A Time-composable Operating System*

Andrea Baldovin, Enrico Mezzetti, and Tullio Vardanega

University of Padua, Department of Mathematics,
via Trieste, 63 35121 Padua, Italy
{baldovin,emezzett,tullio.vardanega}@math.unipd.it

—— Abstract

Time composability is a guiding principle to the development and certification process of real-
time embedded systems. Considerable efforts have been devoted to studying the role of hardware
architectures — and their modern accelerating features — in enabling the hierarchical composition

of the timing behaviour of software programs considered in isolation. Much less attention has
been devoted to the effect of real-time Operating Systems (OS) on time composability at the
application level.

In fact, the very presence of the OS contributes to the variability of the execution time
of the application directly and indirectly; by way of its own response time jitter and by its
effect on the state retained by the processor hardware. We consider zero disturbance and steady
behaviour as those characteristic properties that an operating system should exhibit, so as to
be time-composable with the user applications. We assess those properties on the redesign of
an ARINC compliant partitioned operating system, for use in avionics applications, and present
some experimental results from a preliminary implementation of our approach within the scope
of the EU FP7 PROARTIS project.

1998 ACM Subject Classification C.3 [Computer Systems Organization]: Special-purpose and
application-based systems — Real-time and embedded systems, D.4.1 [Operating System]: Process
Management, D.2.11 [Software Engineering]: Software Architectures — Domain-specific architec-
tures, Patterns

Keywords and phrases Real-time Operating System, Timing composability, ARINC

Digital Object Identifier 10.4230/0ASIcs. WCET.2012.69

1 Introduction

The increasing complexity in the design, development and validation of real-time embedded
systems can be tackled only is best responded by compositional, incremental software
development. The other side of the coin in a compositional approach is that the properties
ascertained for individual components in isolation should allow reasoning on the properties of
the system that results from their composition (composability). Whereas compositionality and
composability are consolidated concepts when looking at a system from a purely functional
perspective, they are much more difficult to understand and to guarantee when applied to
extra-functional concerns and to timing in particular [10]. By the principle of composability,
in fact, the timing behaviour of a system should be simply determined as a summation over the
execution times of its building blocks; moreover, by composability, a software module should
exhibit the same timing behaviour independently of the presence and operation of any other
component in the system. Unfortunately, even guaranteeing just timing compositionality on

* This work has received funding from the European Community’s Seventh Framework Programme
[FP7/2007-2013] under the grant agreement n 249100.

@@@@ © Andrea Baldovin, Enrico Mezzetti, and Tullio Vardanega;

G licensed under Creative Commons License NC-ND

12th International Workshop on Worst-Case Execution Time Analysis (WCET 2012).
Editor: Tullio Vardanega; pp. 69—80

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2012.69
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

70

A Time-composable Operating System

current hardware and software architectures is difficult. Although timing analysis frameworks
typically characterise the timing behaviour of a system compositionally, a truly composable
timing behaviour is not generally provided at the lower levels of a system. The main
obstacle to time composability is that modern hardware architectures include a score of
advanced acceleration features (e.g., caches, complex pipelines, etc.) that bring an increase in
performance at the cost of a highly variable timing behaviour. Since those hardware features
typically exploit execution history to speed up average performance, the execution time of
a software module is likely to (highly) depend on the state retained by history-dependent
hardware, which in turn is affected by other modules. The incurred dependence wrecks
composability in the timing dimension as the execution history becomes a characteristic of
the whole system and not that of a single component.

For timing compositionality and composability to hold, stringent constraints are imposed
on how the system should be conceived and built, in both hardware and software dimensions
[9]. Whereas several studies focused on the importance of hardware architectures in enabling
compositional timing analysis [6], less attention has been devoted to the role played by
other layers in the execution stack. Timing composability is in fact a system property that
originates from the underlying hardware and must be preserved across other layers, including
the operating system. In this paper we address the role of the operating system layer in
preserving timing composability in Integrated Modular Avionics (IMA) systems, where timing
composability is a fundamental assumption behind temporal and spatial isolation among
software partitions. In particular, we report on our attempt in redesigning part of POK [2],
an open-source ARINC653-compliant real-time kernel with a view to timing composability.

