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Preface

Industrial-strength software analysis and verification has advanced in recent years through
the introduction of model checking, automated and interactive theorem proving, and static
analysis techniques, as well as correctness by design, correctness by contract, and model-
driven development. However, many techniques are working under restrictive assumptions
that are invalidated by complex embedded systems software such as operating system kernels,
low-level device drivers, or micro-controller code.

The aim of SSV workshop series is to bring together researchers and developers from
both academia and industry who are facing real software and real problems with the goal of
finding real, applicable solutions. It has always been the goal of SSV program committees to
let “real problem” really mean real problem (in contrast to real academic problem).

The 6th SSV workshop was held on August 26 in Nijmegen in the Netherlands. The
workshop was co-located with the second conference on Interactive Theorem Proving (ITP
2011), which took place from 22–25 August at the same place.

The program chairs and organization committee of SSV 2011 have been

Jörg Brauer, Verified Systems International GmbH, Germany
Marco Roveri, FBK-irst, Italy
Hendrik Tews, TU Dresden, Germany

The SSV program chairs gratefully acknowledge the sponsorship of National ICT Australia
Ltd (NICTA), Australia’s Information and Communications Technology Research Centre
of Excellence, and of the Ultra high speed mobile information and communication (UMIC)
cluster of excellence at RWTH Aachen University in Germany.

11th July 2012 Jörg Brauer, Marco Roveri and Hendrik Tews
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Structuring Interactive Correctness Proofs
by Formalizing Coding Idioms
Holger Gast

Wilhelm-Schickard-Institut für Informatik
University of Tübingen
gast@informatik.uni-tuebingen.de

Abstract
This paper examines a novel strategy for developing correctness proofs in interactive software
verification for C programs. Rather than proceeding backwards from the generated verification
conditions, we start by developing a library of the employed data structures and related coding
idioms. The application of that library then leads to correctness proofs that reflect informal
arguments about the idioms. We apply this strategy to the low-level memory allocator of the L4
microkernel, a case study discussed in the literature.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases software verification, coding idioms, theory re-use, low-level code

Digital Object Identifier 10.4230/OASIcs.SSV.2011.1

1 Introduction

Interactive theorem proving offers several recognized benefits for functional software verific-
ation. From a foundational perspective, it enables the definition of the language semantics
and the derivation of the Hoare logic, which ensures that the verification system is sound
(relative to the defined semantics) (e.g. [21, 22, 5]). The background theories for reasoning
about the machine model can likewise be derived, rather than axiomatized [4, §1.4][21],
thus avoiding the known practical issue of inconsistencies [2, §7]. From the perspective
of applications, interactive provers offer strong support for the development of theories of
the application domain [4, §1.3], which are not restricted to special classes of properties [15,
§2.3]. In particular, they can address algorithmic considerations [27, §7.2], such as geometric
questions [16, §4.4] or properties of defined predicates [12, §4.3].

However, interactive software verification incurs the obvious liability of requiring the
user to guide the proof in some detail and to conceive a proof structure matching the
intended correctness argument. This is the case even more in the development of background
theories that are to be applicable to several algorithms. The necessity of strategic planning
and human insight is often perceived as a major obstacle to the practical applicability of
interactive proving.

This paper proposes to address the challenge of structuring correctness proofs by focusing
on the idioms and coding patterns connected with the data structures found in the verified
code. The benefit to be gained from this approach is clear: users can bring to bear their
insight and experience as software engineers on the formal development, and the proof’s
structure will follow the informal correctness arguments used by developers, thus making it
more understandable and hence more maintainable.

We demonstrate and evaluate this strategy using a study of the memory allocator of the
L4 microkernel, which has previously been verified by Tuch et al. [25, 24] and thus affords
a point of comparison. Although the allocator merely maintains a sorted singly-linked list
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2 Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

of free blocks, we have found even a simplified fragment of the code to be surprisingly hard
to verify in a previous attempt [11], owing to the many technical aspects introduced by the
low-level memory model. This impression is confirmed by the level of detail present in the
original proof [23].

The benefit of the strategy proposed now can therefore be gauged by whether the found
proof matches the essentially simple structure of the algorithm, thus appearing as a detailed
version of an informal correctness argument. This goal also relates to a peculiarity of inter-
active software verification. Differing from the field of mechanized mathematics, no effort is
spent here on making the proof more concise or elegant once it is found—its mechanically
verified existence is sufficient.

For this reason, the paper’s structure reflects the development of the proof. Section 2
gives an overview of the allocator and points out the coding idioms that make the code seem
straightforward. Section 3 then formalizes these idioms in a library of singly-linked lists
and their standard manipulations. Section 4 gives the correctness proof on the basis of that
library, with an emphasis on the direct match between the library theorems and informal
correctness arguments.

1.1 An Overview of Lightweight Separation
We conduct the proof within the lightweight separation verification system [7, 8]. It is
developed as a conservative extension of Isabelle/HOL and permits the verification of low-
level programs in a C dialect inspired by [21].

The idea of lightweight separation is to complement the standard formulation of asser-
tions in HOL with explicit formal representations of memory layouts. Towards that end,
assertions usually contain a conjunct MIA where M is the current memory state and A is
a cover, which is a predicate on address sets. A cover is well-formed if it accepts at most
one address set. We call the address set accepted by a well-formed cover A the memory
region covered by A. For instance, the following constant captures a block of n bytes at a.
It describes the address set and excludes overflows in address arithmetic, making the block
contiguous ({a..<b} denotes a half-open interval [a, b) in Isabelle/HOL; ⊕ is address offset).

block a n ≡ λS. S={a ..< a ⊕ n} ∧ a ≤ a ⊕ n

MIA states A covers the allocated region of M. For M�A, A is allocated in M. The subcover
relation A�B states that the region of A is contained in the region of B. The memory layout
is described by nested cover expressions combined by the disjointness operator A ‖B. The
system provides covers for standard constructs, such as variables and blocks whose size is
given by a type. New constants for covers can be defined as needed. In particular, one can
define covers for inductive data structures using Isabelle’s built-in inductive command.

The lightweight separation tactics then prove, by symbolic manipulation of cover ex-
pressions [7], the allocatedness of memory accessed by the program and the disjointness of
regions read in assertions and modified by programs. If necessary, they unfold given layouts
to expose their constituent parts [8].

2 The L4 Memory Allocator

The memory allocator of the L4 microkernel [23] is responsible for the low-level allocation
of memory blocks. The interface consists of two routines alloc and free that enable client
code to obtain and release memory blocks. We now describe and analyze their overall
structure.
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(a)

(b)

Figure 1 Allocation and Deallocation in the Free List.

void * alloc ( unsigned int size) {
void ** prev = & kfree_list ;
void *curr = kfree_list ;
while (curr != null) {

void *tmp = *( void **) curr;
unsigned int i = 1;
while (tmp != null &&

i < size / 1024) {
if (tmp != curr + i * 1024) {

tmp = null;
} else {

tmp = *( void **) tmp;
i++;

}
}
if (tmp != null) {

*prev = tmp;
zero_mem (curr ,size );
return curr;

}
prev = ( void **) curr;
curr = *( void **) curr;

}
return null;

}

void free( void *a, unsigned int size) {
void *p;
void ** prev;
void *curr;
p = a;
while (p < a + (size - 1024)) {

*( void **)p = p + 1024;
p = *( void **)p;

}
prev = & kfree_list ;
curr = kfree_list ;
while (curr != null && (a > curr )) {

prev = ( void **) curr;
curr = *( void **) curr;

}
*prev = a;
*( void **)p = curr;

}

void zero_mem ( void *p, unsigned int n) {
unsigned int i = ( unsigned int )0;
while (i < n / 4) {

*(( int *)p+i) = 0;
i++;

}
}

Figure 2 Source Code of the Allocator’s Routines.

