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Abstract
This paper examines a novel strategy for developing correctness proofs in interactive software
verification for C programs. Rather than proceeding backwards from the generated verification
conditions, we start by developing a library of the employed data structures and related coding
idioms. The application of that library then leads to correctness proofs that reflect informal
arguments about the idioms. We apply this strategy to the low-level memory allocator of the L4
microkernel, a case study discussed in the literature.
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1 Introduction

Interactive theorem proving offers several recognized benefits for functional software verific-
ation. From a foundational perspective, it enables the definition of the language semantics
and the derivation of the Hoare logic, which ensures that the verification system is sound
(relative to the defined semantics) (e.g. [21, 22, 5]). The background theories for reasoning
about the machine model can likewise be derived, rather than axiomatized [4, §1.4][21],
thus avoiding the known practical issue of inconsistencies [2, §7]. From the perspective
of applications, interactive provers offer strong support for the development of theories of
the application domain [4, §1.3], which are not restricted to special classes of properties [15,
§2.3]. In particular, they can address algorithmic considerations [27, §7.2], such as geometric
questions [16, §4.4] or properties of defined predicates [12, §4.3].

However, interactive software verification incurs the obvious liability of requiring the
user to guide the proof in some detail and to conceive a proof structure matching the
intended correctness argument. This is the case even more in the development of background
theories that are to be applicable to several algorithms. The necessity of strategic planning
and human insight is often perceived as a major obstacle to the practical applicability of
interactive proving.

This paper proposes to address the challenge of structuring correctness proofs by focusing
on the idioms and coding patterns connected with the data structures found in the verified
code. The benefit to be gained from this approach is clear: users can bring to bear their
insight and experience as software engineers on the formal development, and the proof’s
structure will follow the informal correctness arguments used by developers, thus making it
more understandable and hence more maintainable.

We demonstrate and evaluate this strategy using a study of the memory allocator of the
L4 microkernel, which has previously been verified by Tuch et al. [25, 24] and thus affords
a point of comparison. Although the allocator merely maintains a sorted singly-linked list
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2 Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

of free blocks, we have found even a simplified fragment of the code to be surprisingly hard
to verify in a previous attempt [11], owing to the many technical aspects introduced by the
low-level memory model. This impression is confirmed by the level of detail present in the
original proof [23].

The benefit of the strategy proposed now can therefore be gauged by whether the found
proof matches the essentially simple structure of the algorithm, thus appearing as a detailed
version of an informal correctness argument. This goal also relates to a peculiarity of inter-
active software verification. Differing from the field of mechanized mathematics, no effort is
spent here on making the proof more concise or elegant once it is found—its mechanically
verified existence is sufficient.

For this reason, the paper’s structure reflects the development of the proof. Section 2
gives an overview of the allocator and points out the coding idioms that make the code seem
straightforward. Section 3 then formalizes these idioms in a library of singly-linked lists
and their standard manipulations. Section 4 gives the correctness proof on the basis of that
library, with an emphasis on the direct match between the library theorems and informal
correctness arguments.

1.1 An Overview of Lightweight Separation
We conduct the proof within the lightweight separation verification system [7, 8]. It is
developed as a conservative extension of Isabelle/HOL and permits the verification of low-
level programs in a C dialect inspired by [21].

The idea of lightweight separation is to complement the standard formulation of asser-
tions in HOL with explicit formal representations of memory layouts. Towards that end,
assertions usually contain a conjunct MIA where M is the current memory state and A is
a cover, which is a predicate on address sets. A cover is well-formed if it accepts at most
one address set. We call the address set accepted by a well-formed cover A the memory
region covered by A. For instance, the following constant captures a block of n bytes at a.
It describes the address set and excludes overflows in address arithmetic, making the block
contiguous ({a..<b} denotes a half-open interval [a, b) in Isabelle/HOL; ⊕ is address offset).

block a n ≡ λS. S={a ..< a ⊕ n} ∧ a ≤ a ⊕ n

MIA states A covers the allocated region of M. For M�A, A is allocated in M. The subcover
relation A�B states that the region of A is contained in the region of B. The memory layout
is described by nested cover expressions combined by the disjointness operator A ‖B. The
system provides covers for standard constructs, such as variables and blocks whose size is
given by a type. New constants for covers can be defined as needed. In particular, one can
define covers for inductive data structures using Isabelle’s built-in inductive command.

