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Abstract
This paper presents a framework for binary code analysis that uses only SAT-based algorithms.
Within the framework, incremental SAT solving is used to perform a form of weakly relational
value-set analysis in a novel way, connecting the expressiveness of the value sets to computational
complexity. Another key feature of our framework is that it translates the semantics of binary
code into an intermediate representation. This allows for a straightforward translation of the
program semantics into Boolean logic and eases the implementation efforts, too. We show that
leveraging the efficiency of contemporary SAT solvers allows us to prove interesting properties
about medium-sized microcontroller programs.
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1 Introduction

Model checking and abstract interpretation [15] have long been considered as formal ver-
ification techniques that are diametrically opposed. In model checking, the behavior of a
system is formally specified with a model. All paths through the system are then exhaustively
checked against its requirements, which are classically specified in some temporal logic. Of
course, the detailed nature of the requirements entails that the program is simulated in a
fine-grained fashion, sometimes down to the level of individual bits. Since the complexity of
this style of reasoning naturally leads to state explosion [11], there has thus been much interest
in representing states symbolically so as to represent states that share some commonality
without duplicating their commonality. As one instance, Boolean formulae have successfully
been applied to this task [10].

By way of comparison, the key idea in abstract interpretation [15] is to abstract away
from the detailed nature of states, and rather represent sets of concrete states using geometric
concepts such as affine [20] or polyhedral spaces [16]. A program analyzer then operates
over classes of states that are related in some sense — for example, sets of states that are
described by the shape of a convex polyhedron — rather than individual states. If the number
of classes is small, then all paths through the program can be examined without incurring
the problems of state explosion. Further, when carefully constructed, the classes of states
can preserve sufficient information to prove correctness of the system. However, sometimes
much detail is lost when working with abstract classes so that the technique cannot infer
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0x42 : ANDI R1 15
0x43 : ADD R0 R1
0x44 : LSL R0
0x45 : BRCS label
0x46 : INC R0

Figure 1 The target of the conditional branch BRCS label depends on the carry flag after the
left-shift; this value, in turn, depends on R0 and R1 on input.

useful results; they are too imprecise. This is because the approach critically depends on
the expressiveness of the classes and the class transformers chosen to model the instructions
that arise in a program. It is thus desirable to express the class transformers, also called
transfer functions, as accurately as possible. The difficulty of doing so, however, necessitates
automation [26, 32], especially if the programs/operations are low-level and defined over
finite bit-vectors [5, 6]. Recent research has demonstrated that automatic abstraction on top
of sophisticated decision procedures provides a way to tame this complexity for low-level
code [4, 5, 6, 21, 22, 32]. Using these approaches, a decision procedure (such as a SAT or
SMT solver) is invoked on a relational representation of the semantics of the program in
order to automatically compute the desired abstraction. Since representing the concrete
semantics as a Boolean formula has become a standard technique in program analysis (it is
colloquially also referred to as bit-blasting), owing much to the advances of bounded model
checking [12], such encodings can straightforwardly be derived.

1.1 Value-Set Analysis using SAT
This paper studies and extends the algorithm of Barrett and King [4, Fig. 3], who showed
how incremental SAT solving can be used to converge onto the non-relational value sets of a
bit-vector characterized by a Boolean formula. When applying their technique to assembly
code, however, the non-relational representation may be too imprecise. This is because blocks
in assembly code frequently end in a conditional jump. This instruction, paired with the
preceding ones, encodes certain constraints on the involved registers. For example, the 8-bit
AVR code in Fig. 1 depends on two inputs R0 and R1, which are used to mutate R0 and
R1. Control is transfered to label if the instruction LSL R0 (logical left-shift of R0) sets the
carry flag; otherwise, control proceeds with the increment located at address 0x46.