2.1 Data Structure and Routines
The microkernel allocator offers basic services to higher-level allocators and handles memory
blocks as multiples of 1kb. Internally, it maintains a free list of 1kb chunks, whose first word
is a pointer to the next chunk. The chunks in the list are ordered by their start addresses
to enable efficient compaction during allocation. The routines alloc and free (Fig. 2) in
essence cut out or splice in sequences of chunks at the correct position within the free list.

The alloc routine moves pointer curr forward through the free list (Fig. 1(a); dashed
arrows indicate the possible crossing of multiple chunks). At each chunk, the nested loop
advances pointer tmp to check whether the sequence of adjacent chunks starting at curr
matches the requested size. If this is the case, the routine removes the sequence from the
list, initializes it with 0-bytes, and returns it to the caller as a raw block of memory. The
prev pointer is used to splice out the returned chunks and always lags one step behind curr.

The free routine dually splices a returned block of memory back into the free list
(Fig. 1(b)). Since the block’s size may be a multiple of 1kb, the routine first creates a
list structure inside the raw memory. Then, it searches for the place where the new list

SSV’11



4 Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

ListNode *p = list_head;
while (p != NULL && not found ) {

perform check & return/break ;
p = p->next;

}

ListNode **prev = &list_head;
ListNode *p = list_head;
while (p != NULL && not found ) {

perform check & return/break ;
prev = &p->next;
p = p->next;

}
(a) (b)

Figure 3 Iteration Through Lists.

Figure 4 Extraction of a Node in the Follow Iterator Idiom.

fragment must be inserted to maintain sortedness. Finally, it links the fragment into the
free list. Like alloc, it maintains a prev pointer to perform that final pointer manipulation.

2.2 Idioms for List Operations
The routines’ code in Fig. 2 appears straightforward after this explanation of its purpose.
The reason for the simple reading is that the code only applies well-known patterns and
idioms: the experienced developer recognizes these and uses them in reasoning about the
code’s functionality and correctness.

The first and most basic idiom is the search for a particular point in a list. The coding
pattern is shown in Fig 3(a): some pointer p is initialized to the first node and is advanced
repeatedly by dereferencing the next pointer of the node. The checks in the while test or
body are usually used alternatively. Following the terminology of the C++ STL [1], we
will call the pointer p an iterator. Informally, the iteration works without failure because p
never leaves the list structure: it is “properly” initialized and “properly” advanced to the
next node in the list. Since it points to a node after the test for NULL, the iterator p can be
dereferenced in the checks without causing a memory fault.1

If a modification of the list structure at p is intended after the search, the idiom must
be extended by some reference to the predecessor node of p. There are several variants of
such an extension. The L4 allocator uses the one shown in Fig. 3(b), which makes use of
C’s ability to take the addresses of arbitrary memory objects. The constraints associated
with prev are that *prev = p and that prev points either to the list-head variable or to the
next field of some node in the list.2

After the loop, the manipulation is performed by the assignment *prev=q, where q is
either some successor node of p for the removal of p or a new node to be inserted before p.
To show that the resulting pointer structure is the desired linked list, informal arguments
revert to pointer diagrams. The situation is shown in Fig. 4 on the left. If prev = &head, the
argument is simple. Otherwise, one needs to expose the node containing the prev pointer
in the diagram, possibly followed by extracting node p from the remaining list. Then, one

1 These are also the requirements for the STL’s most basic forward iterator [1].
2 A common alternative uses a sentinel head node, such that prev is a node pointer and p is inlined as

prev->next (e.g. the slist library of g++). This variant has the advantage of avoiding case distinctions
on the exact target of prev. Our library (§3) supports this variant as well.
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Figure 5 Establishing the Successor Structure.

draws the algorithm-specific pointer operations, e.g. those of Fig. 1, and argues that the
expected list structure results. Note that the case distinction on prev = &head, which is
necessary in the argument, is not present in the code.

2.3 Idioms for Aligned Low-level Memory Access
The iterator idiom, once identified, can also be applied to algorithms that do not handle
list-like data structures. The zero_mem function (Fig. 2), for example, initializes a memory
block by writing machine words, i.e. by setting groups of 4 bytes at a time. Its loop advances
the pointer (int*)p+i as an iterator in steps of 4, by incrementing i in each loop iteration.
The pointer is properly initialized by setting i=0. Advancing the iterator by i++ leaves it
within the bounds of the raw memory block, because the block’s size is a multiple of 4.

The first loop of dealloc (§4.3) similarly establishes a list structure in a memory block
(Fig. 5) by advancing a pointer p, initialized to start address a, in 1kb-steps. The proof
obligations are the same as for the iterator in zero_mem.

The correctness arguments in both cases therefore consist of the familiar “initializing”
and “advancing” an iterator, and can be carried out analogously to the list case. Although
the formulation of the invariants is quite different, the proofs thus still reflect the common
structure. For space reasons, we will not discuss them further.

3 A Library of List Manipulations

This section captures the idioms from §2.2 in a generic library of singly-linked lists. Using
this library, the correctness proof in §4 will be structured according to informal arguments,
after the allocator’s free list has been proven an instance of the general case. For space
reasons, we omit derived constructs, such as the typed abstraction of the nodes’ contents as
HOL values and the variant of follow iterators mentioned in Footnote 2. The library consists
of 750 lines and has been re-used in two further case studies (§6).

3.1 Parameters and Assumptions
The library is formulated as an Isabelle locale [13] to abstract over the structure of list nodes.
Locales can depend on parameters and state assumptions about these. The list library has
three parameters (1) (“::” denotes a type constraint): node is a cover (§1.1) for a single list
node and succ reads the successor (or “next”) link from a node in a given memory state.
Both usually depend on type definitions, which are passed in a global context gctx.

node :: addr⇒ cover succ :: addr⇒memory⇒ addr gctx :: ctx (1)
accesses (succ p)M (node p) node p S=⇒ p∈S wf-cover (node p) (2)

The theory makes three natural assumptions (2) about these parameters: reading a node’s
successor depends only on that node (accesses fMA states that memory-reading function f,
when applied to state M, depends only on region A); the base pointer of a node is contained in
its footprint; finally, the node cover must be well-formed (§1.1). Note that these assumptions
are implicit in pointer diagrams and are validated by the usual list structures in programs.

SSV’11



6 Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

3.2 List Structure
The standard approach to lists (e.g. [19]) is to define a predicate to enumerate the nodes
in list fragments. An inductive definition is given by the introduction rules (3). A parallel
definition for cover p qM, the memory region of the list, is straightforward. ([ ] is the empty
list, # denotes the “cons” operation)

p=q xs= [ ]
nodes p q xsM

p 6= q nodes (succ pM) q ysM xs=p#ys
nodes p q xsM

(3)

Already at this point, the library yields a benefit in the form of useful properties, such as
the nodes of a list being distinct (4).

nodes p q xsM
distinct xs

(4)

Due to their parallel definitions, the nodes and the cover of a list are closely related. In
particular, if a list is allocated, then it consists of a sequence of nodes (5) and—since null
is never allocated—it cannot contain null as a node (6).

M� cover p qM
∃ xs. nodes p q xsM

(5)

M� node p
p 6= null

nodes p q xsM M� cover p qM
null /∈ set xs

(6)

We have noted in §2 that informal arguments by pointer diagrams address the “extraction”
of nodes from a list and the resulting “overall” list. We now reflect the graphical arguments
in the form of theorems to make their application straightforward: for every change in the
pointer diagram, the formal proof contains an application of the corresponding theorem.
For space reasons, we omit the parallel development for cover.