The lightweight separation tactics then prove, by symbolic manipulation of cover ex-
pressions [7], the allocatedness of memory accessed by the program and the disjointness of
regions read in assertions and modified by programs. If necessary, they unfold given layouts
to expose their constituent parts [8].

2 The L4 Memory Allocator

The memory allocator of the L4 microkernel [23] is responsible for the low-level allocation
of memory blocks. The interface consists of two routines alloc and free that enable client
code to obtain and release memory blocks. We now describe and analyze their overall
structure.
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Figure 1 Allocation and Deallocation in the Free List.

void * alloc ( unsigned int size) {
void ** prev = & kfree_list ;
void *curr = kfree_list ;
while (curr != null) {

void *tmp = *( void **) curr;
unsigned int i = 1;
while (tmp != null &&

i < size / 1024) {
if (tmp != curr + i * 1024) {

tmp = null;
} else {

tmp = *( void **) tmp;
i++;

}
}
if (tmp != null) {

*prev = tmp;
zero_mem (curr ,size );
return curr;

}
prev = ( void **) curr;
curr = *( void **) curr;

}
return null;

}

void free( void *a, unsigned int size) {
void *p;
void ** prev;
void *curr;
p = a;
while (p < a + (size - 1024)) {

*( void **)p = p + 1024;
p = *( void **)p;

}
prev = & kfree_list ;
curr = kfree_list ;
while (curr != null && (a > curr )) {

prev = ( void **) curr;
curr = *( void **) curr;

}
*prev = a;
*( void **)p = curr;

}

void zero_mem ( void *p, unsigned int n) {
unsigned int i = ( unsigned int )0;
while (i < n / 4) {

*(( int *)p+i) = 0;
i++;

}
}

Figure 2 Source Code of the Allocator’s Routines.

2.1 Data Structure and Routines
The microkernel allocator offers basic services to higher-level allocators and handles memory
blocks as multiples of 1kb. Internally, it maintains a free list of 1kb chunks, whose first word
is a pointer to the next chunk. The chunks in the list are ordered by their start addresses
to enable efficient compaction during allocation. The routines alloc and free (Fig. 2) in
essence cut out or splice in sequences of chunks at the correct position within the free list.

The alloc routine moves pointer curr forward through the free list (Fig. 1(a); dashed
arrows indicate the possible crossing of multiple chunks). At each chunk, the nested loop
advances pointer tmp to check whether the sequence of adjacent chunks starting at curr
matches the requested size. If this is the case, the routine removes the sequence from the
list, initializes it with 0-bytes, and returns it to the caller as a raw block of memory. The
prev pointer is used to splice out the returned chunks and always lags one step behind curr.

The free routine dually splices a returned block of memory back into the free list
(Fig. 1(b)). Since the block’s size may be a multiple of 1kb, the routine first creates a
list structure inside the raw memory. Then, it searches for the place where the new list
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4 Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

ListNode *p = list_head;
while (p != NULL && not found ) {

perform check & return/break ;
p = p->next;

}

ListNode **prev = &list_head;
ListNode *p = list_head;
while (p != NULL && not found ) {

perform check & return/break ;
prev = &p->next;
p = p->next;

}
(a) (b)

Figure 3 Iteration Through Lists.

Figure 4 Extraction of a Node in the Follow Iterator Idiom.

fragment must be inserted to maintain sortedness. Finally, it links the fragment into the
free list. Like alloc, it maintains a prev pointer to perform that final pointer manipulation.

2.2 Idioms for List Operations
The routines’ code in Fig. 2 appears straightforward after this explanation of its purpose.
The reason for the simple reading is that the code only applies well-known patterns and
idioms: the experienced developer recognizes these and uses them in reasoning about the
code’s functionality and correctness.