To precisely approximate the value sets of R0 at the entries and exits of each block, it
is thus necessary to take the relation between the registers and the carry flag into account.
For the values of R0 in instruction 0x46, e.g., one has to distinguish those inputs to the
program which cause the carry flag to be set from those which lead to a cleared carry flag.
To capture this relation, we argue that it is promising to consider a bit-vector representing
not only R0, but simultaneously the carry flag (or any other status flag the branching
instruction ultimately depends on). Suppose the initial block in Fig. 1 starting at address
0x42 is described by a Boolean formula ϕ. Our description relies on the convention that
input bit-vectors are denoted r0 and r1, respectively, whereas the outputs are primed.
Further, each bit-vector r takes the form r = 〈r[0], . . . , r[7]〉. Additionally, the carry flag on
output is represented by a single propositional variable c′. Rather than projecting ϕ onto
r0′ for value-set analysis (VSA), one can likewise project ϕ onto the extended bit-vector
〈r0′[0], . . . , r0′[7], c′〉. By decomposing the resulting value sets into those with c′ cleared and
those with c′ set, we obtain a 9-bit value-set representation for an 8-bit register that takes
some relational information into account; it is thus weakly relational. The first contribution
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of this paper is a discussion and experimental evaluation of this technique, where status flags
guide the extension of bit-vectors for VSA.

1.2 Intermediate Representation for Assembly Code
Implementing SAT-based program analyzers that operate on low-level representations requires
significant effort because Boolean formulae for the entire instruction set of the hardware
have to be provided. These encodings can then, e.g., be composed to represent the semantics
of basic blocks. Although supporting the entire instruction set is merely an engineering
task, this situation is rather unsatisfactory if the program analyzer shall support different
target platforms. Indeed, the instruction set of different hardware platforms often varies only
in minor details, yet the sheer number of different instructions makes the implementation
(and testing, of course) complex. To overcome this complexity, we propose to decompose
each instruction into an intermediate representation (IR) [3, 9], where the instruction is
characterized as an atomic sequence of basic operations. Each of the basic operations can
then straightforwardly be translated into Boolean logic, thereby providing a representation
that depends on few primitive operations only. We further elaborate on several characteristics
of the IR and discuss our experiences with connecting VSA with Metamoc [18], a tool
that performs worst-case execution time analysis using timed automata. In Metamoc, the
system abstraction is generated on top of a static VSA.

1.3 Structure of the Presentation
To make this paper self-contained, Sect. 2 recapitulates the algorithm of Barrett and King [4].
The paper then builds towards the above mentioned contributions using a worked example
in Sect. 3. The key ingredients of our framework are:
1. translate a given binary program into our IR,
2. express the semantics of the translated program in Boolean logic,
3. compute projections onto the relevant bit-vectors, and perform VSA using SAT solving

until a fixed point is reached.
Each of these steps for the example program in Fig. 1 is discussed in its own subsection in
Sect. 3. Then, Sect. 4 discusses an extension of the example to weak relations between different
registers, before Sect. 5 presents some experimental evidence from our implementation. The
paper concludes with a survey of related work in Sect. 6 and a discussion in Sect. 7.

2 Primer on Value-Set Analysis

The key idea of Barrett and King [4, Fig. 3] is to converge onto the value sets of a register
using a form of range analysis based on binary search [13]. Let ϕ denote a Boolean formula
that characterizes a bit-vector r. From an encoding ψ of an instruction or basic block, ϕ can
be obtained by projecting ψ onto r, e.g., using incremental SAT solving [8] or BDDs [23].

2.1 Range Analysis using Incremental SAT
In the first iteration, the algorithm computes an over-approximation of the values of r by
determining the least and greatest values r1

` and r1
u of r subject to ϕ. These values are

obtained by repeatedly applying a SAT solver to ϕ in conjunction with blocking clauses.
To illustrate the principle, consider determining r1

` . If the bit-vector r is w bits wide, the
unsigned value of r, denoted 〈〈r〉〉 =

∑w−1
i=0 2i · r[i], is bound to the range 0 ≤ 〈〈r〉〉 ≤ 2w − 1,
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and so is 〈〈r1
`〉〉. Since 〈〈r1

`〉〉 is uniquely determined, the constraint 0 ≤ 〈〈r1
`〉〉 ∧ 〈〈r1

`〉〉 ≤ 2w − 1
can be expressed disjunctively as µ` ∨ µu where:

µ` = 0 ≤ 〈〈r1
`〉〉 ≤ 2w−1 − 1

µu = 2w−1 ≤ 〈〈r1
`〉〉 ≤ 2w − 1

To determine which of both disjuncts characterizes r1
` , it is sufficient to test the formula

∃r : ϕ∧¬r[w− 1] for satisfiability. If satisfiable, then µ` is entailed by r1
` , and µu otherwise.