Theorems (7) and (8) enable the extraction and integration of the first node of a list.
Note how the pre-condition p 6= q reflects the check of the idiomatic while loops from §2.2.
To save a separate application of (4), (7) yields the derived information that the nodes were
originally distinct. The complementary theorems (9) and (10) manipulate the last node of a
list. The final rules (11) and (12) reflect splitting and joining at a given node of the list, as
is necessary for Fig. 1. The last premises of (10) and (12) ensure that no cycles have been
created. In the frequent case where q is null, they can be proven by (6); the library provides
specialized rules for this case to simplify proofs further.

p 6= q
nodes p q xsM=(∃ ys. nodes (succ pM) q ysM∧ xs=p#ys∧ p /∈ set ys)

(7)

nodes r q ysM succ pM= r p 6= q
nodes p q (p#ys)M

(8)

q= succ rM r∈ set xs
nodes p q xsM=(∃ ys. nodes p r ysM∧ xs= ys@ [ r ]∧ q /∈ set xs)

(9)

nodes p r ysM succ rM=q q /∈ set (ys @ [r])
nodes p q (ys@ [r])M

(10)

r∈ set xs
nodes p q xsM=(∃ ys zs. nodes p r ysM∧ nodes r q zsM∧ xs= ys@ zs∧ q /∈ set xs)

(11)

nodes p q xsM nodes q r ysM r /∈ set xs
nodes p r (xs @ ys)M

(12)
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3.3 Iterators
In principle, the definitions and theorems from §3.2 are sufficient to state loop invariants and
to verify list-manipulating programs (e.g. [19]). However, this approach invariably has to
consider the set of list nodes. The idioms of §2.2, on the other hand, focus on the “current”
and the “next” node, which reflects informal arguments about the local list structure—the
inductive argument about the iterator referencing one of the list’s nodes is left implicit.

We can obtain proofs that align with the informal reasoning by formalizing the idea of an
“iterator” itself. In the STL concept [1], an iterator into some data structure always points
to one of its elements or is a special one-past-the-end iterator. In the case of fragments of
singly-linked lists, this idea is expressed by the following definition.

iter a p qM ≡ ∃xs. nodes p q xsM ∧ (a ∈ set xs ∨ a=q)
The loop invariant for the iteration idiom then contains the conjunct iter p head nullM, which
hides the list structure as desired. Furthermore, the informal arguments about “initializing”
and “advancing” an iterator from §2.2 are reflected by theorems (13), and these are used
to establish the invariant and prove its preservation after the loop body. When the sought
node in the list has been found, it can be exposed by (14), followed by (8), without leaving
the iterator idiom.

M� cover p qM
iter p p qM

iter a p qM a 6= q
iter (succ aM) p qM

(13)

iter r p qM
nodes p q xsM=(∃ ys zs. nodes p r ysM∧ nodes r q zsM∧ xs= ys@ zs∧ q /∈ set xs)

(14)

3.4 Follow Iterators
Whenever a list manipulation is intended after iteration, one has to keep an auxiliary pointer
to the node preceding the current one (§2.2). Since the pattern is so frequent, we introduce
another abstraction to capture it. Since the prev pointer lags one step behind a cur pointer,
we choose the term follow iterator.

The locale for follow iterators extends that of iterators by introducing parameters that
abstract over the structure of the “successor field”, i.e. the memory object containing the
“next” pointer. By the idiom, this structure must be the same as that of the head variable.
The structure is given by a cover succ-field. The function rd-succ-field is used for reading its
content. The offset of the field within the node is given by succ-field-off.

succ-field :: "addr⇒ cover"
succ-field-off :: "word32"
rd-succ-field :: "addr⇒ memory⇒ addr"

The locale’s assumptions describe the expected relations between these parameters: the spe-
cial accessor reads the information gained by succ (§3.2) and depends only on the given re-
gion, which must be contained in the corresponding list node and must be well-formed (§1.1).

rd-succ-field (p⊕ succ-field-off)M=succ pM

accesses (rd-succ-field p)M (succ-field p)

succ-field p� node (p⊕ - succ-field-off) wf-cover (succ-field p)

The follow iterator abstraction is then defined directly (§2.2, Fig. 1): cur is an iterator,
while prev points to a link to cur; further, prev either points to the head variable or is itself
an iterator within the list.

follow-iter prev cur head p qM ≡
iter cur p qM ∧ rd-succ-field prevM=cur ∧
(prev=head ∨ (prev ⊕ - succ-field-off 6= q ∧ iter (prev ⊕ - succ-field-off) p qM)

SSV’11



8 Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

This newly defined construct establishes another layer of abstraction over the raw list struc-
ture, in that it enables the now familiar reasoning patterns in a self-contained system: the-
orems (15) and (16) capture the initializing and advancing of the iterator and thus replace
(13) in the proofs. It is worth checking that the additional premises reflect the initializ-
ations from the idiomatic code (§2.2, Fig. 3(b)), thus making the application of theorems
straightforward.

M� cover p qM prev=head cur=p cur= rd-succ-field prevM
follow-iter prev cur head p qM

(15)

follow-iter prev’ cur’ head p qM
cur’ 6= q cur= succ cur’M prev= cur’⊕ succ-field-off

follow-iter prev cur head p qM
(16)

Furthermore, the reasoning about the modification after the search from Fig. 4 can now be
expressed in a single theorem (17). The prerequisite case distinction from the informal argu-
ment of §2.2 can be introduced by the (tautological) rule (18) by a single tactic invocation,
which avoids having explicit terms in the proof script.

follow-iter prev cur head p qM prev 6= head

nodes p q xsM= (∃ys zs. nodes p prev ysM∧ nodes cur q zsM∧
xs= ys@ prev#zs∧ q /∈ set xs)

(17)

follow-iter prev cur head p qM
prev=head∨ prev 6= head

(18)

The follow-iter abstraction thus encapsulates all information necessary to perform the split.
This is evident in the proof of (17), which is based on a combination of the elementary
lemmas (11), (12), (7), and (4) about the list structure (§3.2). While that proof still follows
an informal argument by pointer diagram, the formalization in follow-iter and (17) enables
the user to link the concrete proof to the code’s intention directly. Furthermore, it saves a
lot of detailed and cumbersome manipulation of formulae, which we struggled with in [11],
and makes the proof more readable and thus more maintainable.

4 The Correctness Proof

This section gives the correctness proof of the allocator. The proof is structured by the
application of the library from §3 and thus follows the informal arguments used in §2. The
proof script is available from the author’s homepage [9].

4.1 Formalizing the Allocator’s Free List
We first instantiate the list library from §3 for the allocator’s free list. Even though the
library seems to suggest some “typed” concept of lists, the allocator’s data structure fits dir-
ectly: after instantiating the parameters as follows and discharging the library’s assumptions
by 40 lines of straightforward tactics, the developed constants and reasoning patterns are
available. («» delineates program syntax in HOL, here that of types. The system contains
a pre-processor.)

node p ≡ block p 1024
succ pM ≡ to-ptr (rd gctx p«void*»M)
succ-field p ≡ typed-block gctx p«void*»
rd-succ-field aM ≡ to-ptr (rd gctx a«void*»M)
succ-field-off ≡ 0



H. Gast 9

We then introduce an abbreviation kfree-list for reading the global head variable kfree_list
and define the invariant free-list-inv: the chunks in the list are ordered by their base addresses
and they are aligned to 1kb. The free-list-cover summarizes the memory occupied by the data
structure.3

kfree-list ctxM ≡ to-ptr (rdv (in-globals ctx) ”kfree-list”M)
free-list-inv ctxM ≡ (∃C. nodes (kfree-list ctxM) null CM ∧ sortedC ∧

(∀p ∈ set C. aligned p 1024))
free-list-cover ctxM ≡ var-block (in-globals ctx) ”kfree-list” ‖ cover (kfree-list ctxM) nullM

4.2 Allocation
The alloc routine searches for a contiguous block of memory that is large enough to fit
the requested size (§2.1). Its specification is translated from [23]: the pre-condition requires
that the free list data structure is intact and that the memory does contain the free list.
Furthermore, the requested size must be a multiple of 1kb.