The first and most basic idiom is the search for a particular point in a list. The coding
pattern is shown in Fig 3(a): some pointer p is initialized to the first node and is advanced
repeatedly by dereferencing the next pointer of the node. The checks in the while test or
body are usually used alternatively. Following the terminology of the C++ STL [1], we
will call the pointer p an iterator. Informally, the iteration works without failure because p
never leaves the list structure: it is “properly” initialized and “properly” advanced to the
next node in the list. Since it points to a node after the test for NULL, the iterator p can be
dereferenced in the checks without causing a memory fault.1

If a modification of the list structure at p is intended after the search, the idiom must
be extended by some reference to the predecessor node of p. There are several variants of
such an extension. The L4 allocator uses the one shown in Fig. 3(b), which makes use of
C’s ability to take the addresses of arbitrary memory objects. The constraints associated
with prev are that *prev = p and that prev points either to the list-head variable or to the
next field of some node in the list.2

After the loop, the manipulation is performed by the assignment *prev=q, where q is
either some successor node of p for the removal of p or a new node to be inserted before p.
To show that the resulting pointer structure is the desired linked list, informal arguments
revert to pointer diagrams. The situation is shown in Fig. 4 on the left. If prev = &head, the
argument is simple. Otherwise, one needs to expose the node containing the prev pointer
in the diagram, possibly followed by extracting node p from the remaining list. Then, one

1 These are also the requirements for the STL’s most basic forward iterator [1].
2 A common alternative uses a sentinel head node, such that prev is a node pointer and p is inlined as

prev->next (e.g. the slist library of g++). This variant has the advantage of avoiding case distinctions
on the exact target of prev. Our library (§3) supports this variant as well.
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Figure 5 Establishing the Successor Structure.

draws the algorithm-specific pointer operations, e.g. those of Fig. 1, and argues that the
expected list structure results. Note that the case distinction on prev = &head, which is
necessary in the argument, is not present in the code.

2.3 Idioms for Aligned Low-level Memory Access
The iterator idiom, once identified, can also be applied to algorithms that do not handle
list-like data structures. The zero_mem function (Fig. 2), for example, initializes a memory
block by writing machine words, i.e. by setting groups of 4 bytes at a time. Its loop advances
the pointer (int*)p+i as an iterator in steps of 4, by incrementing i in each loop iteration.
The pointer is properly initialized by setting i=0. Advancing the iterator by i++ leaves it
within the bounds of the raw memory block, because the block’s size is a multiple of 4.

The first loop of dealloc (§4.3) similarly establishes a list structure in a memory block
(Fig. 5) by advancing a pointer p, initialized to start address a, in 1kb-steps. The proof
obligations are the same as for the iterator in zero_mem.

The correctness arguments in both cases therefore consist of the familiar “initializing”
and “advancing” an iterator, and can be carried out analogously to the list case. Although
the formulation of the invariants is quite different, the proofs thus still reflect the common
structure. For space reasons, we will not discuss them further.

3 A Library of List Manipulations

This section captures the idioms from §2.2 in a generic library of singly-linked lists. Using
this library, the correctness proof in §4 will be structured according to informal arguments,
after the allocator’s free list has been proven an instance of the general case. For space
reasons, we omit derived constructs, such as the typed abstraction of the nodes’ contents as
HOL values and the variant of follow iterators mentioned in Footnote 2. The library consists
of 750 lines and has been re-used in two further case studies (§6).

3.1 Parameters and Assumptions
The library is formulated as an Isabelle locale [13] to abstract over the structure of list nodes.
Locales can depend on parameters and state assumptions about these. The list library has
three parameters (1) (“::” denotes a type constraint): node is a cover (§1.1) for a single list
node and succ reads the successor (or “next”) link from a node in a given memory state.
Both usually depend on type definitions, which are passed in a global context gctx.

node :: addr⇒ cover succ :: addr⇒memory⇒ addr gctx :: ctx (1)
accesses (succ p)M (node p) node p S=⇒ p∈S wf-cover (node p) (2)

The theory makes three natural assumptions (2) about these parameters: reading a node’s
successor depends only on that node (accesses fMA states that memory-reading function f,
when applied to state M, depends only on region A); the base pointer of a node is contained in
its footprint; finally, the node cover must be well-formed (§1.1). Note that these assumptions
are implicit in pointer diagrams and are validated by the usual list structures in programs.