This tactic follows directly from the bit-vector representation of unsigned integer values.
Suppose that ∃r : ϕ ∧ r[w − 1] is satisfiable, and thus 0 ≤ 〈〈r1

`〉〉 ≤ 2w−1 − 1. We proceed by
decomposing this refined characterization into a disjunction µ′` ∨ µ′u where

µ′` = 0 ≤ 〈〈r1
`〉〉 ≤ 2w−2 − 1 µ′u = 2w−2 ≤ 〈〈r1

`〉〉 ≤ 2w−1 − 1

as above, and testing ∃r : ϕ ∧ ¬r[w − 1] ∧ ¬r[w − 2] for satisfiability. Repeating this step w
times gives r1

` exactly. We can likewise compute r1
u and thus deduce:

∀r : ϕ ∧ (〈〈r1
`〉〉 ≤ 〈〈r〉〉 ≤ 〈〈r1

u〉〉)

2.2 Value-Set Analysis using Incremental SAT
The key idea of VSA is then to repeatedly apply this technique so as to alternatingly remove
ranges from and add ranges to the initial interval [〈〈r1

`〉〉, 〈〈r1
u〉〉]. It does so using alternating

over- and under-approximation as follows. In the first iteration of the algorithm, the value
set then contains all values in the computed range, i.e., V1 = {r1

` , . . . , r
1
u}. In the second

iteration, the algorithm infers an over-approximate range of non-solutions within V1 and
removes this range from V1. This gives an under-approximation V2 of the actual value
set of r. To get this result, the algorithm computes the least and greatest non-solutions
r2

` and r2
u within the range V1. The bounds are derived using dichotomic search based

on ¬ϕ rather than ϕ. An under-approximation of the value set of r is then obtained by
eliminating {r2

` , . . . , r
2
u} from V1, i.e., V2 = V1 \ {r2

` , . . . , r
2
u}. The under-approximation V2

is extended by adding an over-approximate range of solutions to V2. The algorithm thus
proceeds by determining solutions r3

` and r3
u within the range r2

` , . . . , r
2
u. This turns the

under-approximation V2 into an over-approximation V3 = V2 ∪ {r3
` , . . . , r

3
u}, again followed

by under-approximation. After a finite number k of iterations, no further solutions are found
which are not contained in Vk. The algorithm then terminates and returns the value-set Vk.

3 Worked Example

Our approach is to first translate each instruction in a program from a hardware-specific
representation into an intermediate language. Liveness analysis [34] is then performed to
eliminate redundant (dead) operations from the IR. It turns out that liveness analysis is
much more powerful in assembly code analysis than in traditional domains; this is due to
side-effects on the status word, which includes flags such as the carry oder negative flags.
Many instructions have side-effects, yet, few of them actually influence the behavior of the
program. The elimination of dead operations is followed by a conversion of each block into
static single assignment (SSA) form [17]. The semantics of each block in the IR is then
expressed in the computational domain of Boolean formulae. To derive over-approximations
of the value sets of each register, we combine quantifier elimination using SAT solving [8]
with VSA [31].
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36 Adaptable Value-Set Analysis for Low-Level Code

Table 1 Operand-size identifiers used in the IR.

Identifier Meaning Size Example
.b Bit 1 XOR.b R0:0 R0:1 R0:2
.B Byte 8 AND.B R0 R0 #15
.W Word 16 INC.W R1 R1
.DW Double Word 32 ADD.DW R0 R1 R2

3.1 Translating a Binary Program
Recall that assembly instructions typically have side-effects. The instruction ANDI R1 15
from Fig. 1, for instance, computes the bit-wise and of register R1 with the constant 15 and
stores the result in R1 again. However, it also mutates some of the status flags, which are
located in register R95 (in case of the ATmega16). Our IR makes these hidden side-effects
explicit, which then allows us to represent large parts of the instruction set using a small
collection of building blocks. However, this additional flexibility also implies that some
hardware-related information has to be included in the IR, most notably operand sizes
and atomicity (instructions are executed atomically, and thus cannot be interrupted by an
interrupt service routine). We tackle these two problems by representing a single instruction
as an uninterruptible sequence of basic operations, and by postfixing the respective basic
operation with one of the operand-size identifiers given in Tab. 1. In our encoding, the first
operand is always the target, followed by a varying number of source operands (e.g., bit-wise
negation has a single source operand whereas addition has two). The AVR instruction
ANDI R0 #15 (logical-and with immediate) then translates into AND.B R0 R0 #15, thus far
ignoring the side-effects. The side-effects are given in the instruction-set specification [1,
p. 20], which we translate the following Boolean formula:

r95′[1] ↔
∧7

i=0 ¬r0′[i] ∧ r95′[2] ↔ r0′[7] ∧
¬r95′[3] ∧ r95′[4] ↔ r95′[2]⊕ r95′[3]

