
Verification of Dependable Software using Spark
and Isabelle
Stefan Berghofer∗

secunet Security Networks AG
Ammonstraße 74, 01067 Dresden, Germany

Abstract
We present a link between the interactive proof assistant Isabelle/HOL and the Spark/Ada tool
suite for the verification of high-integrity software. Using this link, we can tackle verification
problems that are beyond reach of the proof tools currently available for Spark. To demonstrate
that our methodology is suitable for real-world applications, we show how it can be used to verify
an efficient library for big numbers. This library is then used as a basis for an implementation
of the RSA public-key encryption algorithm in Spark/Ada.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Digital Object Identifier 10.4230/OASIcs.SSV.2011.15

1 Introduction

Software for security-critical applications, such as a data encryption algorithm in a virtual
private network (VPN) gateway, needs to be particularly trustworthy. If the encryption
algorithm does not work as specified, data transmitted over the network may be decrypted
or manipulated by an adversary. Moreover, flaws in the implementation may also make the
VPN gateway vulnerable to overflows, enabling an attacker to obtain access to the system,
or cause the whole gateway to crash. If such a gateway is part of the VPN of a bank,
implementation flaws can easily cause considerable financial damage. For that reason, there
is a strong economic motivation to avoid bugs in software for such application areas.
Since software controls more and more areas of daily life, software bugs have received in-
creasing attention. In 2006, a bug was introduced into the key generation tool of OpenSSL
that was part of the Debian distribution. As a consequence of this bug, the random num-
ber generator for producing the keys no longer worked properly, making the generated keys
easily predictable and therefore insecure [6]. This bug went unnoticed for about two years.
Although it is commonly accepted that the only way to make sure that software conforms to
its specification is to formally prove its correctness, it was not until recently that verification
tools have reached a sufficient level of maturity to be industrially applicable. A prominent
example of such a tool is the Spark system [3]. It is developed by Altran Praxis and is
widely used in industry, notably in the area of avionics. Spark is currently being used
to develop the UK’s next-generation air traffic control system iFACTS, and has already
been successfully applied to the verification of a biometric software system in the context
of the Tokeneer project funded by the NSA [2]. The Spark system analyzes programs
written in a subset of the Ada language, and generates logical formulae that need to hold in
order for the programs to be correct. Since it is undecidable in general whether a program
meets its specification, not all of these generated formulae can be proved automatically. In

∗ Supported by Federal Office for Information Security (BSI) under grant 880

© Stefan Berghofer;
licensed under Creative Commons License NC-ND

6th International Workshop on Systems Software Verification (SSV’11).
Editors: Jörg Brauer, Marco Roveri, Hendrik Tews; pp. 15–31

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SSV.2011.15
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

16 Verification of Dependable Software using Spark and Isabelle

this paper, we therefore present the HOL-Spark verification environment that couples the
Spark system with the interactive proof assistant Isabelle/HOL [13].
Spark imposes a number of restrictions on the programmer to ensure that programs are
well-structured and thus more easily verifiable. Pointers and GOTOs are banned from
Spark programs, and for each Spark procedure, the programmer must declare the intended
direction of dataflow. This may sound cumbersome, but eventually leads to code of much
higher quality. In standard programming languages, requirements on input parameters
or promises about output parameters of procedures, also called pre- and postconditions,
such as “i must be smaller than the length of the array A” or “x will always be greater
than 1” are usually written as comments in the program, if at all. These comments are not
automatically checked, and often they are wrong, for example when a programmer modified
a piece of code but forgot to ensure that the comment still reflects the actual behaviour
of the code. Spark allows the programmer to write down pre- and postconditions of a
procedure as logical formulae, and a link between these conditions and the code is provided
by a formal correctness proof of the procedure, which makes it a lot easier to detect missing
requirements. Moreover, the obligation to develop the code in parallel with its specification
and correctness proof facilitates the production of code that immediately works as expected,
without spending hours on testing and bug fixing. Having a formal correctness proof of a
program also makes it easier for the programmer to ensure that changes do not break
important properties of the code.
The rest of this paper is structured as follows. In §2, we give some background information
about Spark and our verification tool chain. In §3, we illustrate the use of our verification
environment with a small example. As a larger application, we discuss the verification of a
big number library in §4. A brief overview of related work is given in §5. Finally, §6 contains
an evaluation of our approach and an outlook to possible future work.

