumstances the co-processor can execute concurrently with the host.
Control is then returned to the host before the call has completed. This includes asynchronous
kernel calls, and certain memory transfers.

NVIDIA’s underlying hardware architecture is called SIMT (Single-Instruction, Multiple-
Thread), and it can be seen as a hybrid of SIMD and MIMD with separate threads but
strong coherence locally between their execution. Threads are executed on a scalable array
of multithreaded Streaming Multiprocessors (SMs). The execution of threads is organized
in groups of 32 threads called warps. A number of warps will make up a thread block. All
threads in a warp will execute on the same SM: they will start at the same address, but they
have their own program counters. Threads in a warp can therefore take different execution
paths through the code. However, different threads in a warp can execute simultaneously
only if they execute the same instruction: thus, diverging threads will force the warp to
execute the instructions on each path separately, disabling threads that are not on that path.
This can affect the performance very adversely. Instructions can be predicated, though.

The warps are scheduled by a warp scheduler. This scheduler will always pick a warp
with an instruction ready to execute, if available. Since there typically will be considerably
more warps than cores to execute them on, this will help mask the memory latencies as it
allows memory fetches issued by instructions to complete in parallel with instructions for
other warps being executed.

The current SM cores have a fairly simple architecture: instructions are pipelined, but
they are executed in order and there is no branch prediction or speculative execution. Each
SM has a set of registers, and local memory partitioned among the thread blocks: on some
GPU models this is a partitioned cache, whereas for others it is explicitly addressed. A GPU
also has global memory that is shared among the SMs.

The conclusion is that overall, the NVIDIA architecture with the CUDA model should
be quite amenable to timing analysis. The processors are simple. Memory access times
vary strongly with the degree of locality, but for the most part it is explicit which part
of memory is being accessed. GPU models with local caches will need a cache analysis,
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though. Although threads are executed concurrently, it is done in a very controlled fashion.
Also the interaction with the host is very explicit, with calls for submitting kernels and
transferring memory contents. Overlaps in execution between GPU and host should be
possible to estimate. Finally, since the GPU executes requests in sequence there will not be
the same competition for shared resources within the GPU, between unrelated activities, as
in a bus-based multi-core processor.

The largest sources of uncertainty seem to be (1) the fact that a warp can only execute
threads executing the same instruction in parallel, and (2) uncertainty about exactly how
the warps are scheduled. (1) will be alleviated if the executed kernels have a predictable,
indata-independent program flow: if not, then an analysis may have to assume that all 32
instances of the kernel in a warp will diverge, and thus must have their respective instructions
sequentially executed in each step. As for (2), uncertainties about warp scheduling means
that it will be harder to estimate the overlaps between warp execution and memory fetches.

6 Mapping Data Parallel Primitives to GPUs

It should be evident from the preceding discussion that data parallel programming and
GPUs is a good match. GPUs are designed to execute a large number of similar threads,
executing in the same fashion with little or no synchronization, in parallel. The data parallel
operations described in Section 4 can be implemented by such threads. For elementwise
applied operations this is obvious. Parallel read operations, and replication, can also be
implemented by threads reading data to local shared memory, and parallel writes will copy
data in parallel from local memories to global shared memory. Masking can be implemented
efficiently by predicated execution of instructions. A compiler can coalesce sequences of such
data parallel operations into kernel code implementing them on the GPU: these kernels will
execute efficiently and predictably since all threads will execute the same path. Operations
like reduce and scan, finally, also have efficient GPU implementations [18]. Thus, data parallel
languages implemented on GPUs should provide an interesting alternative for implementing
high performance applications with stringent timing constraints.

7 Related Work

Most work regarding WCET analysis for parallel systems concern single-threaded programs
running on single cores in multi-cores. Here, the challenge is to find tight WCET bounds
when different activities can compete for shared resources like buses and memories [2, 3]. A
common assumption is that the system bus uses TDMA to provide predicable bandwidth
for the different cores [17]. Various cache analyses have also been considered for multi-
cores [9, 11, 12].

Current multi-core architectures have poor timing predicability due to the presence of
shared resources under loose control. Principles for designing timing-predictable multi-core
hardware and software have been devised [22]. A multi-core architecture providing timing
predictability for hard real-time tasks was suggested in [15].

WCET analysis of parallel programs, running on parallel hardware, has not been much
studied. A case study using timed automata was reported in [7]. Another case study is found
in [16]. In [8], a general WCET analysis for parallel programs with threads, shared memory,
and locks is devised and its correctness is proved for the restricted class of programs that do
not use locks. This analysis integrates flow analysis and WCET calculation using abstract
execution in a manner similar to [5].
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In [13], a simple cost model for a GPU program was estimated from measurements and
used in a subsequent WCET calculation. No systematic WCET analysis was defined, though.

8 Conclusions and Further Research

WCET analysis of parallel software can easily become very difficult. Sources of unpredict-
ability are shared hardware resources, providing channels for different activities to affect
each others’ timing, and low-level concurrent programming models that are inherently
nondeterministic.

We discuss the use of restricted parallel programming models to make parallel software
more amenable to timing analysis, with a focus on models for performance-demanding
real-time applications. Such models have been proposed in the past, as means to make
parallel programming easier and to allow general performance models. We review BSP and
data parallel programming, and we conclude that especially the latter provides a promising
model for writing timing-predictable parallel software.

We furthermore review a common current GPU architecture and computation model,
and conclude that it seems to provide a reasonably timing-predictable platform for high
performance computing applications. The combination of data parallel programming and
GPU execution seems especially interesting, since the data parallel primitives can be translated
into kernels that will make timing-predictable use of the streaming multiprocessors in the
GPUs.

A possible development of future hardware architecture is that we will see heterogenous
processors with a few general purpose multi-cores, and an on-chip massively parallel co-
processor, building on GPU technology, for computationally demanding applications. Already
now Broadcom offers the BCM2835 System-on-Chip with an ARM11 processor and a
Videocore 4 GPU. Such future processors will surely find their way into various embedded
real-time applications. This means that we will need timing analysis for these systems. In this
paper, we have laid out a path how to get there. However, other directions are also possible:
we may also see future many-core processors along the lines of the Tilera architecture, with
a large number of general purpose cores equipped with distributed memory and connected
by a NoC. The data parallel paradigm also provides good support for such architectures
due to its deterministic primitives, and their separation into primitives for computation and
communication. It seems likely that good timing models should be possible to develop for
these primitives also when implemented on such architectures.

Future work will include designing suitable timing models and low-level analyses for
future parallel architectures, and design WCET analyses that that can use these to provide
tight and safe WCET bounds.
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