The remainder of this paper is organised as follows: in Section 2 we address time
composability as a property within the abstraction layers of a typical architecture and discuss
a possible approach to enable composability between OS and application layers. Section 3
explains how our approach has been implemented in a partitioned real-time kernel, while
Section 4 provides experimental evidence to our arguments. Finally, Section 5 draws some
conclusions.

2 Timing composability: a layered approach

Seeking incrementality in the development life-cycle advocates the adoption of an incremental
development approach from the system perspective, where incrementality should naturally
emerge as a consequence of guaranteeing composability to the elementary constituents (i.e.,
software modules) of the system. However, in practice, real-time software development can
only strive to adopt such discipline, as the supporting methodology and technology are still
immature.

We were given the opportunity to study the issues above in the context of the EU FP7
PROARTIS [3] project: this initiative aims at defining a novel, probabilistic framework for
timing analysis of critical real-time embedded systems. As an industrial trait, the main project
focus is set on partitioned applications, commonly encountered in avionics systems, and
particularly on the IMA architecture and its ARINC 653 [1] incarnation. These industrial
standards encourage the development of partitioned applications, where the concept of
composability is strictly related to the fundamental requirement of guaranteeing spatial and
temporal segregation of applications sharing the same computational resources within a
federated architecture.

Hardware acceleration features, speculative execution and complex software architectures
prevent systems from achieving a composable timing behaviour. Dependence on the execution

A. Baldovin, E. Mezzetti, and T. Vardanega

history, in particular, is one of the main hurdles to timing composability. Removing or at
least minimising the effects of history dependence is thus a reasonable approach to achieve
a time-composable architecture. Breaking down the execution platform into three classic
layers — the hardware layer (HW PLATFORM), an operating system layer (KERNEL) in the middle,
and, finally, a user application layer (APPLICATION SW) running on top — makes it possible
to address history independence and thus timing composability as a bottom-up property
that must be first accomplished by the underlying hardware, then preserved across the OS
primitives and services, and finally exhibited by the user application.

In this paper, we do not focus on HW-related composability issues, although we are
perfectly aware of their relevance, especially with respect to the possible occurrence of timing
anomalies [12]. We will assume, instead, the availability of a HW PLATFORM where interference
from execution history on the timing behaviour has been proactively countered. This is
not an unrealistic assumption since it can be achieved by means of simplified hardware
platforms [6] or novel probabilistic approaches, as suggested in PROARTIS [3]. Conversely,
we consider the APPLICATION SW layer, the space within which user applications run, the
only level at which (application-logic related) timing variability should be allowed. Ideally,
time-composable hardware and kernel layers should be able to remove all history-dependent
timing variability so that state-of-the-art timing analysis approach should be able to account
for the residual variability at the application level.

The KERNEL layer, which is the main focus of our investigation, actually provides an
abstraction layer for the operating system primitives and services. From the timing analys-
ability standpoint, the role played by this layer is possibly as important as that played by
the HW PLATFORM. As a fundamental enabler to compositional analysis approaches, in fact,
this layer should preserve the independence property exhibited by the underlying hardware
and should not introduce additional sources of timing variability in the execution stack.

APPLICATION SW

ARINC APEX POK Libraries ‘

middleware

g O Gsymn@] o O

middleware

POK KERNEL Services ‘

PPC HW

Figure 1 Structural decomposition of POK.

In the scope of our investigation, we focused on the PowerPC processor family, and the
PPC 750 model [4] in particular, by reason of its widespread adoption in avionic platforms.
We also selected POK [2] as our reference OS kernel because of its lightweight dimensions, its
availability in open source and its embryonic implementation of the ARINC specification. We
redesigned part of its services with a view to time-composability and analysability. Figure 1
shows a structural breakdown of the POK framework: the KERNEL layer provides an interface
to a set of standard libraries (e.g., C standard library) and core OS services (e.g., scheduling
primitives) to the APPLICATION SW layer. In addition, the POK kernel also provides an
implementation of a subset of the ARINC Application Executive (APEX).