M I free-list-cover ctxM ∧ free-list-inv ctxM ∧ 0 < size ∧ 1024 udvd size ∧ size=SIZE
The post-condition distinguishes between success and failure. In both cases, the data struc-
ture itself is preserved. If the allocation is successful, an aligned block of 0-initialized memory
has been extracted from the free list. The auxiliary (or logical) variable SIZE links the pre-
and post-conditions as usual.

free-list-inv ctxM ∧
(return 6= null −→ M I free-list-cover ctxM ‖ block return SIZE ∧

aligned return 1024 ∧ zero-block ctx return SIZEM) ∧
(return=null −→ M I free-list-cover ctxM)

The nested loops of alloc advance the pointers curr and tmp, where the inner loop leaves
curr unchanged. The outer loop invariant is therefore the same as the following inner loop
invariant, except that Lines 3–4 are missing:
1 free-list-inv ctx M ∧ size = SIZE ∧ 0 < size ∧ 1024 udvd size ∧ i ≤ size div 1024 ∧
2 follow-iter prev curr «&kfree-list» kfree-list null M ∧
3 curr 6= null ∧
4 (tmp 6= null −→ cover curr tmp M= block curr (i * 1024) ∧ iter tmp curr null M) ∧
5 M I free-list-cover ctx M ‖ size ‖ prev ‖ curr ‖ tmp ‖ i ∧
6 M � typed-block prev «void*» ‖ size ‖ prev ‖ curr ‖ tmp ‖ i
Line 1 preserves the pre-condition and states that i will not exceed the bound given by
the size parameter. Line 2 invokes the follow iterator idiom (§2.2) from the library (§3.4).
Line 3 preserves the test result of the outer loop. Line 4 uses the notation for memory layouts
(§1.1, §3.2) to state that a contiguous block of memory is found between curr and tmp. Line 5
extends the initial memory layout by the local variables. Line 6 adds that prev is not a local
variable while leaving open whether it refers to the variable kfree-list or a list node.

The structure of the correctness proof is now already clear: the initializations before both
loops leave precisely the situation where theorems (13) and (15) about the initialization of
iterators apply. For the preservation of the outer invariant, the pointer assignments in the
body match the idiom (§2.2) such that (16) is sufficient. All of these steps thus reflect the
idiomatic, informal view, and the proof is merely a more precise form of argument.

For the preservation of the inner invariant, the then-branch is trivial. In the else-branch,
only Line 4 needs to be newly established. In the conceptual view of §2.2, the code advances

3 We note in passing that the introduced information hiding is maintained for clients by the theorem
accesses (free-list-inv ctx)M (free-list-cover ctxM): the lightweight separation framework will prove that
the free list is not influenced by the clients’ memory manipulations and thus solves the frame problem
(e.g. [14]) in a natural fashion.

SSV’11
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the iterator tmp; correspondingly (13) solves the iter-part immediately. The remainder of
Line 4 contains the core of the algorithm: we have to prove that the found block is still
contiguous, using that tmp=curr+ i * 1024 by the if-test. Fig. 6 depicts the proof obligation,
using primed variables for the pre-state of the loop body. The figure also contains the idea

Figure 6 Extending the Found Block with a New Chunk.

of the proof: on the right-hand side of the equation from Line 4, we split off one chunk at
the end of the list by (9); on the left-hand side, we split the contiguous block at address
tmp’. This strategy can be expressed by 8 lines of tactics.

The final proof obligation concerns the returning of an allocated memory block, which is
spliced out by the assignment *prev=tmp after the inner loop (Fig. 1). Since that assignment
matches the idiom from §2.2, we can use (17) to perform the split of the list, after a case
distinction by (18). Then, Line 4 of the invariant yields the memory layout of the post-
condition. The argument takes 30 lines of tactics for both cases together; the application of
the theorems reflects the informal manipulation of pointer diagrams in all steps.

4.3 Deallocation
The free routine takes a block of memory and integrates it into the allocator’s free list
(Fig. 1). Its specification, again translated from [23], requires that the free list is intact and
allocated and that the block’s size is a multiple of 1kb.

M I free-list-cover ctxM ‖ block a size ∧ free-list-inv ctxM ∧
0 < size ∧ 1024 udvd size ∧ aligned a 1024

It guarantees that the passed block has been merged into the free list.
M I free-list-cover ctxM ∧ free-list-inv ctxM

The function free consists of two loops. The first establishes the pointer structure within
the passed memory block, the second splices the created list into the free list at the correct
position to maintain sortedness.

The first loop uses an iterator-like construct to establish the list structure within the
raw memory block (§2.3; Fig. 5). We have developed a thin wrapper around Isabelle’s Word
library [6] to enable the idiomatic reasoning about initializing and advancing this iterator.
The proof that the overall block maintains the shape of Fig. 5, i.e. an initial list of elements
with a trailing raw block, can be proven along the graphical intuition, by using essentially
the same steps as the derivation from Fig. 6 in §4.2.

The invariant of the second loop is again typical of a search loop (§2.2, §3.4):
1 ∃B.M I free-list-cover ctxM ‖ cover a pM ‖ node p ‖ a ‖ size ‖ p ‖ prev ‖ curr ∧
2 free-list-inv ctxM ∧ 0 < size ∧ 1024 udvd size ∧ aligned a 1024 ∧ aligned p 1024 ∧
3 cover a pM ‖ node p=block a (p ⊕ 1024 	 a) ∧
4 nodes a pBM ∧ sortedB ∧ (∀ b ∈ set B. a ≤ b ∧ b < p ∧ aligned b 1024) ∧
5 follow-iter prev curr«&kfree-list» kfree-list nullM ∧
6 (prev=«&kfree-list» ∨ prev < a) ∧ a ≤ p
Lines 1–2 maintain the information of the pre-condition; Lines 3–4 keep the result of the first
loop (Fig. 5). Line 5 captures curr as a follow iterator (§3.4) for the search, while Line 6
characterizes the nodes that curr has already passed as having start addresses strictly
smaller than a.
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Since the loop matches the idiom (Fig. 3(b)), its correctness proof follows the reasoning
already discussed for alloc in §4.2: (15) and (16) yield initialization and preservation; Line 6
follows from the while-test. After the loop, the new sequence of nodes a. . . p is spliced into
the free list before curr, again making use of (17) and (18) to split the overall list structure
before the pointer updates.

5 Related Work

To the best of the author’s knowledge, the proposal of developing background theories by
formalizing idioms and coding patterns has not been discussed previously. We therefore
focus on similar case studies and on approaches to structuring interactive proofs beyond the
discharging of generated verification conditions.

Tuch et al. [25, 23] give two proofs of the L4 memory allocator, one using separation logic
and one using a typed view on the raw memory. Their development shows the intricacy of
reasoning about byte-addressed finite memory. Our own proof clearly benefits from Isabelle’s
Word library [6] contributed by the L4 verification project. In his analysis [24, §6.6], Tuch
suggests that with further experience in similar proofs, a set of re-usable libraries could be
constructed to aid in future developments. He proposes to collect lemmas that have been
found useful, and to improve automation for separation logic assertions. Differing from
ours, his approach is thus goal-directed, starting from the verification conditions. Although
proof sizes in different systems are not directly comparable, it is interesting that our proof
is significantly shorter (by a factor of 2) even though Tuch et al. prove only the immediately
necessary theorems.