2 Basic Concepts

2.1 Spark

Spark [3] is a subset of the Ada language that has been designed to allow verification
of high-integrity software. It is missing certain features of Ada that can make programs
difficult to verify, such as access types, dynamic data structures, and recursion. Spark
allows to prove absence of runtime exceptions, as well as partial correctness using pre- and
postconditions. Loops can be annotated with invariants, and each procedure must have
a dataflow annotation, specifying the dependencies of the output parameters on the input
parameters of the procedure. Since Spark annotations are just written as comments, Spark
programs can be compiled by an ordinary Ada compiler such as GNAT. Spark comes with a
number of tools, notably the Examiner that, given a Spark program as an input, performs
a dataflow analysis and generates verification conditions (VCs) that must be proved in
order for the program to be exception-free and partially correct. The VCs generated by
the Examiner are formulae expressed in a language called FDL, which is first-order logic
extended with arithmetic operators, arrays, records, and enumeration types. For example,
the FDL expression

for_all(i: integer, ((i >= min) and (i <= max)) ->
(element(a, [i]) = 0))

S. Berghofer 17

states that all elements of the array a with indices greater or equal to min and smaller or
equal to max are 0. VCs are processed by another Spark tool called the Simplifier that
either completely solves VCs or transforms them into simpler, equivalent conditions. The
latter VCs can then be processed using another tool called the Proof Checker. While the
Simplifier tries to prove VCs in a completely automatic way, the Proof Checker requires user
interaction, which enables it to prove formulae that are beyond the scope of the Simplifier.
The steps that are required to manually prove a VC are recorded in a log file by the Proof
Checker. Finally, this log file, together with the output of the other Spark tools mentioned
above, is read by a tool called POGS (Proof ObliGation Summariser) that produces a table
mentioning for each VC the method by which it has been proved. In order to overcome
the limitations of FDL and to express complex specifications, Spark allows the user to
declare so-called proof functions. The desired properties of such functions are described by
postulating a set of rules that can be used by the Simplifier and Proof Checker [3, §11.7]. An
obvious drawback of this approach is that incorrect rules can easily introduce inconsistencies.

2.2 HOL-Spark

The HOL-Spark verification environment, which is built on top of Isabelle’s object logic
HOL, is intended as an alternative to the Spark Proof Checker, and improves on it in
a number of ways. HOL-Spark allows Isabelle to directly parse files generated by the
Examiner and Simplifier, and provides a special proof command to conduct proofs of VCs,
which can make use of the full power of Isabelle’s rich collection of proof methods. Proofs
can be conducted using Isabelle’s graphical user interface, which makes it easy to navigate
through larger proof scripts. Moreover, proof functions can be introduced in a definitional
way, for example by using Isabelle’s package for recursive functions, rather than by just
stating their properties as axioms, which avoids introducing inconsistencies.
Figure 1 shows the integration of HOL-Spark into the tool chain for the verification of
Spark programs. HOL-Spark processes declarations (*.fdl) and rules (*.rls) produced
by the Examiner, as well as simplified VCs (*.siv) produced by the Spark Simplifier.
Alternatively, the original unsimplified VCs (*.vcg) produced by the Examiner can be used
as well. Processing of the Spark files is triggered by an Isabelle theory file (*.thy), which
also contains the proofs for the VCs contained in the *.siv or *.vcg files. Once that all
verification conditions have been successfully proved, Isabelle generates a proof review file
(*.prv) notifying the POGS tool of the VCs that have been discharged.

3 Verifying an Example Program

In this section, we explain the usage of the Spark verification environment by proving the
correctness of an example program for computing the greatest common divisor of two natural
numbers shown in Fig. 2, which has been taken from the book about Spark by Barnes [3,
§11.6]. In order to specify that the Spark procedure G_C_D behaves like its mathematical
counterpart, Barnes introduces a proof function Gcd in the package specification.

3.1 Importing Spark VCs into Isabelle

Invoking the Examiner and Simplifier on this program yields a file g_c_d.siv containing the
simplified VCs, as well as files g_c_d.fdl and g_c_d.rls, containing FDL declarations and
rules, respectively. For G_C_D the Examiner generates nine VCs, seven of which are proved

SSV’11

18 Verification of Dependable Software using Spark and Isabelle

Source files
(*.ads, *.adb)

Examiner

FDL declarations
(*.fdl)

VCs
(*.vcg)

Rules
(*.rls)

Simplifier

Simplified VCs
(*.siv)

HOL-Spark
Theory files
(*.thy)

Proof review files
(*.prv)

POGS

Summary file
(*.sum)

Figure 1 Spark program verification tool chain.

automatically by the Simplifier. We now show how to prove the remaining two VCs interact-
ively using HOL-Spark. For this purpose, we create a theory Greatest_Common_Divisor,
which is shown in Fig. 3. Each proof function occurring in the specification of a Spark
program must be linked with a corresponding Isabelle function. This is accomplished by the
command spark_proof_functions, which expects a list of equations name = term, where
name is the name of the proof function and term is the corresponding Isabelle term. In
the case of gcd, both the Spark proof function and its Isabelle counterpart happen to have
the same name. Isabelle checks that the type of the term linked with a proof function
matches the type of the function declared in the *.fdl file. We now instruct Isabelle to
open a new verification environment and load a set of VCs. This is done using the command
spark_open, which must be given the name of a *.siv or *.vcg file as an argument. Be-
hind the scenes, Isabelle parses this file and the corresponding *.fdl and *.rls files, and
converts the VCs to Isabelle terms.