SSV’11



6 Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

3.2 List Structure
The standard approach to lists (e.g. [19]) is to define a predicate to enumerate the nodes
in list fragments. An inductive definition is given by the introduction rules (3). A parallel
definition for cover p qM, the memory region of the list, is straightforward. ([ ] is the empty
list, # denotes the “cons” operation)

p=q xs= [ ]
nodes p q xsM

p 6= q nodes (succ pM) q ysM xs=p#ys
nodes p q xsM

(3)

Already at this point, the library yields a benefit in the form of useful properties, such as
the nodes of a list being distinct (4).

nodes p q xsM
distinct xs

(4)

Due to their parallel definitions, the nodes and the cover of a list are closely related. In
particular, if a list is allocated, then it consists of a sequence of nodes (5) and—since null
is never allocated—it cannot contain null as a node (6).

M� cover p qM
∃ xs. nodes p q xsM

(5)

M� node p
p 6= null

nodes p q xsM M� cover p qM
null /∈ set xs

(6)

We have noted in §2 that informal arguments by pointer diagrams address the “extraction”
of nodes from a list and the resulting “overall” list. We now reflect the graphical arguments
in the form of theorems to make their application straightforward: for every change in the
pointer diagram, the formal proof contains an application of the corresponding theorem.
For space reasons, we omit the parallel development for cover.

Theorems (7) and (8) enable the extraction and integration of the first node of a list.
Note how the pre-condition p 6= q reflects the check of the idiomatic while loops from §2.2.
To save a separate application of (4), (7) yields the derived information that the nodes were
originally distinct. The complementary theorems (9) and (10) manipulate the last node of a
list. The final rules (11) and (12) reflect splitting and joining at a given node of the list, as
is necessary for Fig. 1. The last premises of (10) and (12) ensure that no cycles have been
created. In the frequent case where q is null, they can be proven by (6); the library provides
specialized rules for this case to simplify proofs further.

p 6= q
nodes p q xsM=(∃ ys. nodes (succ pM) q ysM∧ xs=p#ys∧ p /∈ set ys)

(7)

nodes r q ysM succ pM= r p 6= q
nodes p q (p#ys)M

(8)

q= succ rM r∈ set xs
nodes p q xsM=(∃ ys. nodes p r ysM∧ xs= ys@ [ r ]∧ q /∈ set xs)

(9)

nodes p r ysM succ rM=q q /∈ set (ys @ [r])
nodes p q (ys@ [r])M

(10)

r∈ set xs
nodes p q xsM=(∃ ys zs. nodes p r ysM∧ nodes r q zsM∧ xs= ys@ zs∧ q /∈ set xs)

(11)

nodes p q xsM nodes q r ysM r /∈ set xs
nodes p r (xs @ ys)M

(12)
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3.3 Iterators
In principle, the definitions and theorems from §3.2 are sufficient to state loop invariants and
to verify list-manipulating programs (e.g. [19]). However, this approach invariably has to
consider the set of list nodes. The idioms of §2.2, on the other hand, focus on the “current”
and the “next” node, which reflects informal arguments about the local list structure—the
inductive argument about the iterator referencing one of the list’s nodes is left implicit.

We can obtain proofs that align with the informal reasoning by formalizing the idea of an
“iterator” itself. In the STL concept [1], an iterator into some data structure always points
to one of its elements or is a special one-past-the-end iterator. In the case of fragments of
singly-linked lists, this idea is expressed by the following definition.

iter a p qM ≡ ∃xs. nodes p q xsM ∧ (a ∈ set xs ∨ a=q)
The loop invariant for the iteration idiom then contains the conjunct iter p head nullM, which
hides the list structure as desired. Furthermore, the informal arguments about “initializing”
and “advancing” an iterator from §2.2 are reflected by theorems (13), and these are used
to establish the invariant and prove its preservation after the loop body. When the sought
node in the list has been found, it can be exposed by (14), followed by (8), without leaving
the iterator idiom.

M� cover p qM
iter p p qM

iter a p qM a 6= q
iter (succ aM) p qM

(13)

iter r p qM
nodes p q xsM=(∃ ys zs. nodes p r ysM∧ nodes r q zsM∧ xs= ys@ zs∧ q /∈ set xs)

(14)

3.4 Follow Iterators
Whenever a list manipulation is intended after iteration, one has to keep an auxiliary pointer
to the node preceding the current one (§2.2). Since the pattern is so frequent, we introduce
another abstraction to capture it. Since the prev pointer lags one step behind a cur pointer,
we choose the term follow iterator.

