
Timing Analysis of Concurrent Programs
Robert Mittermayr and Johann Blieberger

TU Vienna, Institute of Computer-Aided Automation
Treitlstr. 1–3, 1040 Vienna, Austria
{robert,blieb}@auto.tuwien.ac.at

Abstract
Worst-case execution time analysis of multi-threaded software is still a challenge. This comes
mainly from the fact that the number of thread interleavings grows exponentially in the number
of threads and that synchronization has to be taken into account. In particular, a suitable
graph based model has been missing. The idea that thread interleavings can be studied with
a matrix calculus is a novel approach in this research area. Our sparse matrix representations
of the program are manipulated using Kronecker algebra. The resulting graph represents the
multi-threaded program and plays a similar role for concurrent systems as control flow graphs
do for sequential programs. Thus a suitable graph model for timing analysis of multi-threaded
software has been set up. Due to synchronization it turns out that often only very small parts of
the resulting graph are actually needed, whereas the rest is unreachable. A lazy implementation
of the matrix operations ensures that the unreachable parts are never calculated. This speeds up
processing significantly and shows that our approach is very promising.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.2 Program analysis

Keywords and phrases Worst-case execution time analysis (WCET), Concurrency, Thread Syn-
chronization, Kronecker Algebra, Program Analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2012.59

1 Introduction

Since concurrent programs may contain blocking because of synchronization between threads,
the terms execution time and worst-case execution time (WCET) do not apply directly to
concurrent systems. Anyway, we stick to the term WCET for concurrent systems. The
reader, however, has to be aware of the fact that the WCET includes blocking time.

With the advent of multi-core processors scientific and industrial interest focuses on
analysis and verification of multi-threaded applications. The scientific challenge comes from
the fact that the number of thread interleavings grows exponentially in a program’s number
of threads. All state-of-the-art methods suffer from this so-called state explosion problem.

The idea that thread interleavings of concurrent programs can be studied with a matrix
calculus is novel in this research area. Our sparse matrix representations of the program are
manipulated using a lazy implementation of Kronecker algebra. Similar to [3] we describe
synchronization by Kronecker products and thread interleavings by Kronecker sums. The
first goal is the generation of a data structure called Concurrent Program Graph (CPG)
which describes all possible interleavings and incorporates synchronization while preserving
completeness. CPGs play a similar role for concurrent systems as control flow graphs (CFGs)
do for sequential programs.

In this paper CPGs are used to calculate the WCET of the underlying concurrent system.
In [12] it is shown that CPGs in general can be represented by sparse adjacency matrices.

Thus the number of entries in the matrices is linear in their number of lines. In the worst-
case the number of lines increases exponentially in the number of threads. The CPG,

© Robert Mittermayr and Johann Blieberger;
licensed under Creative Commons License NC-ND

12th International Workshop on Worst-Case Execution Time Analysis (WCET 2012).
Editor: Tullio Vardanega; pp. 59–68

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2012.59
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

60 Timing Analysis of Concurrent Programs

however, contains many nodes and edges unreachable from the entry node. If the program
contains a lot of synchronization, only a very small part of the CPG is reachable. Our lazy
implementation of the matrix operations computes only this part. This optimization speeds
up processing significantly and shows that our approach is very promising.

The outline of our paper is as follows. In Section 2 Refined CFGs and Kronecker algebra
are introduced. Our model of concurrency, its properties, and our lazy approach are presen-
ted in Section 3. Section 4 is devoted to WCET analysis of multi-threaded programs. In
Section 5 we survey related work. Finally, we draw our conclusion in Section 6.

2 Preliminaries

In this paper we refer to both, a processor and a core, as a processor. Our computational
model can be described as follows. We model concurrent programs by threads which use
semaphores for synchronization. We assume that on each processor exactly one thread is
running and each thread immediately executes its next statement if the thread is not blocked.
Blocking may occur only in succession of semaphore calls.

Threads and semaphores are represented by slightly adapted CFGs. Edge Splitting has
to be applied to the edges containing semaphore calls. Each CFG is represented by an
adjacency matrix. We assume that the edges of CFGs are labeled by elements of a semiring.
Definitions and properties of the semiring can be found in [10, 12]. A prominent example
for such semirings are regular expressions describing the behavior of finite state automata.
Our semiring consists of a set of labels L which is defined by L = LV ∪LS, where LV is the
set of non-synchronization labels and LS is the set of labels representing semaphore calls
(LV and LS are disjoint).