Enabling and preserving time-composability at the KERNEL layer poses two main require-
ments on the way an OS or ARINC service should be delivered:

71

WCET’12

72

A Time-composable Operating System

Zero-disturbance: in the presence of hardware features that exhibit history-dependent
timing behaviour, the execution of an OS service should not have disturbing effects on the
application. Some kind of separation is needed to isolate the hardware from the polluting
effects of OS or ARINC services. The kind of hardware-level isolation that we seek can
be provided by means of techniques similar to those adopted for cache partitioning [8]: a
relatively small cache partition should be reserved for the OS so that the execution of OS
services would still benefit from the cache acceleration but would not affect the cache state
of the user code. However, implementing software cache partitioning (mapping of code to
configure separate address spaces) in conjunction with a partitioned OS may result quite
cumbersome in practice. An alternative (and easier to implement) approach consists
in giving up any performance benefit and simply inhibiting all the history-dependent
hardware at once when OS services are executed. This approach, however, comes at the
cost of a relevant performance penalty that, though not being the main concern in critical
real-time systems, could be still considered unacceptable. Also the execution frequency of
a service is relevant with respect to disturbance: services triggered on timer expire (such
as, for example, the PowerPC DEC interrupt handler) or an event basis can possibly have
even more disturbing effects on the APPLICATION SW level, especially with respect to the
soundness of timing analysis. The deferred preemption mechanism in combination with
the selection of predetermined preemption points [13] could offer a reasonable solution
for guaranteeing minimal uninterrupted executions while preserving feasibility.

Steady timing behaviour: jittery timing behaviour of an OS service complicates its timing
composition with the user-level application. Timing variability at the OS layer depends
on a combination of multiple interacting factors: (i) the hardware state, as determined
by history sensitive hardware features; (i) the software state, as determined by the
contents of its data structures and the algorithms used to access them; and, (iii) the
input data. Whereas the first aspect can be treated similarly and contextually with the
specular phenomenon of disturbance, the software state instead is actually determined
by more or less complex data structures accessed by OS and ARINC services and by
the algorithms implemented to access and manipulate them. The latter should thus be
re-engineered to exhibit a constant-time — O(1) — and steady timing behaviour, like, for
example, constant-time scheduling primitives (e.g., O(1) Linux scheduler [7]). Besides
the software state, the timing behaviour of an OS service may be influenced by the input
parameters to the service call (so-called input data dependency). This is the case, for
example, of ARINC IO services that read or write data of different size. This form of
history dependence is much more difficult to attenuate as the algorithmic behaviour
(e.g., application logic) cannot be completely removed, unless we do not force an overly
pessimistic constant-time behaviour. We will get back to this issue in the next Section.

An OS layer that meets the above requirements is time-composable in that it can be seam-
lessly composed with the user-level APPLICATION SW without affecting its timing behaviour.
In the following we present the implementation of a set of KERNEL-level services that exhibit
a steady timing behaviour and do not disturb the timing behaviour of the user-level code.
Our approach seeks for a general reduction in the effects of the OS layer on the application
code and is expected to ease the analysis process, regardless of the timing analysis technique
of choice.

A. Baldovin, E. Mezzetti, and T. Vardanega

3 Time-composable kernel layer

So far we reasoned on time composability between the OS and the user application layer.

The original POK was not developed with time composability in mind, but rather aimed
at the optimisation of the average-case performance. This section describes an alternative

design and implementation aimed at injecting time composability in the POK framework.

We start our discussion with the basic kernel design choices on time management and system
scheduling an then proceed with considerations on some ARINC services we studied. In doing
so, we refer to ARINC-specific concepts such as processes, partitions, scheduling slots, etc.,
whose detailed description is out of the scope of this paper: the interested reader is referred
to [1]. Interestingly, similar ideas and solutions can be transposed to different execution
platforms.

