
Automatic Derivation of Abstract Semantics From
Instruction Set Descriptions
Dominique Gückel and Stefan Kowalewski

Embedded Software Laboratory
RWTH Aachen University
Ahornstr. 55
Aachen, Germany
<gueckel, kowalewski>@embedded.rwth-aachen.de

Abstract
Abstracted semantics of instructions of processor-based architectures are an invaluable asset for
several formal verification techniques, such as software model checking and static analysis. In
the field of model checking, abstract versions of instructions can help counter the state explosion
problem, for instance by replacing explicit values by symbolic representations of sets of values.
Similar to this, static analyses often operate on an abstract domain in order to reduce complexity,
guarantee termination, or both. Hence, for a given microcontroller, the task at hand is to find
such abstractions. Due to the large number of available microcontrollers, some of which are even
created for specific applications, it is impracticable to rely on human developers to perform this
step. Therefore, we propose a technique that starts from imperative descriptions of instructions,
which allows to automate most of the process.

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.3.4 Processors,
F.3.2 Semantics of Programming Languages

Keywords and phrases Model Checking, Static Analysis, Hardware Description Languages

Digital Object Identifier 10.4230/OASIcs.SSV.2011.71

1 Introduction

Formal verification of software for embedded systems is crucial for multiple reasons. First
of all, such systems are often used in safety-critical fields of applications, such as chemical
plants, where failures of the controlling system may result in severe injuries or even fatalities.
Furthermore, applying corrections after delivering a system to the customer may be inpracti-
cable or costly, for instance in the case of devices embedded into cars. Such scenarios may
be avoided by formal verification, for instance software model checking [4, 2].

1.1 Focus
The focus of our work is model checking and static analysis [5] of binary code for microcon-
trollers. For this purpose, we need to lift the given concrete semantics of the instructions of
which the binary consists to their abstract counterparts in the respective domain. In the case
of model checking, the sought-after abstract version of each instruction should be able to
operate not only on conventional two-valued boolean logic, but on a variant of three-valued
logic. This allows for certain abstractions to be applied, which can help avoid the state
explosion problem. In the case of static analysis, the abstracted instruction should provide
information on memory locations it reads and writes, plus on how executing it affects the
control flow.

© Dominique Gückel and Stefan Kowalewski;
licensed under Creative Commons License NC-ND

6th International Workshop on Systems Software Verification (SSV’11).
Editors: Jörg Brauer, Marco Roveri, Hendrik Tews; pp. 71–83

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SSV.2011.71
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

72 Automatic Derivation of Abstract Semantics From Instruction Set Descriptions

Deriving abstract semantics from concrete semantics is a task that is usually performed
manually, thus exploiting the knowledge of an expert in the associated fields. While this
may be suitable for verification tools that are not likely to be modified very often, such
as for high level languages, this is not applicable in the embedded domain, where a wide
variety of different platforms is available to the developer. In case the platform is switched
to a different microcontroller, which uses a different instruction set, the previous work on
abstraction has to be done anew.

1.2 Approach
In order to reduce the necessary effort, we propose to conduct the abstraction on an already
executable form of the instructions, that is, a description in an imperative programming
language. In our setting, such a description can also be used to generate an instruction set
simulator, which can build the state space for model checking programs for the described
platform.

1.3 Contribution
In this paper, we make the following contributions:

We describe how microcontroller instruction sets can be translated into a form that allows
for automatic analysis of certain properties.
Based on the results of these analyses, we can then derive abstract semantics that are more
suitable for state space building than the concrete semantics. As an example, we detail
how to obtain the necessary semantics for an abstraction called delayed nondeterminism,
which can be used in model checking.
We detail the generation of static analyzers for different platforms based on the afore-
mentioned analyses.

1.4 Outline
The rest of this paper is structured as follows. In Sect. 2, we illustrate the tools we used
in our contribution. Next, to motivate our work, we provide an example that illustrates
the effects of an inappropriate modeling of instructions. The actual work on automatically
deriving abstract semantics is contained in Sect. 4. The next-to last section focuses on related
work (Sect.5), and Sect. 6 concludes this paper.