Marti et al. [17] verify the heap manager of the Topsy operating system, which is also
based on an untyped singly-linked list. The paper focuses on the developed verification
environment and therefore the actual proof is discussed only at the level of the defined
predicates and the function specifications. An instance of forward reasoning appears in [17,
§4.2], where a central theorem for compacting two list nodes is derived beforehand and is
shown to apply to an example Hoare triple of an expected format. The structure of the
greater part of the proof (≈4500 lines of Coq) is not analyzed further.

Böhme et al. [4] investigate the advantages of interactive theorem proving for software
verification. In [4, §1.3], they observe that the introduction of suitable abstractions with
well-developed theories can make interactive proofs feasible where automated provers fail
because they have to unfold the definitions. They demonstrate the claim by a case study on
an implementation of circular singly-linked lists, but do not formulate strategies to develop
general theories.

Concerning the question of structuring interactive correctness proofs, Myreen [20, §5.2]
verifies Cheney’s garbage collector using a refinement argument. The first two layers cap-
ture the specification and abstract implementation of copying garbage collection; they can
thus be read as the common structure of different collectors. Our proposal of formalizing
idioms addresses, on the other hand, cross-cutting issues of different algorithms. McCreight’s
proof [18] of the same algorithm introduces carefully chosen separation logic predicates that
reflect the structure of pointer diagrams, and diagrammatic arguments are used to illustrate
the proof strategies. However, their translation into a proof script involves a substantial
amount of technical formula manipulation [18, §6.3.3, p. 122, §6.4.3]. Both the defined
predicates and the proof strategies are specific to the algorithm.

A different approach to interactive proving has been proposed by Tuerk [26] and Chlip-
ala [5]. They use a restricted form of separation logic, inspired by Smallfoot [3]. Besides
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pure assertions, verification conditions then consist of implications between iterated spatial
conjunctions, which are canceled syntactically one-by-one, possibly using user-supplied un-
folding rules. This process reduces the verification conditions to pure assertions, which are
solved mostly automatically by the built-in tactics of the employed interactive provers. The
design of suitable background theories for different data structures is not discussed.

6 Conclusion

Interactive software verification enables the development of theories independently of con-
crete verification conditions, with a view to making proofs readable, maintainable, and
possibly re-usable. This paper has proposed to structure such theories around the idioms
and coding patterns employed by developers, and to formulate the definitions and theorems
to reflect informal arguments about the code, e.g. in the form of pointer diagrams.

We have demonstrated this strategy using the frequent case of singly-linked lists. Besides
their basic structure (§3.2), we have introduced the higher-level idioms of iterators (§3.3)
for read-only searches and follow iterators (§3.4) for searching and modifying lists. The
developed library is formulated as an Isabelle locale and can be instantiated for different
concrete list structures. We have applied the library to the untyped free list of the L4 memory
allocator [25, 23]. It was interesting to find during the development that the reasoning
patterns embodied in the library made the overall proof [9] much more straightforward than
the previous partial attempt [11], even though several additional points, such as alignment
and the initialization of allocated memory had to be considered.

The proposed strategy has shown several benefits: first, all verification conditions re-
garding the list structure were solved by library theorems, and their application in each case
reflected informal arguments by pointer diagrams. The chosen theorem names preserve this
link in the proof script [9], thus contributing to its maintainability. Second, the analogies
between the allocator’s routines could be exploited by having a common ground for express-
ing them (§4.2, §4.3). Third, although no specific effort was made, the script is substantially
smaller than the original one [23, 24], which can be attributed to the simple application of
library theorems due to their matching the coding idioms.

Finally, the library’s genericity has enabled its re-use for the work queues of the Schorr-
Waite graph marking algorithm [8] and Cheney’s collector [10]. Both algorithms use a non-
standard successor link, involving a case-distinction and pointer arithmetic, respectively.
The correctness proofs are nevertheless covered by the library theorems (§3.2). Between the
two algorithms, we have re-used a theory of object graphs [8, §5.1] that is also structured
around expected common manipulations. This further example suggests that the strategies
proposed now will be applicable beyond the chosen case study.
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Abstract
We present a link between the interactive proof assistant Isabelle/HOL and the Spark/Ada tool
suite for the verification of high-integrity software. Using this link, we can tackle verification
problems that are beyond reach of the proof tools currently available for Spark. To demonstrate
that our methodology is suitable for real-world applications, we show how it can be used to verify
an efficient library for big numbers. This library is then used as a basis for an implementation
of the RSA public-key encryption algorithm in Spark/Ada.
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1 Introduction

Software for security-critical applications, such as a data encryption algorithm in a virtual
private network (VPN) gateway, needs to be particularly trustworthy. If the encryption
algorithm does not work as specified, data transmitted over the network may be decrypted
or manipulated by an adversary. Moreover, flaws in the implementation may also make the
VPN gateway vulnerable to overflows, enabling an attacker to obtain access to the system,
or cause the whole gateway to crash. If such a gateway is part of the VPN of a bank,
implementation flaws can easily cause considerable financial damage. For that reason, there
is a strong economic motivation to avoid bugs in software for such application areas.
Since software controls more and more areas of daily life, software bugs have received in-
creasing attention. In 2006, a bug was introduced into the key generation tool of OpenSSL
that was part of the Debian distribution. As a consequence of this bug, the random num-
ber generator for producing the keys no longer worked properly, making the generated keys
easily predictable and therefore insecure [6]. This bug went unnoticed for about two years.
Although it is commonly accepted that the only way to make sure that software conforms to
its specification is to formally prove its correctness, it was not until recently that verification
tools have reached a sufficient level of maturity to be industrially applicable. A prominent
example of such a tool is the Spark system [3]. It is developed by Altran Praxis and is
widely used in industry, notably in the area of avionics. Spark is currently being used
to develop the UK’s next-generation air traffic control system iFACTS, and has already
been successfully applied to the verification of a biometric software system in the context
of the Tokeneer project funded by the NSA [2]. The Spark system analyzes programs
written in a subset of the Ada language, and generates logical formulae that need to hold in
order for the programs to be correct. Since it is undecidable in general whether a program
meets its specification, not all of these generated formulae can be proved automatically. In
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this paper, we therefore present the HOL-Spark verification environment that couples the
Spark system with the interactive proof assistant Isabelle/HOL [13].
Spark imposes a number of restrictions on the programmer to ensure that programs are
well-structured and thus more easily verifiable. Pointers and GOTOs are banned from
Spark programs, and for each Spark procedure, the programmer must declare the intended
direction of dataflow. This may sound cumbersome, but eventually leads to code of much
higher quality. In standard programming languages, requirements on input parameters
or promises about output parameters of procedures, also called pre- and postconditions,
such as “i must be smaller than the length of the array A” or “x will always be greater
than 1” are usually written as comments in the program, if at all. These comments are not
automatically checked, and often they are wrong, for example when a programmer modified
a piece of code but forgot to ensure that the comment still reflects the actual behaviour
of the code. Spark allows the programmer to write down pre- and postconditions of a
procedure as logical formulae, and a link between these conditions and the code is provided
by a formal correctness proof of the procedure, which makes it a lot easier to detect missing
requirements. Moreover, the obligation to develop the code in parallel with its specification
and correctness proof facilitates the production of code that immediately works as expected,
without spending hours on testing and bug fixing. Having a formal correctness proof of a
program also makes it easier for the programmer to ensure that changes do not break
important properties of the code.
The rest of this paper is structured as follows. In §2, we give some background information
about Spark and our verification tool chain. In §3, we illustrate the use of our verification
environment with a small example. As a larger application, we discuss the verification of a
big number library in §4. A brief overview of related work is given in §5. Finally, §6 contains
an evaluation of our approach and an outlook to possible future work.