The locale for follow iterators extends that of iterators by introducing parameters that
abstract over the structure of the “successor field”, i.e. the memory object containing the
“next” pointer. By the idiom, this structure must be the same as that of the head variable.
The structure is given by a cover succ-field. The function rd-succ-field is used for reading its
content. The offset of the field within the node is given by succ-field-off.

succ-field :: "addr⇒ cover"
succ-field-off :: "word32"
rd-succ-field :: "addr⇒ memory⇒ addr"

The locale’s assumptions describe the expected relations between these parameters: the spe-
cial accessor reads the information gained by succ (§3.2) and depends only on the given re-
gion, which must be contained in the corresponding list node and must be well-formed (§1.1).

rd-succ-field (p⊕ succ-field-off)M=succ pM

accesses (rd-succ-field p)M (succ-field p)

succ-field p� node (p⊕ - succ-field-off) wf-cover (succ-field p)

The follow iterator abstraction is then defined directly (§2.2, Fig. 1): cur is an iterator,
while prev points to a link to cur; further, prev either points to the head variable or is itself
an iterator within the list.

follow-iter prev cur head p qM ≡
iter cur p qM ∧ rd-succ-field prevM=cur ∧
(prev=head ∨ (prev ⊕ - succ-field-off 6= q ∧ iter (prev ⊕ - succ-field-off) p qM)

SSV’11



8 Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

This newly defined construct establishes another layer of abstraction over the raw list struc-
ture, in that it enables the now familiar reasoning patterns in a self-contained system: the-
orems (15) and (16) capture the initializing and advancing of the iterator and thus replace
(13) in the proofs. It is worth checking that the additional premises reflect the initializ-
ations from the idiomatic code (§2.2, Fig. 3(b)), thus making the application of theorems
straightforward.

M� cover p qM prev=head cur=p cur= rd-succ-field prevM
follow-iter prev cur head p qM

(15)

follow-iter prev’ cur’ head p qM
cur’ 6= q cur= succ cur’M prev= cur’⊕ succ-field-off

follow-iter prev cur head p qM
(16)

Furthermore, the reasoning about the modification after the search from Fig. 4 can now be
expressed in a single theorem (17). The prerequisite case distinction from the informal argu-
ment of §2.2 can be introduced by the (tautological) rule (18) by a single tactic invocation,
which avoids having explicit terms in the proof script.

follow-iter prev cur head p qM prev 6= head

nodes p q xsM= (∃ys zs. nodes p prev ysM∧ nodes cur q zsM∧
xs= ys@ prev#zs∧ q /∈ set xs)

(17)

follow-iter prev cur head p qM
prev=head∨ prev 6= head

(18)

The follow-iter abstraction thus encapsulates all information necessary to perform the split.
This is evident in the proof of (17), which is based on a combination of the elementary
lemmas (11), (12), (7), and (4) about the list structure (§3.2). While that proof still follows
an informal argument by pointer diagram, the formalization in follow-iter and (17) enables
the user to link the concrete proof to the code’s intention directly. Furthermore, it saves a
lot of detailed and cumbersome manipulation of formulae, which we struggled with in [11],
and makes the proof more readable and thus more maintainable.

4 The Correctness Proof

This section gives the correctness proof of the allocator. The proof is structured by the
application of the library from §3 and thus follows the informal arguments used in §2. The
proof script is available from the author’s homepage [9].