2 Preliminaries

In this section, we detail the environment of our contribution. First, we summarize the main
features of the [mc]square model checker, which uses several of the abstraction techniques
we are interested in. Next, we focus on a specific technique, called delayed nondeterminism.
Finally, we present some features of a hardware description language that serves as a starting
point for our automatic derivation of instruction semantics.

2.1 The [mc]square Assembly Code Model Checker
[mc]square [13] is an explicit-state model checker for microcontroller binary code. Given
a binary program and a formula in Computation Tree Logic (CTL), [mc]square can
automatically verify whether the program satisfies the formula, or create a counterexample in
case the program violates the formula. Atomic propositions in formulas may be statements

D. Gückel and S. Kowalewski 73

about the values of general purpose registers, I/O registers, and the main memory. Currently,
[mc]square supports the Atmel ATmega16 and ATmega128, Intel MCS-51, and Renesas
R8C/23 microcontrollers. Furthermore, it can verify programs for Programmable Logic
Controllers (PLCs) written in Instruction List (IL).

[mc]square builds state spaces for conducting the actual model checking by means of
special simulators. These can execute the programs under consideration just like simulators
provided by hardware vendors, by applying the semantics of instructions to a model of the
system’s memories, and simulating the effects of interrupts, I/O ports, and on-chip peripherals.
The key difference, however, is that simulators in [mc]square support nondeterminism to
model unknown values, and also provide certain abstractions. Nondeterminism is introduced
into the system by I/O ports, timers, and interrupts. I/O ports communicate with the
environment, of which we have to assume that it can show any behavior, i.e., any value might
be present in I/O registers. Timers are modeled using nondeterminism because [mc]square
deliberately abstracts from time, resulting in the value of timer registers to be unknown.
Finally, interrupts are nondeterministic events because an active interrupt may occur or not
occur, and both cases need to be considered for model checking. In case a nondeterministic
bit has to be instantiated to a deterministic 0 or 1, the simulator performs the necessary
step.

The state creation process in [mc]square operates as follows:
Load a state into the simulator.
Determine assignments needed for resolving nondeterminism.
For each assignment

If the assignment indicates the occurrence of an enabled interrupt, simulate the effect
of that interrupt. Otherwise, execute the current instruction.
Evaluate truth values of atomic propositions.

Return resulting states.

Using and resolving nondeterminism creates an over-approximation of the behavior exhib-
ited by the real hardware, allowing [mc]square to check for safety properties. Instantiation
of n nondeterministic bits usually results in 2n successor states (i.e., exponential complexity),
which is why immediate instantiation of all nondeterministic bits is infeasible. Therefore,
several abstraction techniques are implemented in [mc]square to prevent this. Within
the scope of this paper, we focus on two of these: first of all, a technique called delayed
nondeterminism, details on which are given in the next section, and second, on techniques
that are enabled by static analyses. The latter is an optional preprocessing step performed
before conducting the actual model checking, during which analysis results can be used to
apply abstractions such as Dead Variable Reduction [17, 14].

2.2 Delayed Nondeterminism
An instantiation of nondeterministic bits results in an exponential number of successor
states. Deterministic simulation triggers instantiation whenever an instruction accesses a
nondeterministic memory cell, hence it cannot avoid the exponential blowup. However, at
least on RISC-like load-store-architectures like the Atmel ATmega microcontrollers, the
instruction in question usually only copies the content of the cell to some other cell, for
instance a register. It does not modify the value or use it as an argument, as would an
arithmetic or logic instruction. Delayed nondeterminism [11] is an abstraction exploiting this
observation. Instead of immediately resolving the nondeterminism, a nondeterministic value
is propagated through memory. Only when an instruction actually needs the deterministic

SSV’11

74 Automatic Derivation of Abstract Semantics From Instruction Set Descriptions

value, the cell is instantiated. As a result, all the paths starting at the original read instruction
are not created at all. This approach proves particularly useful in case a value consisting
of multiple nondeterministic bits is read, of which only a few bits are actually needed, for
instance by an instruction testing a single bit.