2 Basic Concepts

2.1 Spark

Spark [3] is a subset of the Ada language that has been designed to allow verification
of high-integrity software. It is missing certain features of Ada that can make programs
difficult to verify, such as access types, dynamic data structures, and recursion. Spark
allows to prove absence of runtime exceptions, as well as partial correctness using pre- and
postconditions. Loops can be annotated with invariants, and each procedure must have
a dataflow annotation, specifying the dependencies of the output parameters on the input
parameters of the procedure. Since Spark annotations are just written as comments, Spark
programs can be compiled by an ordinary Ada compiler such as GNAT. Spark comes with a
number of tools, notably the Examiner that, given a Spark program as an input, performs
a dataflow analysis and generates verification conditions (VCs) that must be proved in
order for the program to be exception-free and partially correct. The VCs generated by
the Examiner are formulae expressed in a language called FDL, which is first-order logic
extended with arithmetic operators, arrays, records, and enumeration types. For example,
the FDL expression

for_all(i: integer, ((i >= min) and (i <= max)) ->
(element(a, [i]) = 0))
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states that all elements of the array a with indices greater or equal to min and smaller or
equal to max are 0. VCs are processed by another Spark tool called the Simplifier that
either completely solves VCs or transforms them into simpler, equivalent conditions. The
latter VCs can then be processed using another tool called the Proof Checker. While the
Simplifier tries to prove VCs in a completely automatic way, the Proof Checker requires user
interaction, which enables it to prove formulae that are beyond the scope of the Simplifier.
The steps that are required to manually prove a VC are recorded in a log file by the Proof
Checker. Finally, this log file, together with the output of the other Spark tools mentioned
above, is read by a tool called POGS (Proof ObliGation Summariser) that produces a table
mentioning for each VC the method by which it has been proved. In order to overcome
the limitations of FDL and to express complex specifications, Spark allows the user to
declare so-called proof functions. The desired properties of such functions are described by
postulating a set of rules that can be used by the Simplifier and Proof Checker [3, §11.7]. An
obvious drawback of this approach is that incorrect rules can easily introduce inconsistencies.

2.2 HOL-Spark

The HOL-Spark verification environment, which is built on top of Isabelle’s object logic
HOL, is intended as an alternative to the Spark Proof Checker, and improves on it in
a number of ways. HOL-Spark allows Isabelle to directly parse files generated by the
Examiner and Simplifier, and provides a special proof command to conduct proofs of VCs,
which can make use of the full power of Isabelle’s rich collection of proof methods. Proofs
can be conducted using Isabelle’s graphical user interface, which makes it easy to navigate
through larger proof scripts. Moreover, proof functions can be introduced in a definitional
way, for example by using Isabelle’s package for recursive functions, rather than by just
stating their properties as axioms, which avoids introducing inconsistencies.
Figure 1 shows the integration of HOL-Spark into the tool chain for the verification of
Spark programs. HOL-Spark processes declarations (*.fdl) and rules (*.rls) produced
by the Examiner, as well as simplified VCs (*.siv) produced by the Spark Simplifier.
Alternatively, the original unsimplified VCs (*.vcg) produced by the Examiner can be used
as well. Processing of the Spark files is triggered by an Isabelle theory file (*.thy), which
also contains the proofs for the VCs contained in the *.siv or *.vcg files. Once that all
verification conditions have been successfully proved, Isabelle generates a proof review file
(*.prv) notifying the POGS tool of the VCs that have been discharged.

3 Verifying an Example Program

In this section, we explain the usage of the Spark verification environment by proving the
correctness of an example program for computing the greatest common divisor of two natural
numbers shown in Fig. 2, which has been taken from the book about Spark by Barnes [3,
§11.6]. In order to specify that the Spark procedure G_C_D behaves like its mathematical
counterpart, Barnes introduces a proof function Gcd in the package specification.

3.1 Importing Spark VCs into Isabelle

Invoking the Examiner and Simplifier on this program yields a file g_c_d.siv containing the
simplified VCs, as well as files g_c_d.fdl and g_c_d.rls, containing FDL declarations and
rules, respectively. For G_C_D the Examiner generates nine VCs, seven of which are proved
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Source files
(*.ads, *.adb)

Examiner

FDL declarations
(*.fdl)

VCs
(*.vcg)

Rules
(*.rls)

Simplifier

Simplified VCs
(*.siv)

HOL-Spark
Theory files
(*.thy)

Proof review files
(*.prv)

POGS

Summary file
(*.sum)

Figure 1 Spark program verification tool chain.

automatically by the Simplifier. We now show how to prove the remaining two VCs interact-
ively using HOL-Spark. For this purpose, we create a theory Greatest_Common_Divisor,
which is shown in Fig. 3. Each proof function occurring in the specification of a Spark
program must be linked with a corresponding Isabelle function. This is accomplished by the
command spark_proof_functions, which expects a list of equations name = term, where
name is the name of the proof function and term is the corresponding Isabelle term. In
the case of gcd, both the Spark proof function and its Isabelle counterpart happen to have
the same name. Isabelle checks that the type of the term linked with a proof function
matches the type of the function declared in the *.fdl file. We now instruct Isabelle to
open a new verification environment and load a set of VCs. This is done using the command
spark_open, which must be given the name of a *.siv or *.vcg file as an argument. Be-
hind the scenes, Isabelle parses this file and the corresponding *.fdl and *.rls files, and
converts the VCs to Isabelle terms.

3.2 Proving the VCs

The two open VCs are procedure_g_c_d_4 and procedure_g_c_d_9, both of which contain
the gcd proof function that the Simplifier does not know anything about. The proof of a
particular VC can be started with the spark_vc command. The VC procedure_g_c_d_4
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package Greatest_Common_Divisor
is

--# function Gcd (A, B : Natural) return Natural;

procedure G_C_D (M, N : in Natural; G : out Natural);
--# derives G from M, N;
--# post G = Gcd (M, N);

end Greatest_Common_Divisor;

package body Greatest_Common_Divisor
is

procedure G_C_D (M, N : in Natural; G : out Natural)
is

C, D, R : Natural;
begin

C := M; D := N;
while D /= 0

--# assert Gcd (C, D) = Gcd (M, N);
loop

R := C mod D;
C := D; D := R;

end loop;
G := C;

end G_C_D;

end Greatest_Common_Divisor;

Figure 2 Spark program for computing the greatest common divisor.

requires us to prove that the gcd of d and the remainder of c and d is equal to the gcd of the
original input values m and n, which is the invariant of the procedure. This is a consequence
of the following theorem

0 < y =⇒ gcd x y = gcd y (x mod y)

The VC procedure_g_c_d_9 says that if the loop invariant holds when we exit the loop, which
means that d = 0, then the postcondition of the procedure will hold as well. To prove this,
we observe that gcd c 0 = c for non-negative c. This concludes the proofs of the open VCs,
and hence the Spark verification environment can be closed using the command spark_end.
This command checks that all VCs have been proved and issues an error message otherwise.
Moreover, Isabelle checks that there is no open Spark verification environment when the
final end command of a theory is encountered.

4 A verified big number library

We will now apply the HOL-Spark environment to the verification of a library for big
numbers. Libraries of this kind form an indispensable basis of algorithms for public key
cryptography such as RSA or elliptic curves, as implemented in libraries like OpenSSL.
Since cryptographic algorithms involve numbers of considerable size, for example 256 bytes
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theory Greatest_Common_Divisor
imports SPARK GCD
begin

spark_proof_functions
gcd = "gcd :: int ⇒ int ⇒ int"

spark_open "out/greatest_common_divisor/g_c_d.siv"

spark_vc procedure_g_c_d_4
using ‘0 < d‘ ‘gcd c d = gcd m n‘
by (simp add: gcd_non_0_int)

spark_vc procedure_g_c_d_9
using ‘0 ≤ c‘ ‘gcd c 0 = gcd m n‘
by simp

spark_end

end

Figure 3 Correctness proof for the greatest common divisor program.

in the case of RSA, or 40 bytes in the case of elliptic curves, it is important for arithmetic
operations to be performed as efficiently as possible.