3.2 Proving the VCs

The two open VCs are procedure_g_c_d_4 and procedure_g_c_d_9, both of which contain
the gcd proof function that the Simplifier does not know anything about. The proof of a
particular VC can be started with the spark_vc command. The VC procedure_g_c_d_4

S. Berghofer 19

package Greatest_Common_Divisor
is

--# function Gcd (A, B : Natural) return Natural;

procedure G_C_D (M, N : in Natural; G : out Natural);
--# derives G from M, N;
--# post G = Gcd (M, N);

end Greatest_Common_Divisor;

package body Greatest_Common_Divisor
is

procedure G_C_D (M, N : in Natural; G : out Natural)
is

C, D, R : Natural;
begin

C := M; D := N;
while D /= 0

--# assert Gcd (C, D) = Gcd (M, N);
loop

R := C mod D;
C := D; D := R;

end loop;
G := C;

end G_C_D;

end Greatest_Common_Divisor;

Figure 2 Spark program for computing the greatest common divisor.

requires us to prove that the gcd of d and the remainder of c and d is equal to the gcd of the
original input values m and n, which is the invariant of the procedure. This is a consequence
of the following theorem

0 < y =⇒ gcd x y = gcd y (x mod y)

The VC procedure_g_c_d_9 says that if the loop invariant holds when we exit the loop, which
means that d = 0, then the postcondition of the procedure will hold as well. To prove this,
we observe that gcd c 0 = c for non-negative c. This concludes the proofs of the open VCs,
and hence the Spark verification environment can be closed using the command spark_end.
This command checks that all VCs have been proved and issues an error message otherwise.
Moreover, Isabelle checks that there is no open Spark verification environment when the
final end command of a theory is encountered.

4 A verified big number library

We will now apply the HOL-Spark environment to the verification of a library for big
numbers. Libraries of this kind form an indispensable basis of algorithms for public key
cryptography such as RSA or elliptic curves, as implemented in libraries like OpenSSL.
Since cryptographic algorithms involve numbers of considerable size, for example 256 bytes

SSV’11

20 Verification of Dependable Software using Spark and Isabelle

theory Greatest_Common_Divisor
imports SPARK GCD
begin

spark_proof_functions
gcd = "gcd :: int ⇒ int ⇒ int"

spark_open "out/greatest_common_divisor/g_c_d.siv"

spark_vc procedure_g_c_d_4
using ‘0 < d‘ ‘gcd c d = gcd m n‘
by (simp add: gcd_non_0_int)

spark_vc procedure_g_c_d_9
using ‘0 ≤ c‘ ‘gcd c 0 = gcd m n‘
by simp

spark_end

end

Figure 3 Correctness proof for the greatest common divisor program.

in the case of RSA, or 40 bytes in the case of elliptic curves, it is important for arithmetic
operations to be performed as efficiently as possible.

4.1 Introduction to modular multiplication

An operation that is central to many cryptographic algorithms is the computation of x·ymod
m, which is called modular multiplication. An obvious way of implementing this operation
is to apply the standard multiplication algorithm, followed by division. Since division is
one of the most complex operations on big numbers, this approach would not only be very
difficult to implement and verify, but also computationally expensive. Therefore, big number
libraries often use a technique called Montgomery multiplication [10, §14.3.2]. We can think
of a big number x as an array of words x0, . . . , xn−1, where 0 ≤ xi and xi < b, and

x =
∑

0≤i<n

bi · xi

In implementations, b will usually be a power of 2. For two big numbers x and y, Montgomery
multiplication (denoted by x⊗ y) yields

x⊗ y = x · y ·R−1 mod m

where R = bn, and R−1 denotes the multiplicative inverse of R modulo m. Now, in order to
compute the product of two numbers x and y modulo m, we first compute the residues x̃ and
ỹ of these numbers, where x̃ = x ·R mod m and ỹ likewise. A residue x̃ can be computed
by a Montgomery multiplication of x with R2 mod m, since

x⊗ (R2 mod m) = x ·R2 ·R−1 mod m = x ·R mod m

We then have that

x̃⊗ ỹ = x ·R · y ·R ·R−1 mod m = x · y ·R mod m = x̃ · y

S. Berghofer 21

a← 0
for i = n− 1 downto 0 do

a← a · b + xi · y
end for

a← 0
for i = 0 to n− 1 do

a← (a + xi · y)/b

end for

0 · 10 =
0 +

4 · 789 3156 =
3156 · 10 =

31560 +
5 · 789 3945 =

35505 · 10 =
355050 +

6 · 789 4734 =
359784

0 +
6 · 789 4734 =

4734 / 10 =
473.4 +

5 · 789 3945 =
4418.4 / 10 =
441.84 +

4 · 789 3156 =
3597.84 / 10 =
359.784

Figure 4 Two variants of multiplication.