3.1 Time management

Time management, as one of the core OS services, is exploited by the operating system
itself to perform back office activities, and by the application, which may have to program
time-triggered actions. Most common time-management approaches adopted in real-time
systems rely on either a tick counter or programmable one-shot timers. The original
POK implementation provides a tick-based time management where a discrete counter is
periodically incremented according to a frequency consistent with the real hardware clock
rate!. Unfortunately, in tick-based approaches the operations involved in time management
are periodically executed, regardless of the application logic; this is likely to incur timing
interference on user applications, commensurate to the tick frequency.

For this reason we implemented a less intrusive time management mechanism based on
interval timers, where clock interrupts are not necessarily periodic and can be programmed
according to the specific application needs. Intuitively, a timer-based implementation can
be designed to incur less interference in the timing behaviour of the user application as
it guarantees that the execution of a user application is interrupted only when strictly
required (i.e., partition switch, process activation, etc.). Making a step further, interval
timers also enable to control and possibly postpone timing events at desired points in time
and possibly in a way such that user applications are not interrupted. In particular, in
an ARINC context we can program timers to expire only at partition switches, so that no
overhead is introduced during application execution. Within each scheduling slot we enforce
a variant of the fixed-priority deferred scheduling policy [13], in which preemption is enabled
only at the end of a job (i.e., run-to-completion semantics).

3.2 Scheduling primitives

We implemented a lightweight constant-time — O(1) — fixed-priority scheduler exploiting
an extremely compact representation of task states, that can be quickly updated through
fixed-latency bitwise operations. In our implementation we assume all processes? defined in
the same partition to have distinct priorities, to overcome the variability from linear-time
insertion in FIFO priority queues. Since hard real-time operating systems typically define 255

1 POK in its architectural-dependent implementation for PowerPC exploits the decrementer register and
the TBU to periodically increment the tick counter.
2 It should be noted that process is the ARINC equivalent of a task in classic real-time theory.

73

WCET’12

74

A Time-composable Operating System

distinct priority levels, requiring distinct priorities poses no restriction on ARINC applications
which are required to support up to 128 processes per partition [1].

Basically, we exploit a set of bit masks M ASK®***¢ one for each state a process can
assume (i.e., dormant, waiting, ready and running in ARINC speak), which collectively
describe the current state of all application processes. A similar set of bit masks M ASK$/at¢
is associated to each scheduling slot in a major frame, to describe process state changes.
State updates are performed by bitwise OR-ing those masks. A simple priority-driven
thread selection is done in a similar way by exploiting an ordered bitmask to represent
priorities: selecting the runnable process with higher priority thus requires to identify the
most significant bit in such mask. Such operation can be performed in constant time with
built-in processor instructions (e.g., count-trailing zeros on PowerPC) or using perfect hashing
with De Bruijn sequences [5].

Process activation events, however, can be dynamically programmed by the user ap-
plication to occur within a scheduling slot, and thus outside of partition switches. This is
the case, for example, when a synchronous kernel service requires a scheduling event to be
triggered as a consequence of a timeout?. This kind of timeout can be used to enforce, for
example, a timed self-suspension (i.e., with “delay until” semantics) or a phased execution
of a process. Since we want to ensure that every process is run to completion, preemption
is necessarily deferred at the end of process execution, which therefore becomes the next
serviceable dispatching point, as shown in Figure 2; dispatching is performed using the same
method presented above. A similar mechanism is used for aperiodic processes (i.e., sporadic
tasks): in this case, the deferred scheduling event is triggered by a synchronous activation
request, which does not involve the use of timers.

Scheduling Slot

N

/ Dispatch () Dispatch () Dispatch () \
A A N N .
=)
3] o
+ +
el el
3 3
7} 7}
o <]
5] ¢]
- -
+ +
b bl
+ +
]]
o ©
- Y

—
%) \o\/
&) A
WakeUp (B)

Figure 2 Deferred dispatching mechanism within a time slot.