Usually two or more distinct thread CFGs refer to the same semaphore to model syn-
chronization. The other labels are elements of LV and model ordinary program statements.
The operations on the basic blocks are ·,+, and ∗ from a semiring (cf. [15]). Intuitively, ·,+,
and ∗ model consecutive program parts, conditionals, and loops, respectively.

2.1 Refined Control Flow Graphs

Usually CFG nodes represent basic blocks. Because our matrix calculus manipulates the
edges we need to have basic blocks on the (incoming) edges. To keep things simple we refer
to edges, their labels and the corresponding entries of the adjacency matrices synonymously.
A basic block consists of multiple consecutive statements without jumps. For our purpose
we need a finer granularity which we achieve by splitting edges. We apply it for sema-
phore calls (e.g. p1 and v1) and require that a semaphore call referred to as si has to be
the only statement on the corresponding edge. Edge splitting maps a CFG edge e whose
corresponding basic block contains k semaphore calls to a subgraph ◦ e1→ ◦ s1→ ◦ e2→ ◦ s2→
◦ · · · ◦ ek→ ◦ sk→ ◦ ek+1→ ◦, such that each si represents a single semaphore call, and ei and ei+1
represent the consecutive parts before and after si, respectively (1 ≤ i ≤ k). Applying this
procedure and edge splitting we result in a Refined Control Flow Graph (RCFG).

In Fig. 1a and 1b a binary and a counting semaphore are depicted. The latter allows two
threads to enter at the same time. In a similar way it is possible to construct semaphores
allowing n non-blocking p-calls (n ∈ N, n ≥ 1).

R. Mittermayr and J. Blieberger 61

(a) Binary Semaphore (b) Counting Semaphore

Figure 1 Semaphores.

(a) C (b) D

Interleavings

a · b · c · d

a · c · b · d

a · c · d · b

c · a · b · d

c · a · d · b

c · d · a · b

(c) Interleavings (d) C ⊕ D

Figure 2 A Simple Example.

2.2 Modeling Synchronization and Interleavings
Kronecker product and Kronecker sum form Kronecker algebra. In the following we define
both operations. Proofs, additional properties, and examples can be found in [1, 5, 6, 12].
From now on we use matrices out ofM = {M = (mi,j) |mi,j ∈ L} only.

I Definition 1 (Kronecker product). Given a m-by-n matrix A and a p-by-q matrix B, their
Kronecker product denoted by A⊗B is a mp-by-nq block matrix defined by

A⊗B =

a1,1 ·B · · · a1,n ·B
...

. . .
...

am,1 ·B · · · am,n ·B

 .

The Kronecker product is also being referred to as Zehfuss product. Kronecker product
allows to model synchronization (cf. [3, 12, 13]).

I Definition 2 (Kronecker sum). Given a matrix A of order1 m and matrix B of order n, their
Kronecker sum denoted by A⊕B is a matrix of ordermn defined by A⊕B = A⊗In+Im⊗B,
where Im and In denote identity matrices of order m and n, respectively.

Note that Kronecker sum calculates all possible interleavings (see e.g. [11] for a proof)
even for general CFGs including conditionals and loops. The following example illustrates
interleaving of threads and how Kronecker sum handles it.

I Example 3. Let the matrices C =

0 a 0
0 0 b

0 0 0

 and D =

0 c 0
0 0 d

0 0 0

 . The CFGs of

matrices C and D are shown in Fig. 2a and Fig. 2b, respectively. The regular expressions

1 A k-by-k matrix is known as square matrix of order k.

WCET’12

62 Timing Analysis of Concurrent Programs

associated with the CFGs are a · b and c · d. All possible interleavings by executing C and
D in an interleavings semantics are shown in Fig. 2c. In Fig. 2d the graph represented by
the adjacency matrix C ⊕D is depicted. It is easy to see that all possible interleavings are
generated correctly. It is worth noting that ⊕ provides correct results even if the operands
contain branches and loops.