2.3 Description of Microcontrollers Using SGDL
The concept of [mc]square requires the tool to be hardware-dependent. While this provides
great accuracy as to hardware peculiarities, and also the ability to provide easy to understand
counterexamples, it necessarily results in the obvious disadvantage of additional effort
whenever adding support for a new platform. In order to compensate for this, [mc]square
features an extensible architecture, and additionally contains a complete programming system
for creating simulators in a high level language. The language is called Sgdl, and a compiler
for Sgdl is part of [mc]square. Sgdl is a hardware description language specifically
tailored to describe microcontroller architectures, providing elements for describing entities
such as instructions, memories, and interrupts. In the following, we only introduce those
parts relevant for analyzing instruction semantics. Further details on Sgdl are provided in
[7, 6], and details on its precursor language from the AVRora project are available from [16].

I Example 1. Excerpt from the Sgdl description of the Intel MCS-51

format OPCODE_IMM8_IMM8 = {opcode[7:0], imm8_1[7:0], imm8_2[7:0]};

subroutine performCJNE(leftVal:ubyte, rightVal:ubyte,
target:SIGNED_IMM8) : void {
if (leftVal != rightVal) {

$pc = $pc + target;
if (leftVal < rightVal) $CY = true;
else $CY = false;

}
};

instruction "cjne_acc_direct_rel" {
encoding = OPCODE_IMM8_IMM8 where {opcode = 0b10110101};
operandtypes = {imm8_1 : IMM8, imm8_2 : SIGNED_IMM8};
instantiate = {};
dnd instantiate = {};
execute = {

performCJNE($ACC, $sram(imm8_1), imm8_2);
};

};

In the example, an instruction called cjne_acc_direct_rel is declared. The binary encoding
of this instruction consists of an 8 bit wide opcode and two operands, each of which is also 8
bits wide. Within the scope of this instruction, these 8 bit operands are to be interpreted as
signed 8 bit integers, using two’s complement representation. The concrete semantics are
described within the execute section of the instruction element. Global variables, i.e., the
resource model of the simulated device, are accessed by prefixing the according identifier with
a $ or a # (not in this example), whereas local variables are always accessed with neither.
Function calls are also possible, in this example for externalizing the CJNE functionality,

D. Gückel and S. Kowalewski 75

which is shared by the different variants of the CJNE instruction (the MCS-51 instruction
set contains four of these, each for a different addressing mode).

In case an instruction may encounter nondeterministic values in some addresses it
accesses, the developer can indicate that the simulator should instantiate these by adding an
instantiate entry to the instruction. Any address contained in the set will be instantiated.
The dnd instantiate section has the same semantics, but is used only when the simulation
type is set to use delayed nondeterminism.

Global memories in Sgdl consist of two parallel structures to allow for nondeterminism.
The first structure is the value, which is accessed using the aforementioned dollar symbol.
The second structure is the nondeterminism mask. Both structures together represent values
in ternary logics, with the semantics that a bit is nondeterministic iff its nondeterminism
mask is set to 1. If the mask bit is set to 1, then the content of value becomes irrelevant, as
logically, it could be either 0 or 1. Hence, generated simulators force it to 0, thus guaranteeing
consistent states and additionally removing a potential distinguishing feature of states (which
in some cases reduces the size of the state space).

A typical instruction set description in Sgdl contains between 2.000 and 4.000 lines of
code, depending on the number of instructions and overall complexity of the device.

2.4 Notations
I Definition 2. Alphabet for ternary logics
The alphabet for ternary logics is defined as Σ := {0, 1, n}. A word of length m over Σ∗ is
then a sequence of letters representing bits that are either explicitly 0, 1, or could be both.

I Example 3. The word w := 000n 0000 can be instantiated to the explicit values 0000 0000
and 0001 0000.

I Definition 4. Values of a memory cell
Let x be a memory cell of m bits width. Then

val(x) denotes the content of x.
ndm(x) denotes the content of the nondeterminism mask of x.

val and ndm are bit vectors that can be combined to represent a value in ternary logic.
Whenever a bit in ndm(x) is set to 1, then that bit is considered to be n ∈ Σ, i.e., the content
of val(x) for that bit becomes irrelevant.