Given the classical bit-wise operations, these side-effects are encoded (with some simplifica-
tions applied and using an additional macro isZero) as:

AND.B R1 R1 #15; MOV.b R95:3 #0; MOV.b R95:2 R0:7;
MOV.b R95:4 R95:2; MOV.b R95:1 isZero(R0);

The other instructions can likewise be decomposed into such a sequence of building blocks,
and then be conjoined to give a sequence that describes the instructions 0x42 to 0x45 from
Fig. 1 as follows (note that some auxiliary variables are required to express the side-effects
of ADD R0 R1 in location 0x43):

0x42 : AND.B R1 R1 #15; MOV.b R95:3 #0; MOV.b R95:2 R1:7;
MOV.b R95:4 R95:2; MOV.b R95:1 isZero(R1);

0x43 : MOV.B F R0; ADD.B R0 R0 R1; MOV.b R95:1 isZero(R0);
MOV.b R95:2 R0:7; XOR.b R95:4 R95:2 R95:3; AND.b R95:0 F:7 R1:7;
NOT.b d R0:7; AND.b e R1:7 d; OR.b R95:0 R95:0 e;
AND.b e d F:7; OR.b R95:0 R95:0 e; AND.b e F:7 R1:7;
AND.b R95:3 e d; NOT.b f F:7; NOT.b g R1:7;
AND.b f f g; AND.b f f d; OR.b R95:3 R95:3 f;

0x44 : MOV.b R95:5 R0:3; MOV.b R95:0 R0:7; LSL.B R0 R0 #1;
MOV.b R95:2 R0:7; XOR.b R95:3 R95:0 R95:2; XOR.b R95:4 R95:2 R95:3;
MOV.b R95:1 isZero(R0);

0x45 : BRANCH (R95:0) label #0x46;

Clearly, the side-effects define the lengthy part of the semantics. Hence, before translating
the IR into a Boolean formula for VSA, we perform liveness analysis [28] and in order to
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eliminate redundant assignments, which do not have any effect on the program execution.
This technique typically simplifies the intermediate program representations — and thus the
resulting Boolean formulae — significantly because most side-effects do not influence any
further program execution, and so does liveness analysis for the given example:

0x42 : AND.B R1 R1 #15;
0x43 : ADD.B R0 R0 R1;
0x44 : MOV.b R95:0 R0:7; LSL.B R0 R0 #1;
0x45 : BRANCH (R95:0) label #0x46;

Indeed, similar reductions can be observed for all our benchmarks. It is thus meaningful with
respect to tractability to decouple the explicit effects of an instruction from its side-effects.
Of course, the effectiveness of liveness analysis depends on the target architecture.

3.2 Bit-Blasting Blocks
Expressing the semantics of a block in Boolean logic has become a standard technique in
program analysis due to the rise in popularity of SAT-based bounded model checkers [12].
To provide a formula that describes the semantics of the simplified block, we first apply
SSA conversion (which ensures that each variable is assigned exactly once). We then have
bit-vectors V = {r0, r1} on input of the block, bit-vectors V ′ = {r0′, r1′, r95′} on output,
and an additional intermediate bit-vector r0′′. The most sophisticated encoding is that of
the ADD instruction, which is encoded as a full adder with intermediate carry-bits c. Given
these bit-vectors, the instructions are translated into Boolean formulae is follows:

ϕ0x42 =
∧3

i=0(r1′[i]↔ r1[i]) ∧
∧7

i=4(¬r1′[i])

ϕ0x43 = (
∧7

i=0 r0′′[i]↔ r0[i]⊕ r1′[i]⊕ c[i]) ∧ ¬c[0]∧
(
∧6

i=0 c[i+ 1]↔ (r0[i] ∧ r1′[i]) ∨ (r0[i] ∧ c[i]) ∨ (r1′[i] ∧ c[i]))
ϕ0x44 = (r95′[0]↔ r0′′[7]) ∧ (