The desired result of the modular multiplication can be obtained by performing a Mont-
gomery multiplication of x̃ · y with 1, since

x̃ · y ⊗ 1 = x · y ·R · 1 ·R−1 mod m = x · y mod m

Before we come to the implementation and verification of Montgomery multiplication, we
try to give an intuitive explanation of how the algorithm works. Our exposition is inspired
by a note due to Kochanski [9]. As a running example, we take b = 10 and assume we would
like to multiply 456 with 789. Fig. 4 shows two multiplication algorithms in pseudocode
notation, and the tables below the algorithms illustrate the computation steps performed
by them. The algorithm on the left is the usual “school multiplication”: the multiplier x is
processed from left to right, i.e. starting with the most significant digit, and the accumulator
a is shifted to the left, i.e. multiplied with 10 in each step. In contrast, the algorithm on the
right processes the multiplier from right to left, i.e. starting with the least significant digit,
and shifts the accumulator to the right, i.e. divides it by 10. Consequently, the algorithm
on the right computes x · y ·R−1 instead of x · y. We now explain how the algorithm on the
right can be modified to perform modular multiplication. It might seem that the algorithm
requires computations involving floating point numbers, since a + xi · y is not necessarily
divisible by b. However, when working modulo m, this can easily be fixed by adding a
suitable multiple of m to a + xi · y, which does not change the result modulo m. The factor
by which we have to multiply m is u = (a0 + xi · y0) ·m′mod b, where m′ = −m−1

0 mod b is
the additive inverse of the multiplicative inverse of m0 modulo b, i.e. (1+m′ ·m0)modb = 0
and 0 ≤ m′ < b. The inverse only exists if m0 and b are coprime, i.e. gcd(m0, b) = 1, which
is the case in practical applications, since b will usually be a power of 2 and m will be a
large prime number. Note that in order to compute u, we only have to consider the least
significant words a0, y0 and m0 of the numbers a, y and m, respectively. It is easy to see
that a + xi · y + u ·m is divisible by b, since

(a + xi · y + u ·m) mod b = (a0 + xi · y0 + (a0 + xi · y0) ·m′ ·m0) mod b =
(a0 + xi · y0) · (1 + m′ ·m0) mod b = 0

Fig. 5 shows the pseudocode for the Montgomery multiplication algorithm, which employs

SSV’11

22 Verification of Dependable Software using Spark and Isabelle

a← 0
for i = 0 to n− 1 do

u← (a0 + xi · y0) ·m′ mod b

a← (a + xi · y + u ·m)/b

end for
if a ≥ m then

a← a−m

end if

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Figure 5 Montgomery multiplication algorithm.

the ideas described above. As for the other algorithms, we also include a table illustrating
the computation. We again multiply the numbers 456 and 789, and use 987 as a modulus.
Note that m′ = 7, since (1 + 7 · 7) mod 10 = 0. The result of the multiplication is easily
seen to be correct, since

723 · 1000 mod 987 = 516 = 456 · 789 mod 987

After termination of the loop, it may be necessary to subtract m from a, since a may not
be smaller than m, although it will always be smaller than 2 ·m− 1.

4.2 Overview of the big number library

In this section, we give an overview of the big number library and its interface. We have
chosen to represent big numbers as unconstrained arrays of 64-bit words, where the array
indices can range over the natural numbers. All procedures in the big number library operate
on segments of unconstrained arrays that are selected by specifying the first and last index
of the segment. In situations where a procedure operates on several segments, all of which
must have the same length, the last index is usually omitted. The prelude of the Bignum
library containing the basic declarations is shown in Fig. 6. The big number library provides
the following operations:

Basic big number operations: doubling, subtracting, and comparing
Precomputation of the values R2 mod m and −m−1

0 mod b

Montgomery multiplication
Exponentiation using Montgomery multiplication

The value R2 mod m =
((

2k
)n)2 mod m = 22·k·n mod m can be computed by initializing

an accumulator with 1 and applying the doubling operation to it 2 · k · n times. After
each doubling step, we check whether a carry bit was produced or the resulting number is
greater or equal to m, in which case we have to subtract m from the current value of the

S. Berghofer 23

package Bignum
is

Word_Size : constant := 64;
Base : constant := 2 ** Word_Size;
type Word is mod Base;
type Big_Int is array (Natural range <>) of Word;

--# function Num_Of_Big_Int (A: Big_Int; K, I: Natural)
--# return Universal_Integer;

--# function Num_Of_Boolean (B: Boolean)
--# return Universal_Integer;

--# function Inverse (M, X: Universal_Integer)
--# return Universal_Integer;

. . .
end Bignum;

Figure 6 Prelude of the big number library.

accumulator. The value −m−1
0 mod b can be computed by a variant of Euclid’s algorithm

shown in §3.
Since the specification of the big number operations will make use of constructs that cannot
be easily expressed with Spark’s annotation laguage, we have to introduce a number of
proof functions. First of all, we need a function that abstracts a big number to a number in
the mathematical sense. This function, which is called Num_Of_Big_Int, takes an array A,
together with the first index K and the length I of the segment representing the big number,
and returns a result of type Universal_Integer. The Isabelle counterpart of this function
is

num_of_big_int :: (int ⇒ int) ⇒ int ⇒ int ⇒ int
num_of_big_int A k i = (

∑
j = 0..<i. Basej * A (k + j))