3 A Motivational Example

As an example, consider the following instruction, which is part of the instruction set of the
Atmel AVR family of microcontrollers:

IN R0, TIFR

This instruction reads the value of the timer interrupt flag register, TIFR, and copies it into
the general purpose register (GPR) R0. No flags are altered by this instruction. Accordingly,
the semantics of the instruction, as depicted in the instruction set manual (ISM) are

Rd← I/O

where Rd is a GPR, and I/O is an I/O register. Being an I/O register, TIFR may contain
nondeterministic data. Hence, we either need to instantiate all nondeterministic bits immedi-
ately, or propagate this information into the destination, in this example R0. For simulation

SSV’11

76 Automatic Derivation of Abstract Semantics From Instruction Set Descriptions

(i.e., state space building), the optimal abstract semantics would be

val(R0)← val(TIFR) (1)
ndm(R0)← ndm(TIFR) (2)

To achieve the latter, we have several options:
1. Implement explicit code for copying. This approach requires a human developer to

inspect the instruction semantics in the ISM, and implement the necessary code into the
simulator.

2. Naive automatic approximation. Whenever an instruction depends on at least one
nondeterministic input bit

Check if all output bits allow nondeterminism. To obtain the output bits without
analyzing the instruction code, it suffices to execute the instruction once, then revert
the resulting machine state to the original state.
If all output bits allow nondeterminism, set all of them to nondeterministic.
Else instantiate all input bits, and execute the instruction using the concrete semantics
from the ISM.

While the first approach, using a developer, can always yield the optimal solution, it is
also the most inappropriate one. Instruction sets usually consist of hundreds of instructions,
and each of those has to be lifted from the concrete to the abstract. Furthermore, this is
a very simple example, in which the developer can hardly introduce any mistakes. Other
examples, like complex arithmetic instructions, can easily cause the developer to forget
maybe the one or other flag bit, which may result in the state space generator containing a
correct implementation for one simulation type (e.g., fully deterministic simulation based on
the concrete semantics), and a faulty one for another type (e.g., delayed nondeterminism).

Compared to this, the proposed naive implementation of the automatic approach certainly
has the advantage of far less manual effort. Moreover, it guarantees an over-approximation
of instruction behavior, therefore preserving the model checker’s ability to check safety
properties. The disadvantage, however, is that it is grossly inaccurate. Consider the following
machine state:

val(R0) = 0000 0001 (3)
ndm(R0) = 0000 0000 (4)

val(TIFR) = 0000 0000 (5)
ndm(TIFR) = 1000 0000 (6)

Executing the example instruction using the naive abstract semantics will change this to the
following machine state:

val(R0) = 0000 0000 (7)
ndm(R0) = 1111 1111 (8)

val(TIFR) = 0000 0000 (9)
ndm(TIFR) = 1000 0000 (10)

That is, the source register, TIFR, retains its single nondeterministic bit, while the previously
deterministic target register R0 becomes completely nondeterministic. The consequences of
this change depend entirely on the next instructions accessing R0 (note that this need not
necessarily be the immediately next instructions). In case the next instruction accessing R0 is
a bit test instruction such as SBIC (i.e., skip next instruction if bit is clear), only a single bit

D. Gückel and S. Kowalewski 77

may be instantiated. In this case, the naive approach would yield the desired result, which is
to avoid instantiation until the value of nondeterministic bits is actually needed. However,
in case the next instruction is a comparison, such as CPI R0, 128, the naive approach will
result in an instantiation of 8 nondeterministic bits, yielding 256 successor states. Compared
to this, the optimal approach would copy only 1 nondeterministic bit from TIFR to R0, thus
the instantiation triggered by executing CPI would result in only 2 successors.

The disadvantage of the naive implementation is due to the fact that it marks all bits
written by the instruction as nondeterministic. Such an approximation is overly pessimistic
for IN, as there is a direct mapping of input bit i to output bit i in the equally wide registers
TIFR and R0. For operations such as ADDC Rd, Rr (addition with carry), however, there is
no such mapping. Instead, the value of a target bit may depend on the values of several bits
in the input. Thus, without any additional knowledge about the actions performed by an
instruction, the pessimistic assumption that any output may result, is actually an appropriate
one. In the following sections, we illustrate a concept how to gain such information, and
produce a smaller over-approximation.

4 Deriving Abstract Semantics

In this section, we focus on abstract semantics for delayed nondeterminism and static analysis.
Throughout the section, we use the term input of an instruction as a synonym for the sets of
locations read by it, and analogously the term output for the set of written locations.