∧7
i=1 r0′[i]↔ r0′′[i− 1]) ∧ ¬r0′[0]

Observe that instruction 0x45 does not alter any data, and is thus not included in the above
enumeration. Then, the conjoined formula

ϕ = ϕ0x42 ∧ ϕ0x43 ∧ ϕ0x44

describes how the block relates the inputs V to the outputs V ′ using some intermediate
variables (which are existentially quantified). In the remainder of this example, we additionally
assume that our analysis framework has inferred that R0 is in the range of 110 to 120 on
input of the program, and that ϕ has been extended with this constraint.

3.3 Value-Set Analysis for Extended Bit-Vectors
The algorithm of Barrett and King [4, Fig. 3] computes the VSA of a bit-vector v in unsigned
or two’s complement representation as constraint by some Boolean formula ψ. It does
so by converging onto the value-sets of v using over- and under-approximation. However,
the drawback of their method is that it requires vars(ψ) = v, i.e., ψ ranges only over the
propositional variables in v. To apply the method to the above formula ϕ and compute the
value-sets of r0 ∈ V on entry, e.g., it is thus necessary to eliminate all variables vars(ϕ) \ r0
from ϕ using existential quantifier elimination. Intuitively, this step removes all information
pertaining to the variables vars(ϕ) \ r0 from ϕ. In what follows, denote the operation of
projecting a Boolean formula ψ onto a bit-vector v ⊆ vars(ψ) by πv(ψ). In our framework,
we apply the SAT-based quantifier elimination scheme by Brauer et al. [8], though other
approaches [24] are equally applicable.
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38 Adaptable Value-Set Analysis for Low-Level Code

3.3.1 Projecting onto Extended Bit-Vectors
As stated before, it is our desire to reason about the values of register R0 on the entries of
both successors of instruction 0x45. These values correspond to the values of the bit-vector
r0′. Yet, we also need to take into account the relationship between r0′ and the carry flag
r95′[0]. We therefore treat o = r0′ : r95′[0], where : denotes concatenation, as the target
bit-vector for VSA, and project ϕ onto o, denoted π0(ϕ). Then, πo(ϕ) describes a Boolean
relationship between r0′ and the carry flag r95′[0].

3.3.2 Value-Set Analysis
We finally apply the VSA to πo(ϕ) so as to compute the unsigned values of R0 on entry of
both successor blocks of 0x45. Since R0 is an 8-bit register, and the representing bit-vector
is extended by the carry-flag to give o, we clearly have 0 ≤ 〈〈o〉〉 ≤ 29 − 1. VSA then yields
the following value-sets:

〈〈o〉〉 ∈
{

220, 222, . . . , 252, 254,
256, 258, . . . , 268, 270

}
Observe that the values in the range 28 ≤ 〈〈o〉〉 ≤ 29 − 1 reduced by 28 correspond to those
values for which the branch is taken. Likewise, the values of 〈〈o〉〉 in the range 0 ≤ 〈〈o〉〉 ≤ 28−1
correspond to the values for which the branch is not taken. Hence, the results of VSA are
interpreted as follows:

The value-set 〈〈r0′〉〉 ∈ {220, 222, . . . , 252, 254} is propagated into the successor block
0x46. This is because it is possible that the branch is not taken for these values.
The value-set 〈〈r0′〉〉 ∈ {256, 258, . . . , 268, 270} is reduced by 256 to eliminate set carry-flag,
which gives 〈〈r0′〉〉 ∈ {0, 2, . . . , 12, 14} as potential values if the branch is taken.

In this example, the definition of the carry flag is straightforward: the most significant
bit of R0 in instruction 0x44 is moved into the carry. This is not always the case. As an
example, recall the lengthy definition of the effects of ADD R0 R1 on the carry flag in Sect. 2.1
(consisting of one negation, three conjunctions and three disjunctions). By encoding these
relations in a single formula and projecting onto the carry-flag conjoined with the target
register, our analysis makes such relations explicit.