4.1 Introduction to modular multiplication

An operation that is central to many cryptographic algorithms is the computation of x·ymod
m, which is called modular multiplication. An obvious way of implementing this operation
is to apply the standard multiplication algorithm, followed by division. Since division is
one of the most complex operations on big numbers, this approach would not only be very
difficult to implement and verify, but also computationally expensive. Therefore, big number
libraries often use a technique called Montgomery multiplication [10, §14.3.2]. We can think
of a big number x as an array of words x0, . . . , xn−1, where 0 ≤ xi and xi < b, and

x =
∑

0≤i<n

bi · xi

In implementations, b will usually be a power of 2. For two big numbers x and y, Montgomery
multiplication (denoted by x⊗ y) yields

x⊗ y = x · y ·R−1 mod m

where R = bn, and R−1 denotes the multiplicative inverse of R modulo m. Now, in order to
compute the product of two numbers x and y modulo m, we first compute the residues x̃ and
ỹ of these numbers, where x̃ = x ·R mod m and ỹ likewise. A residue x̃ can be computed
by a Montgomery multiplication of x with R2 mod m, since

x⊗ (R2 mod m) = x ·R2 ·R−1 mod m = x ·R mod m

We then have that

x̃⊗ ỹ = x ·R · y ·R ·R−1 mod m = x · y ·R mod m = x̃ · y
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a← 0
for i = n− 1 downto 0 do

a← a · b + xi · y
end for

a← 0
for i = 0 to n− 1 do

a← (a + xi · y)/b

end for

0 · 10 =
0 +

4 · 789 3156 =
3156 · 10 =

31560 +
5 · 789 3945 =

35505 · 10 =
355050 +

6 · 789 4734 =
359784

0 +
6 · 789 4734 =

4734 / 10 =
473.4 +

5 · 789 3945 =
4418.4 / 10 =
441.84 +

4 · 789 3156 =
3597.84 / 10 =
359.784

Figure 4 Two variants of multiplication.

The desired result of the modular multiplication can be obtained by performing a Mont-
gomery multiplication of x̃ · y with 1, since

x̃ · y ⊗ 1 = x · y ·R · 1 ·R−1 mod m = x · y mod m

Before we come to the implementation and verification of Montgomery multiplication, we
try to give an intuitive explanation of how the algorithm works. Our exposition is inspired
by a note due to Kochanski [9]. As a running example, we take b = 10 and assume we would
like to multiply 456 with 789. Fig. 4 shows two multiplication algorithms in pseudocode
notation, and the tables below the algorithms illustrate the computation steps performed
by them. The algorithm on the left is the usual “school multiplication”: the multiplier x is
processed from left to right, i.e. starting with the most significant digit, and the accumulator
a is shifted to the left, i.e. multiplied with 10 in each step. In contrast, the algorithm on the
right processes the multiplier from right to left, i.e. starting with the least significant digit,
and shifts the accumulator to the right, i.e. divides it by 10. Consequently, the algorithm
on the right computes x · y ·R−1 instead of x · y. We now explain how the algorithm on the
right can be modified to perform modular multiplication. It might seem that the algorithm
requires computations involving floating point numbers, since a + xi · y is not necessarily
divisible by b. However, when working modulo m, this can easily be fixed by adding a
suitable multiple of m to a + xi · y, which does not change the result modulo m. The factor
by which we have to multiply m is u = (a0 + xi · y0) ·m′mod b, where m′ = −m−1

0 mod b is
the additive inverse of the multiplicative inverse of m0 modulo b, i.e. (1+m′ ·m0)modb = 0
and 0 ≤ m′ < b. The inverse only exists if m0 and b are coprime, i.e. gcd(m0, b) = 1, which
is the case in practical applications, since b will usually be a power of 2 and m will be a
large prime number. Note that in order to compute u, we only have to consider the least
significant words a0, y0 and m0 of the numbers a, y and m, respectively. It is easy to see
that a + xi · y + u ·m is divisible by b, since

(a + xi · y + u ·m) mod b = (a0 + xi · y0 + (a0 + xi · y0) ·m′ ·m0) mod b =
(a0 + xi · y0) · (1 + m′ ·m0) mod b = 0

Fig. 5 shows the pseudocode for the Montgomery multiplication algorithm, which employs
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a← 0
for i = 0 to n− 1 do

u← (a0 + xi · y0) ·m′ mod b

a← (a + xi · y + u ·m)/b

end for
if a ≥ m then

a← a−m

end if

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Figure 5 Montgomery multiplication algorithm.

the ideas described above. As for the other algorithms, we also include a table illustrating
the computation. We again multiply the numbers 456 and 789, and use 987 as a modulus.
Note that m′ = 7, since (1 + 7 · 7) mod 10 = 0. The result of the multiplication is easily
seen to be correct, since

723 · 1000 mod 987 = 516 = 456 · 789 mod 987

After termination of the loop, it may be necessary to subtract m from a, since a may not
be smaller than m, although it will always be smaller than 2 ·m− 1.

4.2 Overview of the big number library

In this section, we give an overview of the big number library and its interface. We have
chosen to represent big numbers as unconstrained arrays of 64-bit words, where the array
indices can range over the natural numbers. All procedures in the big number library operate
on segments of unconstrained arrays that are selected by specifying the first and last index
of the segment. In situations where a procedure operates on several segments, all of which
must have the same length, the last index is usually omitted. The prelude of the Bignum
library containing the basic declarations is shown in Fig. 6. The big number library provides
the following operations:

Basic big number operations: doubling, subtracting, and comparing
Precomputation of the values R2 mod m and −m−1

0 mod b

Montgomery multiplication
Exponentiation using Montgomery multiplication

The value R2 mod m =
((

2k
)n)2 mod m = 22·k·n mod m can be computed by initializing

an accumulator with 1 and applying the doubling operation to it 2 · k · n times. After
each doubling step, we check whether a carry bit was produced or the resulting number is
greater or equal to m, in which case we have to subtract m from the current value of the
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package Bignum
is

Word_Size : constant := 64;
Base : constant := 2 ** Word_Size;
type Word is mod Base;
type Big_Int is array (Natural range <>) of Word;

--# function Num_Of_Big_Int (A: Big_Int; K, I: Natural)
--# return Universal_Integer;

--# function Num_Of_Boolean (B: Boolean)
--# return Universal_Integer;

--# function Inverse (M, X: Universal_Integer)
--# return Universal_Integer;

. . .
end Bignum;

Figure 6 Prelude of the big number library.

accumulator. The value −m−1
0 mod b can be computed by a variant of Euclid’s algorithm

shown in §3.
Since the specification of the big number operations will make use of constructs that cannot
be easily expressed with Spark’s annotation laguage, we have to introduce a number of
proof functions. First of all, we need a function that abstracts a big number to a number in
the mathematical sense. This function, which is called Num_Of_Big_Int, takes an array A,
together with the first index K and the length I of the segment representing the big number,
and returns a result of type Universal_Integer. The Isabelle counterpart of this function
is

num_of_big_int :: (int ⇒ int) ⇒ int ⇒ int ⇒ int
num_of_big_int A k i = (

∑
j = 0..<i. Basej * A (k + j))

An array with elements of type τ is represented by the function type int ⇒ τ in Isabelle.
Function num_of_big_int enjoys the following summation property

num_of_big_int A k (i + j) =
num_of_big_int A k i + Basei * num_of_big_int A (k + i) j