4.1 Prerequisites
Certain invariants regarding memory locations must always hold in both the concrete and
the abstract semantics of instructions, as they are needed to preserve expressiveness:

Operands. We assume that operands are always deterministic. This is guaranteed by
construction, as they are instantiated once by the disassembler.
Addresses. Addresses must always be deterministic, as a nondeterministic address used
in an instruction may result in any (visible) address to be read or written. Especially on
devices with memory-mapped I/O, this could also have an impact on device behavior.
Control flow. Any memory location relevant for control flow must remain deterministic.
This applies to status registers, but not to general purpose registers. Nondeterministic
control flow is undesirable because of a severely reduced expressiveness (e.g., a status
register indicating that the last computation yielded a result that was zero, negative,
and odd). The direct implication is that control-flow relevant instructions must always
operate on deterministic data.
Arithmetics and logics. Any computation involving a nondeterministic value yields
a nondeterministic result. If the target of the assignment requires the result to be
deterministic, then all variables involved in the computation have to be instantiated first.

4.2 Identifying the Control Flow Type
As pointed out in Sect. 4.1, all control-flow relevant operations require their input to be
deterministic. The task at hand is therefore to separate jump and branch instructions from
arithmetic/logic and data transfer instructions. Furthermore, for our second goal, generating
an operative static analyzer, we do not only need to generate transfer functions for each
instruction (i.e., an abstract semantics), but also establish a flow relation for creating the

SSV’11

78 Automatic Derivation of Abstract Semantics From Instruction Set Descriptions

conduct RDA

RD from entry node? branch

regular jump

reads/writes stack top?

call return

1 RDs 2 RDs

yes no

write
read

initial classification
refinement none

Figure 1 Classification strategy for control flow type.

control flow graph (CFG). The latter requires analyses to find out the number of succeeding
instructions, and their addresses.

Both goals can be achieved by means of certain static analyses of the execute sections
and subroutines in the Sgdl description. As the language supports function calls, all
analyses have to be conducted interprocedurally. Three analyses suffice: Reaching Definitions
Analysis (RDA), Read Variable Analysis (RVA), and Written Variable Analysis (WVA).
RDA is a standard textbook analysis [10], RVA is basically the collecting semantics of Live
Variables Analysis (LVA) (i.e., an LVA with a constant empty kill function), and WVA is
the counterpart of RVA with respect to written variables. The overall idea is to analyze
write accesses to the program counter. Figure 1 illustrates the classification algorithm, which
works as follows:

Construct the control flow graphs for the current instruction and all called functions.
All instructions implicitly increment the program counter by their own size, so insert one
reaching definition (RD) into the entry node of the instruction CFG.
Conduct the analyses.
Classify instructions based on the number and origin of RDs reaching the exit node:

1 RD from the entry node: regular instruction
1 RD, but not from the entry node: program counter is inevitably overwritten with a
single value, i.e., an unconditional jump instruction
2 RDs: a conditional jump

Refine the classification: jump instructions manipulating the stack could be call or return
instructions, depending on whether they read / write the content of the program counter
from / to the stack. Use RVA and WVA results to distinguish these.

The second step, obtaining the value written at runtime into the program counter, is
part of the next section. Technically, it consists of two steps: first, use the RDA to locate
assignments to the program counter, and second, backtrack and collect all subexpressions on
the right hand side of such assignments. The resulting expression can then be evaluated at
runtime on concrete instances of the instruction.

D. Gückel and S. Kowalewski 79

4.3 Analysis of Data Flow
An analysis of the data flow has to identify the effects of individual assignments to global
variables. The goal of the analysis is to identify possible propagations of nondeterminism and
also the opposite, variables that must not be nondeterministic when executing the instruction.
Formally:

Let α be an instruction consisting of individual statements α0, . . . , αm,

αi ∈ {memidentifieri(addr_expri)← expri,

localvar_identifier← expri,

call fi(argsi)},
1 ≤ i ≤ m (11)

Let Addrα be the set of identifiers known to be used as an address within the scope of α,
and initialize Addrα := ∅. Let Var(expr) be the set of variables occurring in expr . Let
C ⊆ N × Addresses × Addresses be a copy relation, wherein each entry is of the form
(instruction id, source, target).