3.3 Time-composable ARINC APEX

With respect to the subset of ARINC services we have implemented so far, the main
timing-composability issues arise from the IO communication between partitions. The basic
message-based communication mechanisms provided by the ARINC SAMPLING and QUEUING
services is based on channels, as logical links between one source port and one or more
destination ports. The timing-composability issues raised by 1O services, either through

3 The DELAYED_START and TIMED_WAIT ARINC services are representative examples of requests
for a timed-out process activation.

A. Baldovin, E. Mezzetti, and T. Vardanega

sampling or queuing ports are mainly due to the variability induced by the amount of data to
be read or written. Whereas ports are characterised by a maximum size, forcing the exchange
of the maximum amount of data would obtain a constant-time behaviour at the cost of an
unacceptable performance loss. Moreover, the potential blocking incurred by queuing port
could further complicate the disturbing effects of inter-partition communication. Also the
natural countermeasure of isolating the effects of the service execution on the hardware state
cannot be seamlessly applied in this context. Inhibiting the caches for example is likely to
kill performance since the read and write operations are inherently loop intensive and greatly
benefit from both temporal and spatial locality.

To counter this unstable and disturbing behaviour we separate the variable (loop-intensive)
part of the read/write services and accommodate such variability so that it incurs less
disturbing effects on the execution of the application code. The concrete specification of
an ARINC system typically takes a static configuration (e.g., configuration tables) that
provides insightful information on the system functional behaviour. We exploit the available
information on the inter-partition communication patterns to perform some sort of preventive
IO in between partition switch, as depicted in Figure 3.

MIF,
N

Ve
A Slot1 A Slot2 A A Slotns1 A Slot n; A

1/0O Fill up
1/0 Flush
1/O Fill up
1/0 Flush
1/O Fill up
1/0 Flush
1/0 Fill up
1/0 Flush
1/0 Fill up

1/0 Flush
| //OFillup

¢ Partition switch

Figure 3 Inter-partition IO management.

We postpone all port writes to the slack time at the end of a partition scheduling slot.
Similarly, we preload the required data into the destination partition in a specular slack time,
at the beginning of a scheduling slot. The information flow is guaranteed to be preserved as
we are dealing with inter-partition communication: (i) the state of all destination (input)
ports is already determined at the beginning of a partition slot; (ii) the state of all source
(output) ports is not relevant until the partition slot terminates and another partitions gets
scheduled for execution. This way, we should not worry about the disturbing effects on the
hardware state as no optimistic assumption should ever be made on partition switching;
moreover, the input-dependent variability can be analysed within some sort of end-to-end
analysis. We are currently implementing a similar approach with respect to intra-partition
communication (i.e., via ARINC blackboards, buffers etc.).

4 Experimental assessment

In our experiments we wanted to assess whether and to what extent our preliminary imple-
mentation of kernel primitives and services achieve time composability between OS and user
application. We performed our analysis on the basis of the timing information collected by
uninterrupted and consecutive end-to-end runs of software units at the granularity level of
kernel primitives, ARINC services and application main procedures. Measurements were
perfectly suited to meet our objectives as the set of properties we wanted to prove on the OS

75

WCET’12

76

A Time-composable Operating System

layer (steady timing behaviour and zero-disturbance) can be arguably assessed by means of a
small number of selective examples. In fact, in the absence of history dependence, the timing
behaviour of the analysed procedures rapidly fall into predictable behavioural patterns.