4.1 Formalizing the Allocator’s Free List
We first instantiate the list library from §3 for the allocator’s free list. Even though the
library seems to suggest some “typed” concept of lists, the allocator’s data structure fits dir-
ectly: after instantiating the parameters as follows and discharging the library’s assumptions
by 40 lines of straightforward tactics, the developed constants and reasoning patterns are
available. («» delineates program syntax in HOL, here that of types. The system contains
a pre-processor.)

node p ≡ block p 1024
succ pM ≡ to-ptr (rd gctx p«void*»M)
succ-field p ≡ typed-block gctx p«void*»
rd-succ-field aM ≡ to-ptr (rd gctx a«void*»M)
succ-field-off ≡ 0
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We then introduce an abbreviation kfree-list for reading the global head variable kfree_list
and define the invariant free-list-inv: the chunks in the list are ordered by their base addresses
and they are aligned to 1kb. The free-list-cover summarizes the memory occupied by the data
structure.3

kfree-list ctxM ≡ to-ptr (rdv (in-globals ctx) ”kfree-list”M)
free-list-inv ctxM ≡ (∃C. nodes (kfree-list ctxM) null CM ∧ sortedC ∧

(∀p ∈ set C. aligned p 1024))
free-list-cover ctxM ≡ var-block (in-globals ctx) ”kfree-list” ‖ cover (kfree-list ctxM) nullM

4.2 Allocation
The alloc routine searches for a contiguous block of memory that is large enough to fit
the requested size (§2.1). Its specification is translated from [23]: the pre-condition requires
that the free list data structure is intact and that the memory does contain the free list.
Furthermore, the requested size must be a multiple of 1kb.

M I free-list-cover ctxM ∧ free-list-inv ctxM ∧ 0 < size ∧ 1024 udvd size ∧ size=SIZE
The post-condition distinguishes between success and failure. In both cases, the data struc-
ture itself is preserved. If the allocation is successful, an aligned block of 0-initialized memory
has been extracted from the free list. The auxiliary (or logical) variable SIZE links the pre-
and post-conditions as usual.

free-list-inv ctxM ∧
(return 6= null −→ M I free-list-cover ctxM ‖ block return SIZE ∧

aligned return 1024 ∧ zero-block ctx return SIZEM) ∧
(return=null −→ M I free-list-cover ctxM)

The nested loops of alloc advance the pointers curr and tmp, where the inner loop leaves
curr unchanged. The outer loop invariant is therefore the same as the following inner loop
invariant, except that Lines 3–4 are missing:
1 free-list-inv ctx M ∧ size = SIZE ∧ 0 < size ∧ 1024 udvd size ∧ i ≤ size div 1024 ∧
2 follow-iter prev curr «&kfree-list» kfree-list null M ∧
3 curr 6= null ∧
4 (tmp 6= null −→ cover curr tmp M= block curr (i * 1024) ∧ iter tmp curr null M) ∧
5 M I free-list-cover ctx M ‖ size ‖ prev ‖ curr ‖ tmp ‖ i ∧
6 M � typed-block prev «void*» ‖ size ‖ prev ‖ curr ‖ tmp ‖ i
Line 1 preserves the pre-condition and states that i will not exceed the bound given by
the size parameter. Line 2 invokes the follow iterator idiom (§2.2) from the library (§3.4).
Line 3 preserves the test result of the outer loop. Line 4 uses the notation for memory layouts
(§1.1, §3.2) to state that a contiguous block of memory is found between curr and tmp. Line 5
extends the initial memory layout by the local variables. Line 6 adds that prev is not a local
variable while leaving open whether it refers to the variable kfree-list or a list node.

The structure of the correctness proof is now already clear: the initializations before both
loops leave precisely the situation where theorems (13) and (15) about the initialization of
iterators apply. For the preservation of the outer invariant, the pointer assignments in the
body match the idiom (§2.2) such that (16) is sufficient. All of these steps thus reflect the
idiomatic, informal view, and the proof is merely a more precise form of argument.

For the preservation of the inner invariant, the then-branch is trivial. In the else-branch,
only Line 4 needs to be newly established. In the conceptual view of §2.2, the code advances

3 We note in passing that the introduced information hiding is maintained for clients by the theorem
accesses (free-list-inv ctx)M (free-list-cover ctxM): the lightweight separation framework will prove that
the free list is not influenced by the clients’ memory manipulations and thus solves the frame problem
(e.g. [14]) in a natural fashion.

SSV’11



10 Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

the iterator tmp; correspondingly (13) solves the iter-part immediately. The remainder of
Line 4 contains the core of the algorithm: we have to prove that the found block is still
contiguous, using that tmp=curr+ i * 1024 by the if-test. Fig. 6 depicts the proof obligation,
using primed variables for the pre-state of the loop body. The figure also contains the idea

Figure 6 Extending the Found Block with a New Chunk.

of the proof: on the right-hand side of the equation from Line 4, we split off one chunk at
the end of the list by (9); on the left-hand side, we split the contiguous block at address
tmp’. This strategy can be expressed by 8 lines of tactics.