I Definition 5. Initial data flow analysis algorithm
If α has been identified by the control flow algorithm as a jump, skip it. Else:

For all αi ∈ α
If αi = memidentifieri(addr_expri)← expri:
Addrα := Addrα ∪ Var(addr_expri)
Addrα := Addrα ∪ Var(addr) for all addresses addr occuring in expri.
If expri = memidentifierj(addr) for some memory identifier j and address addr, add
an entry (i, memidentifierj(addr),
memidentifieri(addr_expri) to the copy relation C

If α = call fi(argsi)}: apply this algorithm to the called function to obtain a summary
of function effects. Join resulting summary into analysis information of caller.

Next, refine the initial analysis results by collecting subexpressions referenced in expres-
sions. The goal is to relate identifiers used as addresses back to the operands and global
resources visible at the beginning of the instructions’s execute block. This can be achieved
by a backwards search through the CFG. In case the analysis should fail in this for a given
expression (possible due to branches in the CFG, indicating the value for a subexpression is
not unique), there are two possible continuations, depending on the type of the expression:
if the expression is known to be used an an address, either in reading or in writing, we need
to mark all identifiers used in the instruction for instantiation. Otherwise, if the expression
is known to be used as the right-hand side (rhs) value in an assignment, we have to replace
it by a value that is marked completely nondeterministic.

4.4 Synthesis of Abstract Semantics
Following completion of control and data flow analysis, we can generate abstract semantics
for each instruction.

4.4.1 Delayed Nondeterminism
Instructions are considered as a list of individual assignments. For each of these, apply a
translation rule. It is necessary to also add the original concrete semantics to the output

SSV’11

80 Automatic Derivation of Abstract Semantics From Instruction Set Descriptions

because it might be necessary, during execution, to revert to it, and in the process of that,
instantiate all nondeterminism in the input. This can happen if at least one of the assignments
tries to write to an address that has to remain always deterministic (cf. the requirements
detailed in Sect. 4.1).

I Definition 6. Translation rules for assignments
Let αi = memidentifier(addr_expr)← expr.

Let Instα be the set of locations that have to be instantiated before executing α. Initially,
Instα := Var(addr_expr).

Replace addr_expr, expr by the collected subexpressions, such that both expressions
depend only on global variables and operands. If this is not possible because the analysis
has failed, see below for a recovery strategy. Else, the abstract version α̂i of α is defined by

If the copy relation C created during analysis contains an entry (i, src, trgt), then α̂i :=
[val(src) := val(trgt);ndm(src) := ndm(trgt)]
Else (data is modified, so instantiate to generate concrete values)

Instα := Instα ∪Var(expr)
α̂i := αi

Recovery strategy: for expressions whose composition cannot be analyzed, the obvious
solution is to assign a nondeterministic value to the target. In case this is not desirable,
for instance because the target is a frequently accessed or very wide register (i.e., many
nondeterministic bits would be created), a fallback would be to instantiate every input of
this instruction, and use the concrete semantics instead. Thus, no improved semantics is
available for this instruction, but at least it is guaranteed that the abstraction would not
actually result in state explosion instead of preventing it.

Using these translation rules yields the semantics of delayed nondeterminism. An obvious
improvement concerns the condition for instantiation, which, in the above version, is if any
computation is performed, then instantiate all inputs. Therefore, all arithmetic instructions
will instantiate all of their inputs because they necessarily contain at least one such αi. A
more permissive condition exploits the computation rules for ternary logic:

For all operators in the input language, i.e., +,−, ∗, /, . . ., introduce new abstract versions
+̂, −̂, ∗̂, /̂, Semantics are those of their concrete counterparts, except that the abstract
versions operate also on nondeterministic (n) bits. For instance, 0 +̂n = n +̂ 0 = 1 +̂n =
n +̂ 1 = n, 0 ∗̂n = 0, 1 ∗̂n = n, and analogously for all other operators.
For each rhs expression in an assignment, create an abstract syntax tree representation
Conduct a tree pattern matching, as described by Aho et al. [1], and apply tree rewriting
rules, to replace the operators in the expression by their abstract counterparts.

These advanced rules then leave only two cases for forced instantiation of all inputs: first,
an address expression that cannot be discomposed into its components, and second, an
attempted write to a location marked as must always remain deterministic.