3 Concurrent Program Graphs

Our system model consists of a finite number of threads and semaphores which are repres-
ented by RCFGs. The RCFGs are stored in form of adjacency matrices. The matrices have
entries which are referred to as labels l ∈ L as defined in Sect. 2.

Formally, the system model consists of the tuple 〈T ,S,L〉, where T is the set of RCFG
adjacency matrices describing threads, S refers to the set of RCFG adjacency matrices
describing semaphores, and the labels in T ∈ T and S ∈ S are elements of L and LS,
respectively. The matrices are manipulated by using Kronecker algebra.

A Concurrent Program Graph (CPG) is a graph C = 〈V,E, ne〉 with a set of nodes V , a
set of directed edges E ⊆ V × V , and a so-called entry node ne ∈ V . The sets V and E
are constructed out of the elements of 〈T ,S,L〉. Details on how we generate the sets V and
E follow below. Similar to RCFGs the edges of CPGs are labeled by l ∈ L.

3.1 Generating a Concurrent Program’s Matrix
Let T (i) ∈ T and S(i) ∈ S refer to the matrices representing thread i and semaphore i,
respectively. According to Fig. 1a we have for binary semaphore i the adjacency matrix

S(i) =
(

0 pi
vi 0

)
of order two. We obtain the matrix T representing k interleaved threads

and the matrix S representing r interleaved semaphores by

T =
k⊕
i=1

T (i), where T (i) ∈ T and S =
r⊕
i=1

S(i), where S(i) ∈ S.

Note that the associativity properties (cf. [12]) of the operations ⊗ and ⊕ imply that the
corresponding n-fold versions are well defined. In the following we define the Selective
Kronecker product which we denote by �L. This operator synchronizes only labels identical
in the two input matrices.

I Definition 4 (Selective Kronecker product). Given two matrices A and B we call A�L B
their Selective Kronecker product. For all l ∈ L ⊆ L let A�LB = (ai,j)�L (bp,q) = (ci·p,j·q),
where

ci·p,j·q =
{
l if ai,j = bp,q = l, l ∈ L,
0 otherwise.

I Definition 5 (Filtered Matrix). We call ML a Filtered Matrix and define it as a matrix of
order o(M) containing entries l ∈ L ⊆ L of M = (mi,j) and zeros elsewhere:

ML = (mL;i,j), where mL;i,j =
{
l if mi,j = l, l ∈ L,
0 otherwise.

The adjacency matrix representing program P is referred to as P . In [12] it is proved
that P can be computed efficiently by

P = T �LS S + TLV ⊗ Io(S).

R. Mittermayr and J. Blieberger 63

In addition, it is shown in [12] that the resulting CPG has at most nk nodes and at most 2k nk
edges, if k is the number of threads and each thread has n nodes in its RCFG. Hence CPGs
have a sparse adjacency matrix, i.e., |E| = O

(
|V |
)
. Thus memory saving data structures

and efficient algorithms suggest themselves. In the worst-case, however, the number of CPG
nodes increases exponentially in k.

3.2 Lazy Implementation of Kronecker Algebra

In general, a CPG contains unreachable parts if a concurrent program contains synchroniz-
ation (cf. [12]). If a program contains a lot of synchronization, the reachable parts may be
very small. This observation motivates the lazy implementation described in this subsec-
tion. In the following we denote the subgraph of a CPG, whose nodes are reachable from
the entry node, by RCPG. An empirical analysis of our approach showed that the runtime
complexity of generating a RCPG is linear in the number of RCPG nodes [12].

The reasons why parts of the CPG are unreachable can be summarized as follows: Kro-
necker product limits the number of possible paths such that the p- and v-operations are
present in correct p-v-pairs in the RCPG. In contrast T =

⊕k
i=1 Ti contains all possible

paths even those containing semantically wrong uses of the semaphore operations.
Choosing a lazy implementation (cf. [9]) for the matrix operations ensures that, when

extracting the reachable parts of the underlying graph, the overall effort is reduced to exactly
these parts. By starting from the RCPG’s entry node and calculating all reachable successor
nodes our lazy implementation [12] exactly does this. Thus, for example, if the resulting
RCPG’s size is linear in terms of the involved threads, only linear effort will be necessary to
generate the RCPG.