An array with elements of type τ is represented by the function type int ⇒ τ in Isabelle.
Function num_of_big_int enjoys the following summation property

num_of_big_int A k (i + j) =
num_of_big_int A k i + Basei * num_of_big_int A (k + i) j

It is important to note that it would not have been adequate to choose Integer instead
of Universal_Integer as a result type, since the former corresponds to machine integers
limited to a fixed size, whereas the latter corresponds to the mathematical ones. When
dealing with operations returning carry bits, it is often useful to have a function for converting
boolean values to numbers, where False and True are converted to 0 and 1, respectively.
This is accomplished by the proof function Num_Of_Boolean. Finally, for writing down
the specification of Montgomery multiplication, we also need the proof function Inverse
denoting the multiplicative inverse of X modulo M. It corresponds to the Isabelle function
minv::int ⇒ int ⇒ int, which has the following central property

coprime x m =⇒ 0 < x =⇒ 1 < m =⇒ x * minv m x mod m = 1

Moreover, if n’ is the multiplicative inverse of n modulo m, multiplying k by n’ is equivalent
modulo m to dividing k by n, provided that k is divisible by n:

SSV’11

24 Verification of Dependable Software using Spark and Isabelle

procedure Mont_Mult
(A : out Big_Int; A_First : in Natural; A_Last : in Natural;
X : in Big_Int; X_First : in Natural;
Y : in Big_Int; Y_First : in Natural;
M : in Big_Int; M_First : in Natural;
M_Inv : in Word);

--# derives
--# A from
--# A_First, A_Last, X, X_First, Y, Y_First, M, M_First, M_Inv;
--# pre
--# A_First in A’Range and A_Last in A’Range and
--# A_First < A_Last and
--# X_First in X’Range and
--# X_First + (A_Last - A_First) in X’Range and
--# . . .

--# Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) <
--# Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
--# 1 < Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
--# 1 + M_Inv * M (M_First) = 0;
--# post
--# Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) =
--# (Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *
--# Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *
--# Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),
--# Base) ** (A_Last - A_First + 1)) mod
--# Num_Of_Big_Int (M, M_First, A_Last - A_First + 1);

Figure 7 Specification of Montgomery multiplication.

n * n’ mod m = 1 =⇒ k mod n = 0 =⇒ k div n mod m = k * n’ mod m

This property does not hold if k mod n 6= 0. For example, 5 * 13 mod 16 = 1 and 10 * 13
mod 16 = 2 = 10 div 5, but 9 * 13 mod 16 = 5 6= 1 = 9 div 5.

4.3 Montgomery multiplication

The central operation in the big number library is Montgomery multiplication, whose spe-
cification is shown in Fig. 7. It multiplies X with Y and stores the result in A. The precondition
requires the second factor Y to be smaller than the modulus M. Due to the construction of
the algorithm, the first factor X is not required to be smaller than M in order for the result
to be correct. For technical reasons, A_Last must be greater than A_First, i.e. the length
of the big number must be at least 2. This is not a serious restriction, since big numbers of
length 1 would be rather pointless. Moreover, the modulus is required to be greater than 1.
The precondition 1 + M_Inv * M (M_First) = 0 states that M_Inv must be the additive
inverse of the multiplicative inverse modulo b of the least significant word of the modulus.
The postcondition essentially states that a = x · y · (b−1)n mod m, where n is the length of
the big numbers involved, and a, x, y, m are the numbers represented by the arrays A, X, Y,
M, respectively.
We are now ready to describe the implementation of Montgomery multiplication, which
is shown in Fig. 8. Recall that in each step of the Montgomery multiplication algorithm
outlined in §4.1, we have to compute (a+xi·y+u·m)/b, where xi and u are words, and a, y and

S. Berghofer 25

procedure Mont_Mult
. . .

is
Carry : Boolean;
Carry1, Carry2, A_MSW, XI, U : Word;

begin
Initialize (A, A_First, A_Last); A_MSW := 0;

for I in Natural range A_First .. A_Last
--# assert . . .

loop
Carry1 := 0; Carry2 := 0;
XI := X (X_First + (I - A_First));
U := (A (A_First) + XI * Y (Y_First)) * M_Inv;
Single_Add_Mult_Mult

(A (A_First), XI, Y (Y_First),
M (M_First), U, Carry1, Carry2);

Add_Mult_Mult
(A, A_First, A_Last - 1,
Y, Y_First + 1, M, M_First + 1,
XI, U, Carry1, Carry2);