The PROARTIS Sim tool, a SocLib based simulator of a PowerPC 750 platform developed
within the PROARTIS project, was used to collect timing traces that were later fed to
RapiTime [11], a hybrid measurement-based timing analysis tool from Rapita Systems Ltd.
The adopted simulator is highly configurable and has been designed to guarantee fixed-latency
execution of each processor instruction, except for memory accesses whose latency depends
on the current cache state. Since caches are the only residual source of history dependence we
were able to exclude, when needed, any source of interference in the execution time by simply
enforcing a constant response of the cache, either always miss (i.e., inhibition) or always
hit (i.e., perfect cache). The simulator tracing capabilities allowed us to collect execution
traces without actual software instrumentation, thus avoiding the so-called probe effect. The
baseline PROARTIS Sim configuration in our experiments included the perfect cache option,
which corresponds to enforcing the latency of a cache hit on every memory access. In the
lack of a fine-grained control over the cache behaviour, this parametrisation was meant to
exclude the variability stemming from caches without incurring the peformance penalty of
thoroughly disabling them. According to our overall approach, in fact, the majority of our
experiments address those services that are executed outside of the user application and
there is no need to execute them with acceleration features disabled. It is worth noting that
the raw numbers obtained under the always hit option are directly proportional to those
obtainable under an always miss policy; thus, providing both would not add to our reasoning.

Our experiments were conducted over a relevant set of OS services, which we considered
to be the most critical ones from the timing composability standpoint: time management,
scheduling primitives, and sampling port communication. All of them were measured under
different inputs or different task workloads (i.e., for kernel primitives).

We wanted to first measure whether and to what extent the basic time-management
primitives may affect the timing behaviour of a generic user application. We evaluated first
the performance of a selective application within the original POK implementation, which
uses the decrementer register as a tick counter. Subsequently, we set up a new scenario where
no interference arises from the time management service, as the latter was implemented
by interval timers set to fire outside the execution boundaries of the examined procedure.
Caches have been enabled for this experiment and configured with Least Recently Used
(LRU) replacement policy.

nnnnn

nnnnn

788000 |-

787000 -

786000 -

785000 -

784000)< [MinET [MaxET [Delta ‘

oo Tick-based | 785825 [789888 [4063 |
Timer-based | 642076 | 643472 [1396 |

Execution Time Cycles

644000 -

643000

642000

nnnnnnn
2 4 5 s 10 12 14
Execution Run
Tick-based = Timer-based +

Figure 4 Execution under tick-based and interval-timer time management.

The experimental results shown in Figure 4 are not surprising. The tick-based time
management mechanism (upper band in the plot) should be discarded in favour of the
interval timer, since its disturbance on the application code is clearly higher, due to the set

A. Baldovin, E. Mezzetti, and T. Vardanega

of useless time-management activities performed on every tick. Interestingly, as highlighted
by the different areas between the straight lines, the cache-induced variability experienced by
the application under a tick-counter policy is considerably greater than that suffered under
interval-based timer, as a consequence of increased pollution of cache states.

Moving on to scheduling primitives, we observe that inattentive implementation and
design choices may affect both the latency and jitter incurred by scheduling primitives such
as partition switch, process dispatching or state update. To provide experimental evidence
of the steady timing behaviour of our implemented scheduling primitives, as opposed to
the standard ones in the original version of POK, we focus on task status update and task
election. These activities are performed in a single operation in tick-based approaches,
whereas they execute separately in our approach: this is because status update is performed
only at partition switch, whereas thread dispatching occurs at the end of every job execution,
according to the run-to-completion semantics. We enforced a perfect cache behaviour so
that no overhead from the hardware is accounted for in measured execution times. We also
concocted our experiments to follow a strictly deterministic periodic pattern, which allowed us
to restrain our observations to a limited number of runs. Figure 5 shows observed execution
times for the thread selection routine (that is part of the larger scheduling primitive). The
workload in the top chart is two partitions, with three and two threads respectively, while
the bottom chart reports a larger example comprises three partitions with ten, five and two
threads each.

500
500
400

200

Execution Time (cycles)

2930 31 32 33 34 B 36
Execution Run

1750

1500

250

L1000

750

s00

50 |

Execution Time (eycles

o
© 5 10 15 2 25 3 3B 40 45 S0 55 e & 70 75 8 85 9 9 100 105 110 115 120 125 120 135 140 145 150 155 160
uuuuuuuuuuuu

Figure 5 FPPS thread selection under different workloads.