The final proof obligation concerns the returning of an allocated memory block, which is
spliced out by the assignment *prev=tmp after the inner loop (Fig. 1). Since that assignment
matches the idiom from §2.2, we can use (17) to perform the split of the list, after a case
distinction by (18). Then, Line 4 of the invariant yields the memory layout of the post-
condition. The argument takes 30 lines of tactics for both cases together; the application of
the theorems reflects the informal manipulation of pointer diagrams in all steps.

4.3 Deallocation
The free routine takes a block of memory and integrates it into the allocator’s free list
(Fig. 1). Its specification, again translated from [23], requires that the free list is intact and
allocated and that the block’s size is a multiple of 1kb.

M I free-list-cover ctxM ‖ block a size ∧ free-list-inv ctxM ∧
0 < size ∧ 1024 udvd size ∧ aligned a 1024

It guarantees that the passed block has been merged into the free list.
M I free-list-cover ctxM ∧ free-list-inv ctxM

The function free consists of two loops. The first establishes the pointer structure within
the passed memory block, the second splices the created list into the free list at the correct
position to maintain sortedness.

The first loop uses an iterator-like construct to establish the list structure within the
raw memory block (§2.3; Fig. 5). We have developed a thin wrapper around Isabelle’s Word
library [6] to enable the idiomatic reasoning about initializing and advancing this iterator.
The proof that the overall block maintains the shape of Fig. 5, i.e. an initial list of elements
with a trailing raw block, can be proven along the graphical intuition, by using essentially
the same steps as the derivation from Fig. 6 in §4.2.

The invariant of the second loop is again typical of a search loop (§2.2, §3.4):
1 ∃B.M I free-list-cover ctxM ‖ cover a pM ‖ node p ‖ a ‖ size ‖ p ‖ prev ‖ curr ∧
2 free-list-inv ctxM ∧ 0 < size ∧ 1024 udvd size ∧ aligned a 1024 ∧ aligned p 1024 ∧
3 cover a pM ‖ node p=block a (p ⊕ 1024 	 a) ∧
4 nodes a pBM ∧ sortedB ∧ (∀ b ∈ set B. a ≤ b ∧ b < p ∧ aligned b 1024) ∧
5 follow-iter prev curr«&kfree-list» kfree-list nullM ∧
6 (prev=«&kfree-list» ∨ prev < a) ∧ a ≤ p
Lines 1–2 maintain the information of the pre-condition; Lines 3–4 keep the result of the first
loop (Fig. 5). Line 5 captures curr as a follow iterator (§3.4) for the search, while Line 6
characterizes the nodes that curr has already passed as having start addresses strictly
smaller than a.
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Since the loop matches the idiom (Fig. 3(b)), its correctness proof follows the reasoning
already discussed for alloc in §4.2: (15) and (16) yield initialization and preservation; Line 6
follows from the while-test. After the loop, the new sequence of nodes a. . . p is spliced into
the free list before curr, again making use of (17) and (18) to split the overall list structure
before the pointer updates.

5 Related Work

To the best of the author’s knowledge, the proposal of developing background theories by
formalizing idioms and coding patterns has not been discussed previously. We therefore
focus on similar case studies and on approaches to structuring interactive proofs beyond the
discharging of generated verification conditions.

Tuch et al. [25, 23] give two proofs of the L4 memory allocator, one using separation logic
and one using a typed view on the raw memory. Their development shows the intricacy of
reasoning about byte-addressed finite memory. Our own proof clearly benefits from Isabelle’s
Word library [6] contributed by the L4 verification project. In his analysis [24, §6.6], Tuch
suggests that with further experience in similar proofs, a set of re-usable libraries could be
constructed to aid in future developments. He proposes to collect lemmas that have been
found useful, and to improve automation for separation logic assertions. Differing from
ours, his approach is thus goal-directed, starting from the verification conditions. Although
proof sizes in different systems are not directly comparable, it is interesting that our proof
is significantly shorter (by a factor of 2) even though Tuch et al. prove only the immediately
necessary theorems.