A (A_Last) := A_MSW + Carry1;
A_MSW := Carry2 + Word_Of_Boolean (A (A_Last) < Carry1);

end loop;

if A_MSW /= 0 or else
not Less (A, A_First, A_Last, M, M_First) then
Sub_Inplace (A, A_First, A_Last, M, M_First, Carry);

end if;
end Mont_Mult;

Figure 8 Implementation of Montgomery multiplication.

m are big numbers. In our code for computing this value, we use an optimization technique
suggested by Myreen [12, §3.2], which he used for the verification of an ARM machine code
implementation of Montgomery multiplication in HOL4. The idea is to perform the two
multiplications of a word with a big number, as well as the two addition operations in one
single loop. The computation will be done in-place, meaning that the old value of a will be
overwritten with the new value. Moreover, since a+xi ·y+u ·m is divisible by b, we also shift
the array containing the result by one word to the left while performing the computation,
which corresponds to a division by b. This is accomplished by the procedure Add_Mult_Mult
with postcondition

Num_Of_Big_Int (A~, A_First + 1, A_Last - A_First + 1) +
Num_Of_Big_int (Y, Y_First, A_Last - A_First + 1) * XI +
Num_Of_Big_int (M, M_First, A_Last - A_First + 1) * U +
Carry1~ + Base * Carry2~ =
Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +
Base ** (A_Last - A_First + 1) * (Carry1 + Base * Carry2)

The array representing (a + xi · y + u ·m)/b needs to be one word longer than the length of
y and m, although the final result of Montgomery multiplication will have the same length

SSV’11

26 Verification of Dependable Software using Spark and Isabelle

as the input numbers. We therefore store the most significant word of a in a separate
variable A_MSW that is discarded at the end of the computation. To simplify the imple-
mentation of the computation described above, we first implement an auxiliary procedure
Single_Add_Mult_Mult for computing aj + xi · yj + u ·mj , where all the operands involved
are words. Procedure Add_Mult_Mult just iteratively applies this auxiliary procedure to the
elements of the big numbers involved.
The assert annotation after the for command in Fig. 8 specifies the loop invariant, which
is

(Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +
Base ** (A_Last - A_First + 1) * A_MSW) mod

Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) =
(Num_Of_Big_Int (X, X_First, I - A_First) *
Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *
Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),

Base) ** (I - A_First)) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +
Base ** (A_Last - A_First + 1) * A_MSW <
2 * Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) - 1

Using a more compact mathematical notation, this invariant can be written as

a mod m = (x|j · y · b−j) mod m ∧ a < 2 ·m− 1

where x|j denotes the number represented by the segment of the array X of length j =
I− A_First starting at index X_First. The result a computed by the loop can be greater
or equal to the modulus, in which case we have to subtract the modulus M in order to get
the desired result. If A_MSW 6= 0, this obviously means that m < a. If A_MSW = 0, we have
to check whether m ≤ a Since a < 2 ·m−1, it suffices to subtract the modulus at most once
[10, §14.3.2].

5 Related Work

The design of HOL-Spark is heavily inspired by the HOL-Boogie environment by Böhme et
al. [4] that links Isabelle with Microsoft’s Verifying C Compiler (VCC) [5]. The Victor tool
by Jackson [8], which is distributed with the latest Spark release, uses a different approach.
Victor is a command-line tool that can parse files produced by the Spark tools, and can
transform them into a variety of formats, notably input files for SMT-solvers. Victor has
recently been extended to produce Isabelle theory files as well. The drawback of using Victor
in connection with Isabelle is that theory files have to be regenerated whenever there is a
change in the files produced by Spark. This can happen quite frequently in the development
phase, for example when the user notices that some loop invariant has to be strengthened,
or the code has to be restructured in order to simplify verification. The Frama-C system
and its Jessie plugin [11] for the verification of C code can generate VCs for a number of
automatic and interactive provers, including Coq and Isabelle.
A similar big number library written in a C-like language has been proved correct in Isa-
belle/HOL by Fischer [7] using a verification environment due to Schirmer [14]. This library
also includes division, but no Montgomery multiplication. Due to the use of linked lists with
pointers instead of arrays, Fischer’s formalization is a bit more complicated than ours. Apart

S. Berghofer 27

from Myreen’s work mentioned above, an implementation of Montgomery multiplication in
MIPS assembly has been formalized using Coq by Affeldt and Marti [1].

6 Conclusion

We have developed a verification environment for Spark, which is already part of the Isa-
belle 2011 release, and have applied it to the verification of a big number library. Our
implementation of RSA based on this library reaches about 40% of the speed of OpenSSL
when compiled with the -O3 option on a 64-bit platform. This is quite acceptable, given
that OpenSSL uses highly-optimized and hand-written assembly code. A further perform-
ance gain could be achieved by using a sliding window exponentiation algorithm instead of
the simpler square-and-multiply technique. The library has 743 LOCs, 316 of which (i.e.
43%) are Spark annotations. The length of the Isabelle files containing correctness proofs of
all procedures in the library, as well as necessary background theory, is 1753 lines, of which
391 lines are taken up by the correctness proof for Montgomery multiplication. Development
of the library, including proofs, took about three weeks. In the future, we plan to use the
library as a basis for an implementation of elliptic curve cryptography. A more long-term
goal is to embed the Spark semantics into Isabelle, to further increase the trustworthiness
of VC generation.