4.4.2 Static Analysis
Using the results from the the control flow type analysis, it is possible to identify, for each
instruction, the number of successors and their address, either absolute or relative. Therefore,
given a program consisting of instances of these instructions, we can reconstruct the control
flow graph from the disassembled binary representation of the program. Furthermore, the
data flow analysis algorithm presented in the last section necessarily identifies read and

D. Gückel and S. Kowalewski 81

written memory locations, i.e., provides a starting point for generating transfer functions for
analyses such as RDA and LVA.

[mc]square already provides a framework for static analysis, which can conduct analyses
in case the developer provides a CFG and transfer functions for the named analyses. Therefore,
the actual generation of an operative analyzer is reduced to the task of generating the necessary
code from the existing analysis results.

5 Related Work

HOIST is a system by Regehr [12] that can derive static analyzers for embedded systems, in
their case for an Atmel ATmega16 microcontroller. This is similar to our approach. The key
difference is that they do not use a description of the hardware, but either a simulator or the
actual device. For a given instruction that is executed on the microcontroller, HOIST conducts
an exhaustive search over all the possible inputs, and protocols the effects on the hardware.
These deduced transfer functions are then compacted into binary decision diagrams (BDDs),
and eventually translated into C code. While this mostly automatic approach can provide
very high accuracy in instruction effects, it certainly has the disadvantage of exponential
complexity in the number of parameters for an instruction. Our approach does not depend
on this, and is also automated, but the correctness of the results depends on the correctness
of the description of the hardware. Moreover, HOIST is limited to analyzing ALU operations,
whereas our analyzer, Sgdl-Sta, can analyze any kind of instruction.

Chen et al. [3] have created a retargetable static analyzer for embedded software within
the scope of the MESCAL project [8]. Similar to our approach, they process a description of
the architecture, which in their case is called a MESCAL Architecture Description (MAD).
Automatic classification of instructions for constructing the CFG is apparently also possible
in their approach, and they hint at that this is possible due to some attributes present in the
MAD that allow identification of, for instance, the program counter. However, no further
detail is provided on the ideas involved in classification. The generated analyzer is suitable
for analyzing worst case execution time of certain classes of programs intended to run on the
hardware.

Schlickling and Pister [15] also analyze hardware descriptions, in their case VHDL code.
Their system first translates the VHDL input into a sequential program, before it applies
well-known data flow analyses such as constant propagation analysis. These analyses are
then used to prove or disprove worst case execution time properties of the hardware. In
contrast to this, we concentrate on the way the resource model is altered by instructions,
deliberately neglecting timing.

Might [9] focuses on the step from concrete to abstract semantics for a variant of lambda
calculus. In their examples, they also relate their work to register machines, which, albeit
a concept from theory, share some commonalities with real-world microcontrollers. They
point out the similarities between the two semantics, and how to provide analysis designers
with an almost algorithmic approach to lifting the concrete to the abstract. Hence, the
foremost difference to our approach is that their contribution is certainly more flexible, as
they rely on an expert. Compared to this, our approach is intentionally restricted to only a
few abstractions, but for these, it is fully automated.

SSV’11

82 Automatic Derivation of Abstract Semantics From Instruction Set Descriptions

6 Conclusion

This paper shows that a single description of an instruction-set architecture, given as an
implementation in a special-purpose imperative programming language, can serve as a
starting point for generating several verification tools. We have shown how to switch from
register transfer-level semantics based on concrete values to a partially symbolic technique,
called delayed nondeterminism. To this end, we have described static analyses used on the
imperative descriptions, by which the intention behind instructions becomes visible and ready
for translation. Furthermore, these analyses can also be used to obtain a characterization of
instructions needed for analyzing the code for the target platform.

The concepts developed in this contribution should be applicable not only to [mc]square
and the Sgdl system, but to any model checker interpreting assembly code. In order to
verify the concepts, we have implemented a static analyzer for Sgdl, called Sgdl-Sta.
So far, we have successfully verified the ideas concerning classification of instructions into
control flow classes. Classifying the instruction sets of both the ATmega16 and the MCS-51
microcontrollers can be achieved in less than 10 seconds. Additionally, we have used the
analysis results for generating an operative static analyzer for the ATmega16 simulator,
which enables a variant of Dead Variable Reduction [17] for this simulator. Hence, a direction
for future work will be the implementation of the other concepts, especially the creation of
the abstract semantics for delayed nondeterminism, and a comparison between the derived
and the manually implemented versions of this abstraction technique.