4 Weak Relations Between Registers

It is interesting to observe that the approach introduced in Sect. 3.3 can likewise be applied
to derive relations between different bit-vectors that represent different registers. This
tactic gives a weakly relational value-set representation. Suppose we apply strategy to the
extended bit-vector o′ = r0′ : r0[7]. Applying VSA to o′ then yields results in the range
0 ≤ 〈〈o′〉〉 ≤ 29 − 1. Following from the encoding of unsigned integer values, the results
exhibit which values r0′ on output can take for inputs such that either

0 ≤ 〈〈r0〉〉 ≤ 127

or

128 ≤ 〈〈r0〉〉 ≤ 255

holds. If VSA yields a value such that the most significant bit of o′ is set, then 〈o′[0], . . . ,o′[7]〉
determines a value that is reachable if 〈〈r0〉〉 ≥ 128. Likewise, if o′[0] is cleared, then
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〈o′[0], . . . ,o′[7]〉 determines values reachable if 〈〈r0〉〉 ≤ 127. Clearly, a more precise char-
acterization of the relation between r0 and r0′ can be obtained by applying VSA to
o′′ = o′ : r0[6], which partitions the reachable output values according to the inputs:

0 ≤ 63,
64 ≤ 127,
128 ≤ 191, and
192 ≤ 255.

Yet, the payoff for the increase in expressiveness is higher computational complexity. In
fact, the payoff is two-fold. First, the efficiency of SAT-based quantifier elimination decreases
as the number of propositional variables to project onto increases. Second, the size of the
resulting value-sets increases, and thus the number of SAT calls to compute them.

5 Experimental Evidence

We have implemented the techniques discussed in this paper in Java using the Sat4J
solver [25]. The experiments were performed with the expressed aim of answering the
following questions:

How does the translation of the instructions into an IR affect the performance of SAT-
based value-set analysis? This is of interest since the decoupling of the side-effects from
the intended effect of the instruction allows for a more effective liveness analysis than
implemented in tools such as [mc]square [33].
How does analyzing extended bit-vectors affect the overall performance compared to the
SAT-based analysis discussed in [31]. Their analysis recovers weakly-relational information
using alternating executions of forward and backward analysis so as to capture the relation
between, e.g., a register R0 and the carry-flag after a branching has been analyzed, whereas
our analysis tracks such information beforehand.

We have applied the analysis to various benchmark programs for the Intel Mcs-51 mi-
crocontroller, which we have used before to evaluate the effectiveness of our analyses [31,
Sect. 4]. VSA is used to compute the target addresses of indirect jumps, where bit-vectors
are extended based on the status flags that trigger conditional branching (like the carry-flag
in the worked example). Decoupling the instructions from the side-effects led to a reduction
in size of the Boolean formulae of at least 75%. Experimental results with respect to runtime
requirements are shown in Tab. 1. Compared to the analysis in [31], the runtime decreases
by at least 50% for the benchmarks, due to fewer VSA executions. The computed value-sets
are identical for this benchmark set.

To investigate the portability of our IR to other architectures, we have implemented a
compiler from ARM assembly to the sketched IR. We have done so within the Metamoc [18]

Table 2 Experimental results for SAT-based VSA using extended bit-vectors.

Name LoC # instr. Runtime
Single Row Input 80 67 1.42s
Keypad 113 113 1.93s
Communication Link 111 164 1.49s
Task Scheduler 81 105 6.77s
Switch Case 82 166 8.09s
Emergency Stop 138 150 0.91s
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40 Adaptable Value-Set Analysis for Low-Level Code

toolchain which already provides support for disassembling ARM binaries and reconstructing
some control flow. Furthermore, Metamoc contains formal descriptions of instruction
effects. We translated these formal descriptions to the required IR format manually, requiring
approximately one day. Translating a different platform to the IR uncovered a few areas where
we might beneficially extend our intermediate language: the ARM architecture excessively
uses conditional execution of instructions. In this situation, an instruction is executed
if some logical combination of bits evaluates to true; otherwise, the instruction is simply
skipped. Compilers for ARM use such constructs frequently to simplify the control structure
of programs, leading to fewer branches. Adding support for such instruction features is
fundamental to support different hardware platforms. We have chosen to support such
behavior by means of guarded execution. Each operation can be annotated with a guard. If
the guard evaluates to true, the corresponding instruction is executed, and otherwise it is
the identity. The translation of this construct into Boolean logic is then trivial.