Our implementation distinguishes between two kind of matrices: Sparse matrices are
used for representing threads and semaphores. Lazy matrices are employed for representing
all the other matrices, i.e., those resulting from the operations of Kronecker algebra. Besides
the employed operation, a lazy matrix simply keeps track of its operands. Whenever an entry
of a lazy matrix is retrieved, depending on the operation recorded in the lazy matrix, entries
of the operands are retrieved and the recorded operation is performed on these entries to
calculate the result. In the course of this computation, even the successors of nodes are
calculated lazily. Retrieving entries of operands is done recursively if the operands are again
lazy matrices, or is done by retrieving the entries from the sparse matrices, where the actual
data resides. The lazy implementation has proven to be very space and time efficient.

4 Worst-Case Execution Time Analysis on RCPGs

In order to calculate the WCET of a concurrent program we apply a dataflow based approach
introduced in [2]. Dataflow equations are set up and solved according to [14]. Details can
be found in [2, 14].

Each node of the RCPG is assigned a dataflow variable and a dataflow equation is set up
based on the predecessors of the RCPG node. A dataflow variable is represented by a vector.
Each component of the vector reflects a processor and is used to calculate the WCET of the
corresponding thread. Recall that only a single thread is allocated to a processor.

Synchronizing nodes, introduced below, are nodes where blocking occurs. These nodes
have an incoming edge labeled by a semaphore v-operation, an outgoing edge labeled by a
p-operation of the same semaphore, and these edges are part of different threads. In this case
the thread with the p-operation has to wait until the other thread’s v-operation is finished.

WCET’12

64 Timing Analysis of Concurrent Programs

Let the vector X = (X1, . . . , X`, . . . , Xp)ᵀ. We write X(`) = X` to denote the `th
component of vector X.

I Definition 1. Let X = (X1, . . . , Xp)ᵀ and Y = (Y1, . . . , Yp)ᵀ. Then we define

max(X,Y) := (max(X1, Y1), . . . ,max(Xp, Yp))ᵀ.

I Definition 2. A synchronizing node is a RCPG node s such that
there exists an edge ein = (i, s) with label vk and
there exists an edge eout = (s, j) with label pk,

where k denotes the same semaphore and ein and eout are mapped to different processors,
i.e., P(ein) 6= P(eout).

I Definition 3 (Setting up dataflow equations). If n is a non-synchronizing node, then

Xn = max
k∈Pred(n)

(Xk + t(k → n)) ,

where the `th component of vector t(k → n) is the time assigned to edge k → n and edge
k → n is mapped to processor `. The other components of t(k → n) are zero. The set of
predecessor nodes of node n is referred to as Pred(n).

Let s be a synchronizing node. In addition, let πi and πj be the processors which the
edges i → s and s → j are mapped to, i.e, πi = P(i → s) and πj = P(s → j). Then for
` 6= πj

X(`)
s = max

k∈Pred(s)

(
X

(`)
k + t(k → s)(`)

)
and

X(πj)
s = max

(
X

(πi)
i + t(i→ s)(πi), max

k:P(k→s)=πj

(
X

(πj)
k + t(k → s)(πj)

))
where the first term considers the incoming v-edge and the second term takes into account
all incoming edges of the blocking thread running on processor πj .

The system of dataflow equations can be solved by applying an algorithm presented
in [14]. It relies on two operations: inserting one equation into another and solving recursions
by so-called loop breaking. The order of these operations is completely determined by the
DJ graph introduced in [14].

In contrast to [2] where CFGs are studied, RCPGs contain several copies of basic blocks
in different places. Thus, during a loop breaking operation the number of loop iterations
cannot be determined immediately. Instead we postpone the assigning of loop iterations
and indicate this by "∗" which denotes a number of loop iterations to be assigned later.

After the system of dataflow equations has been solved, we distribute the known number
of loop iterations among all terms labeled by "∗" such that the timing values achieve their
maxima.

Example
We study an example consisting of two threads T1 and T2. Their RCFGs are depicted
in Figures 3a and 3b, respectively. The behaviors of T1 and T2 are (p · a · v · b)∗ and
(p · c · v · d)∗, respectively. The RCPG of the T1-T2-system together with a simple binary
semaphore (depicted in Fig. 1a) is shown in Figure 3c. Note that the node numbers are
generated by our implementation. Missing node numbers refer to unreachable nodes. The
dashed nodes 7 and 25 are the only synchronizing nodes.