Clearly, the results indicate that abstraction for hardware-dependent model checkers can,
to a certain degree, be achieved automatically. Thus, it is not strictly necessary to have an
expert in both model checking and embedded systems available, who is then to perform a
fine-tuning of such tools. A practical implication of this improvement is that it might be
possible for a non-expert to retarget a model checker to a new platform, at least in case the
set of automatically derivable abstractions suffices. Therefore, we consider it necessary to
conduct further research on other abstractions, and figure out to what extent it is possible
to derive their semantics as well. Obvious directions for this include lifting the concrete
semantics to interval semantics (i.e., the value of a memory cell is only known to be in an
interval, instead of several distinct values), and easing our restrictions on nondeterministic
control flow.

Acknowledgements We thank our former team member Christian Dehnert for his partici-
pation in our research, some of which was integrated into this contribution. Additionally,
we thank the DFG Research Training Group 1298 "Algorithmic Synthesis of Reactive and
Discrete-Continuous Systems" for funding parts of this work.

References

1 A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 2006.

2 C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
3 K. Chen, S. Malik, and D.I. August. Retargetable static timing analysis for embedded

software. In The 14th International Symposium on System Synthesis, 2001. Proceedings.,
pages 39 – 44, 2001.

4 E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.

D. Gückel and S. Kowalewski 83

5 P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Principles of Programming
Languages (POPL 77), Los Angeles, USA, pages 238–252. ACM, 1977.

6 D. Gückel, J. Brauer, and S. Kowalewski. A system for synthesizing abstraction-enabled sim-
ulators for binary code verification. In Industrial Embedded Systems (SIES 2010), Trento,
Italy., 2010.

7 D. Gückel, B. Schlich, J. Brauer, and S. Kowalewski. Synthesizing simulators for model
checking microcontroller binary code. In 13th IEEE International Symposium on Design
& Diagnostics of Electronic Circuits and Systems (DDECS 2010), Vienna, Austria., 2010.

8 K. Keutzer, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. System-level
design: orthogonalization of concerns and platform-based design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19:1523 –1543, 2000.

9 M. Might. Abstract interpreters for free. In Radhia Cousot and Matthieu Martel, editors,
Static Analysis, volume 6337 of Lecture Notes in Computer Science, pages 407–421. Springer
Berlin / Heidelberg, 2011. 10.1007/978-3-642-15769-1_25.

10 F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 1999.
11 T. Noll and B. Schlich. Delayed nondeterminism in model checking embedded systems

assembly code. In Hardware and Software: Verification and Testing (HVC 2007), volume
4899 of LNCS, pages 185–201. Springer, 2008.

12 J. Regehr and A. Reid. HOIST: A system for automatically deriving static analyzers for
embedded systems. ACM SIGOPS Operating Systems Review, 38(5):133–143, 2004.

13 B. Schlich. Model Checking of Software for Microcontrollers. Dissertation, RWTH Aachen
University, Aachen, Germany, June 2008.

14 B. Schlich, J. Brauer, and S. Kowalewski. Application of static analyses for state space
reduction to microcontroller binary code. Sci. Comput. Program., 76(2):100–118, 2011.

15 M. Schlickling and M. Pister. A framework for static analysis of VHDL code. In Proceedings
of 7th International Workshop on Worst-case Execution Time (WCET) Analysis, 2007.

16 B. Titzer, J. Lee, and J. Palsberg. A declarative approach to generating machine code
tools. Technical report, UCLA Computer Science Department, University of California,
Los Angeles, USA, 2006.

17 K. Yorav and O. Grumberg. Static analysis for state-space reductions preserving temporal
logics. Formal Methods in System Design, 25(1):67–96, 2004.

SSV’11

	Introduction
	Focus
	Approach
	Contribution
	Outline

	Preliminaries
	The [mc]square Assembly Code Model Checker
	Delayed Nondeterminism
	Description of Microcontrollers Using SGDL
	Notations

	A Motivational Example
	Deriving Abstract Semantics
	Prerequisites
	Identifying the Control Flow Type
	Analysis of Data Flow
	Synthesis of Abstract Semantics
	Delayed Nondeterminism
	Static Analysis

	Related Work
	Conclusion