Acknowledgement

I would like to thank Magnus Myreen for sharing the HOL4 proof scripts of his formalization
of Montgomery multiplication with me. Sascha Böhme, Robert Dorn and Alexander Senier
commented on draft versions of this paper and helped with optimizations and performance
measurements.

References

1 Reynald Affeldt and Nicolas Marti. An approach to formal verification of arithmetic func-
tions in assembly. In Mitsu Okada and Ichiro Satoh, editors, 11th Annual Asian Computing
Science Conf. 2006, volume 4435 of LNCS, pages 346–360. Springer, 2008.

2 Janet Barnes, Rod Chapman, Randy Johnson, James Widmaier, David Cooper, and Bill
Everett. Engineering the tokeneer enclave protection software. In Anthony Hall and Jean-
nette Wing, editors, 1st International Symposium on Secure Software Engineering. IEEE,
2006.

3 John Barnes. The Spark Approach to Safety and Security. Addison-Wesley, 2006.
4 Sascha Böhme, Michał Moskal, Wolfram Schulte, and Burkhart Wolff. HOL-Boogie — An

interactive prover-backend for the Verifying C Compiler. Journal of Automated Reasoning,
44(1–2):111–144, February 2010.

5 Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for veri-
fying concurrent C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius
Wenzel, editors, Theorem Proving in Higher Order Logics (TPHOLs 2009), Munich, Ger-
many, August 17-20, 2009. Proceedings, volume 5674 of LNCS, pages 23–42. Springer,
2009.

6 Debian Security Advisory. DSA-1571-1 OpenSSL – predictable random number generator.
Available online at http://www.debian.org/security/2008/dsa-1571.

SSV’11

http://www.debian.org/security/2008/dsa-1571

28 Verification of Dependable Software using Spark and Isabelle

7 Sabine Fischer. Formal verification of a big integer library written in C0. Master’s thesis,
Saarland University, 2006.

8 Paul B. Jackson and Grant Olney Passmore. Proving Spark Verification Conditions with
SMT solvers, 2009.

9 Martin Kochanski. Montgomery multiplication: a surreal technique. Available online at
http://www.nugae.com/encryption/fap4/montgomery.htm.

10 Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, October 1996.

11 Yannick Moy and Claude Marché. Jessie plugin tutorial. Technical report, INRIA, 2010.
http://frama-c.com/jessie.html.

12 Magnus O. Myreen and Michael J. C. Gordon. Verification of machine code implementations
of arithmetic functions for cryptography. In Klaus Schneider and Jens Brandt, editors,
Theorem Proving in Higher Order Logics: Emerging Trends Proceedings. Dept. of Computer
Science, University of Kaiserslautern, August 2007. Tech. report 364/07.

13 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

14 Norbert Schirmer. A verification environment for sequential imperative programs in Isa-
belle/HOL. In F. Baader and A. Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, volume 3452, pages 398–414, 2005.

http://www.nugae.com/encryption/fap4/montgomery.htm
http://frama-c.com/jessie.html

S. Berghofer 29

A RSA Encryption / Decryption

The implementation of the RSA encryption and decryption algorithm is shown in Fig. 9. The
procedure Crypt computes c = me mod n, where c, m, e and n are the numbers represented
by the arrays C, M, E and N, respectively. When used for encryption, c is the ciphertext, m the
plaintext message, e the public exponent, and n the modulus, where n is the product of two
prime numbers p and q, and e ·dmod ((p−1) · (q−1)) = 1. The same procedure can be used
to compute the plaintext from an encrypted message, i.e. m = cd mod n. Before calling the
Montgomery exponentiation algorithm explained in Appendix B, the procedure precomputes
the values R2 mod n and −n−1

0 mod b. Since the exponentiation algorithm requires several
auxiliary arrays for storing intermediate results of the computation, we define an array type
of fixed length, which will be used for the message M, the modulus N and the ciphertext C:

subtype Mod_Range is Natural range 0 .. 63;
subtype Mod_Type is Bignum.Big_Int (Mod_Range);

This allows the Crypt function to allocate memory for the auxiliary arrays, rather than
requiring the caller of Crypt to pass suitable arrays as arguments. We have set the length
of Mod_Type to 64, meaning that it can contain values with 64 · 64 = 4096 bits, which is
sufficient for most practical applications. However, the algorithm and its correctness proof
would work equally well for different lengths of Mod_Type. Note that the length of the
exponent E is still unconstrained and need not be the same as the length of the modulus.
Indeed, it is quite common to choose public and private exponents that have a different
length.

procedure Crypt
(E : in Bignum.Big_Int;
N : in Mod_Type;
M : in Mod_Type;
C : out Mod_Type)

is
Aux1, Aux2, Aux3, RR : Mod_Type;
N_Inv : Types.Word32;

begin
Bignum.Size_Square_Mod (N, N’First, N’Last, RR, RR’First);

N_Inv := Bignum.Word_Inverse (N (N’First));

Bignum.Mont_Exp
(C, C’First, C’Last,
M, M’First,
E, E’First, E’Last,
N, N’First,
Aux1, Aux1’First,
Aux2, Aux2’First,
Aux3, Aux3’First,
RR, RR’First,
N_Inv);

end Crypt;

Figure 9 Implementation of RSA algorithm.