R. Mittermayr and J. Blieberger 65

p

a b

v

1

3

2

4

(a) RCFG of thread T1

p

c d

v

1

3

2

4

(b) RCFG of thread T2

T1.b

T2.v

T1.a

T1.v

T2.p

T2.d

T2.v

T2.c

T2.d

T2.d

T1.p

T1.b

T2.p

T1.a

T2.c

T2.d

T1.p

T1.b

T1.b

T1.v

24

10

30

25

18

31

16

28

1

4

7

6

(c) RCPG of example program

Figure 3 RCFGs of threads T1 and T2 and the resulting RCPG.

According to Definition 3 the following equations are set up. For simplicity we do not
distinguish between edge labels and the execution time of the corresponding basic blocks,
i.e., the execution time of a basic block x is denoted by x.

X1 = max
(
X7 +

(
0
d

)
,X25 +

(
b

0

))
, X10 = max

(
X1 +

(
p

0

)
,X16 +

(
0
d

))
X18 = max

(
X10 +

(
a

0

)
,X24 +

(
0
d

))
, X25 =

(
X

(1)
18 + v

max
(
X

(1)
18 + v,X

(2)
31 + d

))

X28 = X25 +
(

0
p

)
, X30 = X28 +

(
0
c

)
X4 = max

(
X1 +

(
0
p

)
,X28 +

(
b

0

))
, X6 = max

(
X4 +

(
0
c

)
,X30 +

(
b

0

))

X7 =
(max

(
X

(2)
6 + v,X

(1)
31 + b

)
X

(2)
6 + v

)
, X16 = X7 +

(
p

0

)
X24 = X16 +

(
a

0

)
, X31 = max

(
X24 +

(
v

0

)
,X30 +

(
0
v

))

We solve the above equations by using the DJ-graph [14] of our RCPG. For a concise
presentation we use α = p+ a+ v, γ = p+ c+ v, T1 = α+ b, T2 = γ + d, M2 = α+ γ + T ∗2 ,
and M1 = max(T1,M2). We perform the following insertions and loop breaking operations:

24→ 18 : X18 = max
(
X10 +

(
a

0

)
,X16 +

(
a

d

))

WCET’12

66 Timing Analysis of Concurrent Programs

24, 30→ 31 : X31 = max
(
X16 +

(
a+ v

0

)
,X28 +

(
0

v + c

))
30→ 6 : X6 = max

(
X4 +

(
0
c

)
,X28 +

(
b

c

))
16→ 18 : X18 = max

(
X10 +

(
a

0

)
,X7 +

(
a+ p

d

))
16→ 31 : X31 = max

(
X7 +

(
α

0

)
,X28 +

(
0

v + c

))
16→ 10 : X10 = max

(
X1 +

(
p

0

)
,X7 +

(
p

d

))
28→ 31 : X31 = max

(
X7 +

(
α

0

)
,X25 +

(
0
γ

))
28→ 6 : X6 = max

(
X4 +

(
0
c

)
,X25 +

(
b

c+ p

))
28→ 4 : X4 = max

(
X1 +

(
0
p

)
,X25 +

(
b

p

))
10→ 18 : X18 = max

(
X1 +

(
p+ a

0

)
,X7 +

(
p+ a

0

))

18→ 25 : X25 =
(max

(
X

(1)
1 ,X

(1)
7

)
+ α

max
(

max
(
X

(1)
1 ,X

(1)
7

)
+ α,X

(2)
31 + d

))

25→ 4 : X4 = max

X1 +
(

0
p

)
,

(max
(
X

(1)
1 ,X

(1)
7

)
+ T1

max
(

max
(
X

(1)
1 ,X

(1)
7

)
+ α,X

(2)
31 + d

)
+ p

)
25→ 31 : X31 =

(max
(
X

(1)
7 + α,X

(1)
1 + α

)
max

(
X

(2)
7 ,X

(1)
1 + α+ γ,X

(1)
7 + α+ γ,X

(2)
31 + T2

))