The original POK scheduler always performs the same operations at every clock tick,
mainly checking whether the current partition or thread should be switched to the next ones.
Under those premises, two potential sources of variability originate from the possibility that
a partition/thread needs to be actually switched at a particular scheduling point, and from
the number of threads to be managed in the executing partition, respectively. The graphs in
Figure 5 illustrate this situation clearly: higher peaks correspond to partition switches, when
the state of all threads in the new partition changes to ready and they must be therefore
inserted in the appropriate scheduler queues. For our constant-time scheduler, instead, we
must distinguish two cases, since its behaviour is different at partition and thread switch.
Figure 6 shows the execution time of the routine invoked at partition switch, which only
needs to update thread states*. Though the settings are exactly the same as Figure 5 above,
status updates are performed in constant time thanks to the bitwise operations on thread
masks (Section 3.2).

Figure 7 shows that our constant-time scheduler is capable of detecting the highest-
priority thread to be dispatched with fixed overhead, by using De Bruijn sequences. Lower

4 Except for inter-partition communication overhead.

7

WCET’12

78

A Time-composable Operating System

Execution Time (cycles

7 s
Execution Run

Execttion Time (cycles

2 FER)
Execution Run

Figure 6 Constant-time thread status update under different workloads.

peaks in Figure 6 correspond to the selection of the system idle thread. From the raw
numbers, reported in Table 1, we note that the small delta exhibited by our thread switch
implementation is actually due to the difference between the selection of any thread (95) and
the idle thread® (45). The delta measured on the standard POK implementation, instead,
represents real jitter.

2 4 s e 70 8 S0 10 1o 1 130 140 150 160 17

10

EY

xn
o

Figure 7 Constant-time thread selection in a test case with three partitions and seventeen threads.

Table 1 Execution times for a user application with tick-based and interval-timer scheduling.

FPPS O(1) scheduler O(1) scheduler
(standard POK) (partition switch) (thread switch)
Min | Max | Delta Min | Max [Delta Min | Max [Delta

2 partitions 255 714 459 232 232 0 . o5 =
5 threads

3 partitions

17 threads 259 1759 1500 232 232 0 45 95 50

When it comes to ARINC APEX, we focused on inter-partition communication to start
with. Inter-partition communication via sampling ports have been specifically redesigned for
the sake of time composability®: our implementation is based on posted writes and prefetched
reads that permits to remove the sources of variability and disturbance from the service itself
and serve them out at partition switch. We forced the simulator to resemble a perfect cache
when measuring this services as we wanted to exclude the variability stemming from the
cache behaviour without incurring the peformance penalty of a disabled cache: a positive
effect of relocating the message management in between the execution of two partitions is in
fact that of being able to exploit the caches without any side-effect on the user application.
Having excluded the cache variability causes the analysed service to exhibit a steady timing
(actually constant) behaviour where the execution time only varies as a function over the
input (message) size. We triggered the execution of the sampling services with different sizes
of the data to be exchanged. The dependence of READ and WRITE services on the input size

5 The idle task is elected for execution when no other task is runnable.
5 The implementation of a similar mechanism for queuing ports is work in progress at the time of writing.

A. Baldovin, E. Mezzetti, and T. Vardanega

is shown in Table 2: the increase in the execution time of each service is related to an increase
in the input data size, here ranging from 1 to 256 Bytes. The redesigned implementations of
both services (newWRITE and newREAD in Table 2) are instead constant, as the invocation
of the services themselves does actually execute neither a read nor a write operation, whose
execution is instead deferred at the begin and end of a partition switch respectively.