SSV’11

30 Verification of Dependable Software using Spark and Isabelle

B Exponentiation

The implementation of exponentiation using Montgomery multiplication is shown in Fig. 10.
This procedure computes the result a = xe mod m, where a, x, e and m are the numbers
represented by the arrays A, X, E and M, respectively. The algorithm needs a number of
auxiliary variables to store intermediate values. These intermediate values are big numbers
whose size is not known at compile time, but depends on the size of the unconstrained arrays
passed as arguments to the procedure. Since Spark does not allow the dynamic allocation
of memory for data structures, these auxiliary variables need to be created by the caller, and
passed to the procedure as arguments, too. This is why Mont_Exp has the extra arguments
Aux1, Aux2, and Aux3. The parameter RR must contain the big number R2 mod m, and
1+M_Inv ·m0 modb = 0. We start by initializing Aux1 with the big number 1. The variable
Aux3, which we use as an accumulator for computing the result, is set to 1̃ = R mod m

using Mont_Mult (see §4.1). Moreover, we store x̃ in Aux2. The algorithm uses the square-
and-multiply approach. It processes the exponent from the most significant bit to the least
significant bit. In each iteration Aux3 is squared, and the result stored in A. If the current
bit of the exponent is set, A is multiplied with Aux2 (containing x̃), and the result is stored
in Aux3 again, otherwise A is just copied back to Aux3. The invariant of the inner loop is

Num_Of_Big_Int (Aux1, Aux1_First, A_Last - A_First + 1) = 1 and
Num_Of_Big_Int (Aux2, Aux2_First, A_Last - A_First + 1) =
Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *
Base ** (A_Last - A_First + 1) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
Num_Of_Big_Int (Aux3, Aux3_First, A_Last - A_First + 1) =
Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) **
(Num_Of_Big_Int (E, I + 1, E_Last - I) * 2 ** (Word_Size - 1 - J) +
Universal_Integer (E (I)) / 2 ** (J + 1)) *

Base ** (A_Last - A_First + 1) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1)

After termination of the loop, Aux3 is converted from “Montgomery format” to the “normal
format” again by Montgomery-multiplying it with 1 and storing the result in A.

S. Berghofer 31

procedure Mont_Exp
(A : out Big_Int; A_First : in Natural; A_Last : in Natural;
X : in Big_Int; X_First : in Natural;
E : in Big_Int; E_First : in Natural; E_Last : in Natural;
M : in Big_Int; M_First : in Natural;
Aux1 : out Big_Int; Aux1_First : in Natural;
. . .

RR : in Big_Int; RR_First : in Natural;
M_Inv : in Word)

is
begin

Initialize (Aux1, Aux1_First, Aux1_First + (A_Last - A_First));
Aux1 (Aux1_First) := 1;

Mont_Mult
(Aux3, Aux3_First, Aux3_First + (A_Last - A_First),
RR, RR_First, Aux1, Aux1_First, M, M_First, M_Inv);

Mont_Mult
(Aux2, Aux2_First, Aux2_First + (A_Last - A_First),
X, X_First, RR, RR_First, M, M_First, M_Inv);

for I in reverse Natural range E_First .. E_Last
loop

for J in reverse Natural range 0 .. Word_Size - 1
--# assert . . .

loop
Mont_Mult

(A, A_First, A_Last,
Aux3, Aux3_First, Aux3, Aux3_First,
M, M_First, M_Inv);

if (E (I) and 2 ** J) /= 0 then
Mont_Mult

(Aux3, Aux3_First, Aux3_First + (A_Last - A_First),
A, A_First, Aux2, Aux2_First,
M, M_First, M_Inv);

else
Copy (A, A_First, A_Last, Aux3, Aux3_First);

end if;
end loop;

end loop;

Mont_Mult
(A, A_First, A_Last,
Aux3, Aux3_First, Aux1, Aux1_First, M, M_First, M_Inv);

end Mont_Exp;

Figure 10 Implementation of exponentiation.

SSV’11

	Introduction
	Basic Concepts
	Spark
	HOL-Spark

	Verifying an Example Program
	Importing Spark VCs into Isabelle
	Proving the VCs

	A verified big number library
	Introduction to modular multiplication
	Overview of the big number library
	Montgomery multiplication

	Related Work
	Conclusion
	RSA Encryption / Decryption
	Exponentiation