4, 25→ 6 : X6 =
(max

(
X

(1)
1 ,X

(1)
7

)
+ T1

max
(
X

(2)
1 + p+ c,X

(1)
1 + α+ γ,X

(1)
7 + α+ γ,X

(2)
31 + d+ p+ c

))

6→ 7 : X7 =
(max

(
X

(2)
1 + γ,X

(1)
1 + α+ γ,X

(1)
7 + α+ γ,X

(2)
31 + T2,X

(1)
31 + b

)
max

(
X

(2)
1 + γ,X

(1)
1 + α+ γ,X

(1)
7 + α+ γ,X

(2)
31 + T2

))

31 6�: X31 =
(max

(
X

(1)
7 + α,X

(1)
1 + α

)
max

(
X

(2)
7 ,X

(1)
1 + α+ γ,X

(1)
7 + α+ γ

)
+ T ∗2

)

31→ 7 : X7 =
(max

(
X

(2)
1 + γ,X

(1)
1 +M2,X

(1)
1 + T1,X

(2)
7 + T ∗2 ,X

(1)
7 +M2,X

(1)
7 + T1

)
max

(
X

(2)
1 + γ,X

(1)
1 +M2,X

(2)
7 + T ∗2 ,X

(1)
7 +M2

))

7 6�: X7 =
(max

(
X

(2)
1 + γ,X

(1)
1 +M2,X

(1)
1 + T1

)
+M∗1

max
(
X

(2)
1 + γ,X

(1)
1 +M2

)
+M∗1 +M2

)

7→ 31 : X31 =
(max

(
X

(2)
1 + γ,X

(1)
1 +M2,X

(1)
1 + T1

)
+M∗1 + α

max
(
X

(2)
1 + γ,X

(1)
1 +M2,X

(1)
1 + T1

)
+M∗1 +M2

)

R. Mittermayr and J. Blieberger 67

7, 31→ 25 : X25 =
(max

(
X

(2)
1 + γ +M∗1 ,X

(1)
1 +M2 +M∗1 ,X

(1)
1 + T1 +M∗1

)
+ α

max
(
X

(2)
1 + T2,X

(1)
1 + α+ T ∗2 ,X

(1)
1 + T1 + d

)
+M∗1 +M2

)

7, 25→ 1 : X1 =
(max

(
X

(2)
1 + γ +M∗1 ,X

(1)
1 +M2 +M∗1 ,X

(1)
1 + T1 +M∗1

)
+ T1

max
(
X

(2)
1 + T2,X

(1)
1 + α+ T ∗2 ,X

(1)
1 + T1 + d

)
+M∗1 +M2

)

1 6�: X1 =
(

M∗1 + T ∗1
M∗1 + T ∗1 + T ∗2 + α

)
Finally we obtain the following formula for the WCET of our T1-T2-system

WCET = max(X(1)
1 ,X

(2)
1) = M∗1 + T ∗1 + T ∗2 + α.

Assuming the execution times p = v = a = c = d = 1, b = 10, and the number of
loop iterations of T1 and T2 to be r and s, respectively, we are left with distributing the
number of loop iterations among the "∗"-terms of our WCET formula. In this case we have
M2(k) = max(13, 6 + 4k) where the number 6 already includes one execution of a and c.
Thus we write M2(k) = max(13, 2 + 4k) and we have to choose k such that M2(k) = 2 + 4k
andM2(i) = 13 for i < k. This is a consequence of our system model presented in Section 2.
We get k = 3, i.e., T2 is executed three times while M1 is executed once. Hence we obtain

WCET =
{

14
⌊
s−1

3
⌋

+ 13
(
r −

⌊
s−1

3
⌋)

+ 3 if r >
⌊
s−1

3
⌋
,

14(r − 1) + 4(s− 3(r − 1)) + 3 if r ≤
⌊
s−1

3
⌋
.

A schedule of this case is shown in Fig. 4. It is easy to verify that the derived formula is a
correct upper bound for the execution time of this T1-T2-system.

If we set b = 1 and d = 10, we get a similar result, but in this case M2 is iterated once
and M1 three times where M2 is started during the first iteration of M1. During the second
and third iteration of M1, M2 is still executing basic block d.

Figure 4 A Simple Schedule.