Marti et al. [17] verify the heap manager of the Topsy operating system, which is also
based on an untyped singly-linked list. The paper focuses on the developed verification
environment and therefore the actual proof is discussed only at the level of the defined
predicates and the function specifications. An instance of forward reasoning appears in [17,
§4.2], where a central theorem for compacting two list nodes is derived beforehand and is
shown to apply to an example Hoare triple of an expected format. The structure of the
greater part of the proof (≈4500 lines of Coq) is not analyzed further.

Böhme et al. [4] investigate the advantages of interactive theorem proving for software
verification. In [4, §1.3], they observe that the introduction of suitable abstractions with
well-developed theories can make interactive proofs feasible where automated provers fail
because they have to unfold the definitions. They demonstrate the claim by a case study on
an implementation of circular singly-linked lists, but do not formulate strategies to develop
general theories.

Concerning the question of structuring interactive correctness proofs, Myreen [20, §5.2]
verifies Cheney’s garbage collector using a refinement argument. The first two layers cap-
ture the specification and abstract implementation of copying garbage collection; they can
thus be read as the common structure of different collectors. Our proposal of formalizing
idioms addresses, on the other hand, cross-cutting issues of different algorithms. McCreight’s
proof [18] of the same algorithm introduces carefully chosen separation logic predicates that
reflect the structure of pointer diagrams, and diagrammatic arguments are used to illustrate
the proof strategies. However, their translation into a proof script involves a substantial
amount of technical formula manipulation [18, §6.3.3, p. 122, §6.4.3]. Both the defined
predicates and the proof strategies are specific to the algorithm.

A different approach to interactive proving has been proposed by Tuerk [26] and Chlip-
ala [5]. They use a restricted form of separation logic, inspired by Smallfoot [3]. Besides

SSV’11



12 Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

pure assertions, verification conditions then consist of implications between iterated spatial
conjunctions, which are canceled syntactically one-by-one, possibly using user-supplied un-
folding rules. This process reduces the verification conditions to pure assertions, which are
solved mostly automatically by the built-in tactics of the employed interactive provers. The
design of suitable background theories for different data structures is not discussed.

6 Conclusion

Interactive software verification enables the development of theories independently of con-
crete verification conditions, with a view to making proofs readable, maintainable, and
possibly re-usable. This paper has proposed to structure such theories around the idioms
and coding patterns employed by developers, and to formulate the definitions and theorems
to reflect informal arguments about the code, e.g. in the form of pointer diagrams.

We have demonstrated this strategy using the frequent case of singly-linked lists. Besides
their basic structure (§3.2), we have introduced the higher-level idioms of iterators (§3.3)
for read-only searches and follow iterators (§3.4) for searching and modifying lists. The
developed library is formulated as an Isabelle locale and can be instantiated for different
concrete list structures. We have applied the library to the untyped free list of the L4 memory
allocator [25, 23]. It was interesting to find during the development that the reasoning
patterns embodied in the library made the overall proof [9] much more straightforward than
the previous partial attempt [11], even though several additional points, such as alignment
and the initialization of allocated memory had to be considered.

The proposed strategy has shown several benefits: first, all verification conditions re-
garding the list structure were solved by library theorems, and their application in each case
reflected informal arguments by pointer diagrams. The chosen theorem names preserve this
link in the proof script [9], thus contributing to its maintainability. Second, the analogies
between the allocator’s routines could be exploited by having a common ground for express-
ing them (§4.2, §4.3). Third, although no specific effort was made, the script is substantially
smaller than the original one [23, 24], which can be attributed to the simple application of
library theorems due to their matching the coding idioms.

Finally, the library’s genericity has enabled its re-use for the work queues of the Schorr-
Waite graph marking algorithm [8] and Cheney’s collector [10]. Both algorithms use a non-
standard successor link, involving a case-distinction and pointer arithmetic, respectively.
The correctness proofs are nevertheless covered by the library theorems (§3.2). Between the
two algorithms, we have re-used a theory of object graphs [8, §5.1] that is also structured
around expected common manipulations. This further example suggests that the strategies
proposed now will be applicable beyond the chosen case study.
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