6 Related Work

In abstract interpretation [15], even for a fixed abstract domain, there are typically many
different ways of designing the abstract operations. Ideally, the abstract operations should be
as descriptive as possible, although there is usually interplay with accuracy and complexity.
A case in point is given by the seminal work of Cousot and Halbwachs [16, Sect. 4.2.1] on
polyhedral analysis, which discusses different ways of modeling multiplication. However,
designing transfer functions manually is difficult (cp. the critique of Granger [19] on the
difficulty of designing transformers for congruences), there has thus been increasing interest in
computing the abstract operations from their concrete versions automatically, as part of the
analysis itself [5, 6, 21, 22, 26, 29, 30, 32]. In their seminal work, Reps et al. [32] showed that
a theorem prover can be invoked to compute an transformer on-the-fly, during the analysis,
and showed that their algorithm is feasible for any domain that satisfies the ascending chain
condition. Their approach was later put forward for bit-wise linear congruences [22] and
affine relations [5]. Both approaches replace the theorem prover from [32] by a SAT solver
and describe the concrete (relational) semantics of a program (over finite bit-vectors) in
propositional Boolean logic. Further, they abstract the Boolean formulae offline and describe
input-output relations in a fixed abstract domain. Although the analysis discussed in this
paper is based on a similar Boolean encoding, it does not compute any transformers, but
rather invokes a SAT solver dynamically, during the analysis. Contemporaneously to Reps
et al. [32], it was observed by Regehr et al. [29, 30] that BDDs can be used to compute
best transformers for intervals using interval subdivision. The lack of abstraction in their
approach entails that the runtimes of their method are often in excess of 24h, even for 8-bit
architectures.

The key algorithms used in our framework have been discussed before, though in different
variations. In particular, VSA heavily depends on the algorithm in [4, Fig. 3], which is
combined with a recent SAT-based projection scheme by Brauer et al. [8]. Comparable
projection algorithms have been proposed before [24, 27], but they depend on BDDs to
obtain a CNF representation of the quantifier-free formula (which can be passed to the SAT
solver for value-set abstraction). By way of comparison, using the algorithm from [8] allows
for a lightweight implementation. The value-set abstraction, in turn, extends an interval
abstraction scheme for Boolean formulae using a form of dichotomic search, which has (to
the best of our knowledge) first been discussed by Codish et al. [13] in the context of logic
programming. Their scheme has later been applied in different settings, e.g., in transfer
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function synthesis [6] or a reduced product operator for intervals and congruences over finite
integer arithmetic [7]. Reinbacher and Brauer [31] have proposed a similar technique for
control flow recovery from executable code, but they do not extend their bit-vectors for VSA.
They thus combine SAT-based forward analysis with depth-bounded backward analysis to
propagate values only into the desired successor branches.

Over recent years, many different tools for binary code analysis have been proposed, the
most prominent of which probably is CodeSurfer/x86 [2]. Yet, since the degree of error
propagation is comparatively high in binary code analysis (cp. [30]), we have decided to
synthesize transfer functions (or abstractions, respectively) in our tool [mc]square [33] so
as to keep the loss of information at a minimum.

7 Concluding Discussion

In essence, this paper advocates two techniques for binary code analysis. First of all, it
argues that SAT solving provides an effective as well as efficient tool for VSA of bit-vector
programs. Different recent algorithms — most notably projection using prime implicants
and dichotomic search — are paired to achieve this. The approach thereby benefits from
the progress on state-of-the-art SAT solvers. Secondly, the efforts required to implement
a SAT-based program analysis framework largely depend on the complexity of the target
instruction set. To mitigate this problem, we have proposed an intermediate representation
based on decomposing instructions and their side-effects into sequences of basic operations.
This significantly eases the implementation efforts and allows us to port our framework to
different hardware platforms in a very short time frame. Our experiences with the AVR
ATmega, Intel MCS-51 and ARM9 hardware platforms indicates that adding support for
a hardware platform can easily be achieved within one week, whereas several man-months
were required otherwise. In particular, testing and debugging the implementation of the
Boolean encodings is eased. In this paper, we have not presented a formal semantics for the
IR, mostly because it is straightforward to derive such a semantics from existing relational
semantics for flow-chart programs over finite bit-vectors. Examples of such semantics are
discussed in [22, Sect. 4] or [14, Sect. 2.1].
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