5 Related Work

Multiple data-flow-based WCET analysis frameworks are discussed in [2]. In this paper we
adopt a dataflow approach and extend it in order to support concurrent programs.

Our Kronecker algebra based approach can be used for further analysis. In [12] we
showed how to detect deadlocks.

In terms of how we generate a graph model for concurrent programs the closest work to
ours was probably done by Buchholz and Kemper [3]. It differs from our work as follows.
Our approach uses RCFGs and semaphores to model concurrent programs. Buchholz and
Kemper worked on generating reachability sets in composed automata. In addition, we
propose lazy calculation of matrix entries to optimize running time. Both approaches employ
Kronecker algebra.

WCET’12

68 Timing Analysis of Concurrent Programs

In [8] a method based on model checking of multi-core applications modeled as timed
automata is investigated. The tool box UPPAAL is used and synchronization is modeled
by using spinlock-like primitives.

Although not closely related we recognize the work done in the field of stochastic auto-
mata networks which is based on the work of Plateau [13] as related work. Basic operators
are shared and some properties of Kronecker algebra were integrated into this paper.

6 Conclusion and Future Work

We established a framework for WCET analysis of concurrent systems based on Kronecker
algebra. Thread synchronization is modeled by semaphores. Our graph representation of
multi-threaded programs plays a similar role for concurrent systems as control flow graphs do
for sequential programs. Thus a suitable graph model for timing analysis of multi-threaded
software has been set up.

We consider optimizations like partial order reduction (cf. [4]) as future work. A stand-
ardized benchmark suite (similar to [7]) including concurrency would enable comparison of
different approaches.

References
1 R. Bellman. Introduction to Matrix Analysis. Classics in Applied Mathematics. Society for

Industrial and Applied Mathematics, 2nd edition, 1997.
2 J. Blieberger. Data-Flow Frameworks for Worst-Case Execution Time Analysis. Real-Time

Systems, 22(3):183–227, 2002.
3 P. Buchholz and P. Kemper. Efficient Computation and Representation of Large Reachab-

ility Sets for Composed Automata. Discrete Event Dyn. Systems, 12(3):265–286, 2002.
4 E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
5 M. Davio. Kronecker Products and Shuffle Algebra. IEEE Trans. Computers, 30(2):116–

125, 1981.
6 A. Graham. Kronecker Products and Matrix Calculus with Applications. Ellis Horwood

Ltd., New York, 1981.
7 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET Benchmarks:

Past, Present And Future. In Proc. 10th International Workshop on Worst-Case Execution
Time Analysis, pages 136–146, 2010.

8 A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson. Towards WCET Analysis of
Multicore Architectures Using UPPAAL. In Proc. 10th International Workshop on Worst-
Case Execution Time Analysis, pages 101–112, 2010.

9 P. Henderson and J. H. Morris, Jr. A Lazy Evaluator. In 3rd ACM Symposium on Principles
of Programming Languages, POPL ’76, pages 95–103, January 1976.

10 W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer, 1986.
11 G. Küster. On the Hurwitz Product of Formal Power Series and Automata. Theor. Comput.

Sci., 83(2):261–273, 1991.
12 R. Mittermayr and J. Blieberger. Shared Memory Concurrent System Verification using

Kronecker Algebra. Technical Report 183/1-155, Automation Systems Group, TU Vienna,
http://arxiv.org/abs/1109.5522, Sept. 2011.

13 B. Plateau. On the Stochastic Structure of Parallelism and Synchronization Models for
Distributed Algorithms. In ACM SIGMETRICS, volume 13, pages 147–154, 1985.

14 V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. A New Framework for Elimination-Based Data
Flow Analysis Using DJ Graphs. ACM Trans. Program. Lang. Syst., 20(2):388–435, 1998.

15 R. E. Tarjan. A Unified Approach to Path Problems. J. ACM, 28(3):577–593, 1981.

	Introduction
	Preliminaries
	Refined Control Flow Graphs
	Modeling Synchronization and Interleavings

	Concurrent Program Graphs
	Generating a Concurrent Program's Matrix
	Lazy Implementation of Kronecker Algebra

	Worst-Case Execution Time Analysis on RCPGs
	Related Work
	Conclusion and Future Work