Table 3 shows the partition switch overhead (observed under different input sizes) that is
the penalty that has to be paid for relocating the message passing mechanism on partition
switch. From what we observed in our experiments, the incurred time penalty is quite limited
and, more importantly, when summed to the time previously spent in the READ or WRITE
service, it does not exceed the execution time of the standard implementation with the same

input.
Table 2 Execution times for the READ and Table 3 Maximum observed parti-
WRITE services. tion switch overhead.
Partition Switch Read+Write
WRITE NewWRITE READ [NewREAD ‘ (standard) Overhead
1B 523 436 618 448 32 B 27674 + 661
4B 580 436 794 448 64 B 29498 + 1269
32B 1112 436 1383 448 96 B 32224 + 1973
64B 1720 436 1758 448 128 B 33146 + 2485
96B 2024 436 2086 448 192 B 37686 + 3807
128B 2936 436 2974 448 256 B 41619 + 5118
256B 5368 436 5406 448 384 B 48630 + 7455

5 Conclusion

Composability in the time dimension is a fundamental enabler for the hierarchical decompos-
ition of large complex systems into smaller, tractable units. Whereas hardware platform are
widely acknowledged to have great influence on the timing composability, in this paper we
focus the role of the real-time operating system in enabling timing composability in IMA
systems and identified the properties that make an operating system timing-composable with
user applications. In that light, we redesigned a real-time partitioned kernel and provided
experimental evidence that the degree of time composability may greatly benefit from proper
design choices in the implementation of the operating system.

—— References

1 APEX Working Group. Draft 3 of Supplement 1 to ARINC Specification 653: Avionics
Application Software Standard Interface. 2003.

2 Julien Delange and Laurent Lec. POK, an ARINC653-compliant operating system released
under the BSD license. 13th Real-Time Linux Workshop, 10 2011.

3 F.J. Cazorla et al. PROARTIS: Probabilistically analysable real-time systems. ACM Trans-
actions on Embedded Computing Systems, to appear.

4 Freescale. PowerPC 750 Microprocessor, 2012. https://www-01.ibm.com/chips/
techlib/
techlib.nsf/products/PowerPC_750_Microprocessor.

5 Charles E. Leiserson, Harald Prokop, and Keith H. Randall. Using de Bruijn Sequences to
Index a 1 in a Computer Word, 1998.

6 Isaac Liu, Jan Reineke, and Edward A. Lee. A PRET Architecture Supporting Concurrent
Programs with Composable Timing Properties. In 44th Asilomar Conference on Signals,
Systems, and Computers, pages 2111-2115, November 2010.

79

WCET’12

https://www-01.ibm.com/chips/techlib/
https://www-01.ibm.com/chips/techlib/
techlib.nsf/products/PowerPC_750_Microprocessor

80

A Time-composable Operating System

10

11
12
13

Ingo Molnar. Goals, Design and Implementation of the new ultra-scalable O(1) scheduler,
Jan. 2002. Available on-line at http://casper.berkeley.edu/, visited on April 2012.

F. Mueller. Compiler support for software-based cache partitioning. In ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Real-Time Systems, 1995.

Peter Puschner, Raimund Kirner, and Robert G. Pettit. Towards composable timing for
real-time software. In Proc. 1st International Workshop on Software Technologies for Future
Dependable Distributed Systems, Mar. 2009.

Peter Puschner and Martin Schoeberl. On Composable System Timing, Task Timing, and
WCET Analysis. In Proc. of the 8th Int. Workshop on WCET Analysis, 2008.

Rapita Systems Ltd. Rapitime, 2012. http://www.rapitasystems.com/rapitime.

J. Reineke et al. A definition and classification of timing anomalies. In WCET, 2006.
Gang Yao, Giorgio C. Buttazzo, and Marko Bertogna. Feasibility analysis under fixed
priority scheduling with limited preemptions. Real-Time Systems, 47(3):198-223, 2011.

http://casper.berkeley.edu/
http://www.rapitasystems.com/rapitime

	Introduction
	Timing composability: a layered approach
	Time-composable kernel layer
	Time management
	Scheduling primitives
	Time-composable ARINC APEX

	Experimental assessment
	Conclusion