It is important to note that it would not have been adequate to choose Integer instead
of Universal_Integer as a result type, since the former corresponds to machine integers
limited to a fixed size, whereas the latter corresponds to the mathematical ones. When
dealing with operations returning carry bits, it is often useful to have a function for converting
boolean values to numbers, where False and True are converted to 0 and 1, respectively.
This is accomplished by the proof function Num_Of_Boolean. Finally, for writing down
the specification of Montgomery multiplication, we also need the proof function Inverse
denoting the multiplicative inverse of X modulo M. It corresponds to the Isabelle function
minv::int ⇒ int ⇒ int, which has the following central property

coprime x m =⇒ 0 < x =⇒ 1 < m =⇒ x * minv m x mod m = 1

Moreover, if n’ is the multiplicative inverse of n modulo m, multiplying k by n’ is equivalent
modulo m to dividing k by n, provided that k is divisible by n:
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procedure Mont_Mult
(A : out Big_Int; A_First : in Natural; A_Last : in Natural;
X : in Big_Int; X_First : in Natural;
Y : in Big_Int; Y_First : in Natural;
M : in Big_Int; M_First : in Natural;
M_Inv : in Word);

--# derives
--# A from
--# A_First, A_Last, X, X_First, Y, Y_First, M, M_First, M_Inv;
--# pre
--# A_First in A’Range and A_Last in A’Range and
--# A_First < A_Last and
--# X_First in X’Range and
--# X_First + (A_Last - A_First) in X’Range and
--# . . .

--# Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) <
--# Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
--# 1 < Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
--# 1 + M_Inv * M (M_First) = 0;
--# post
--# Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) =
--# (Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *
--# Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *
--# Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),
--# Base) ** (A_Last - A_First + 1)) mod
--# Num_Of_Big_Int (M, M_First, A_Last - A_First + 1);

Figure 7 Specification of Montgomery multiplication.

n * n’ mod m = 1 =⇒ k mod n = 0 =⇒ k div n mod m = k * n’ mod m

This property does not hold if k mod n 6= 0. For example, 5 * 13 mod 16 = 1 and 10 * 13
mod 16 = 2 = 10 div 5, but 9 * 13 mod 16 = 5 6= 1 = 9 div 5.

4.3 Montgomery multiplication

The central operation in the big number library is Montgomery multiplication, whose spe-
cification is shown in Fig. 7. It multiplies X with Y and stores the result in A. The precondition
requires the second factor Y to be smaller than the modulus M. Due to the construction of
the algorithm, the first factor X is not required to be smaller than M in order for the result
to be correct. For technical reasons, A_Last must be greater than A_First, i.e. the length
of the big number must be at least 2. This is not a serious restriction, since big numbers of
length 1 would be rather pointless. Moreover, the modulus is required to be greater than 1.
The precondition 1 + M_Inv * M (M_First) = 0 states that M_Inv must be the additive
inverse of the multiplicative inverse modulo b of the least significant word of the modulus.
The postcondition essentially states that a = x · y · (b−1)n mod m, where n is the length of
the big numbers involved, and a, x, y, m are the numbers represented by the arrays A, X, Y,
M, respectively.
We are now ready to describe the implementation of Montgomery multiplication, which
is shown in Fig. 8. Recall that in each step of the Montgomery multiplication algorithm
outlined in §4.1, we have to compute (a+xi·y+u·m)/b, where xi and u are words, and a, y and



S. Berghofer 25

procedure Mont_Mult
. . .

is
Carry : Boolean;
Carry1, Carry2, A_MSW, XI, U : Word;

begin
Initialize (A, A_First, A_Last); A_MSW := 0;

for I in Natural range A_First .. A_Last
--# assert . . .

loop
Carry1 := 0; Carry2 := 0;
XI := X (X_First + (I - A_First));
U := (A (A_First) + XI * Y (Y_First)) * M_Inv;
Single_Add_Mult_Mult

(A (A_First), XI, Y (Y_First),
M (M_First), U, Carry1, Carry2);

Add_Mult_Mult
(A, A_First, A_Last - 1,
Y, Y_First + 1, M, M_First + 1,
XI, U, Carry1, Carry2);

A (A_Last) := A_MSW + Carry1;
A_MSW := Carry2 + Word_Of_Boolean (A (A_Last) < Carry1);

end loop;

if A_MSW /= 0 or else
not Less (A, A_First, A_Last, M, M_First) then
Sub_Inplace (A, A_First, A_Last, M, M_First, Carry);

end if;
end Mont_Mult;

Figure 8 Implementation of Montgomery multiplication.

m are big numbers. In our code for computing this value, we use an optimization technique
suggested by Myreen [12, §3.2], which he used for the verification of an ARM machine code
implementation of Montgomery multiplication in HOL4. The idea is to perform the two
multiplications of a word with a big number, as well as the two addition operations in one
single loop. The computation will be done in-place, meaning that the old value of a will be
overwritten with the new value. Moreover, since a+xi ·y+u ·m is divisible by b, we also shift
the array containing the result by one word to the left while performing the computation,
which corresponds to a division by b. This is accomplished by the procedure Add_Mult_Mult
with postcondition

Num_Of_Big_Int (A~, A_First + 1, A_Last - A_First + 1) +
Num_Of_Big_int (Y, Y_First, A_Last - A_First + 1) * XI +
Num_Of_Big_int (M, M_First, A_Last - A_First + 1) * U +
Carry1~ + Base * Carry2~ =
Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +
Base ** (A_Last - A_First + 1) * (Carry1 + Base * Carry2)

The array representing (a + xi · y + u ·m)/b needs to be one word longer than the length of
y and m, although the final result of Montgomery multiplication will have the same length

SSV’11



26 Verification of Dependable Software using Spark and Isabelle

as the input numbers. We therefore store the most significant word of a in a separate
variable A_MSW that is discarded at the end of the computation. To simplify the imple-
mentation of the computation described above, we first implement an auxiliary procedure
Single_Add_Mult_Mult for computing aj + xi · yj + u ·mj , where all the operands involved
are words. Procedure Add_Mult_Mult just iteratively applies this auxiliary procedure to the
elements of the big numbers involved.
The assert annotation after the for command in Fig. 8 specifies the loop invariant, which
is

(Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +
Base ** (A_Last - A_First + 1) * A_MSW) mod

Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) =
(Num_Of_Big_Int (X, X_First, I - A_First) *
Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *
Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),

Base) ** (I - A_First)) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) +
Base ** (A_Last - A_First + 1) * A_MSW <
2 * Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) - 1

Using a more compact mathematical notation, this invariant can be written as

a mod m = (x|j · y · b−j) mod m ∧ a < 2 ·m− 1

where x|j denotes the number represented by the segment of the array X of length j =
I− A_First starting at index X_First. The result a computed by the loop can be greater
or equal to the modulus, in which case we have to subtract the modulus M in order to get
the desired result. If A_MSW 6= 0, this obviously means that m < a. If A_MSW = 0, we have
to check whether m ≤ a Since a < 2 ·m−1, it suffices to subtract the modulus at most once
[10, §14.3.2].

5 Related Work

The design of HOL-Spark is heavily inspired by the HOL-Boogie environment by Böhme et
al. [4] that links Isabelle with Microsoft’s Verifying C Compiler (VCC) [5]. The Victor tool
by Jackson [8], which is distributed with the latest Spark release, uses a different approach.
Victor is a command-line tool that can parse files produced by the Spark tools, and can
transform them into a variety of formats, notably input files for SMT-solvers. Victor has
recently been extended to produce Isabelle theory files as well. The drawback of using Victor
in connection with Isabelle is that theory files have to be regenerated whenever there is a
change in the files produced by Spark. This can happen quite frequently in the development
phase, for example when the user notices that some loop invariant has to be strengthened,
or the code has to be restructured in order to simplify verification. The Frama-C system
and its Jessie plugin [11] for the verification of C code can generate VCs for a number of
automatic and interactive provers, including Coq and Isabelle.
A similar big number library written in a C-like language has been proved correct in Isa-
belle/HOL by Fischer [7] using a verification environment due to Schirmer [14]. This library
also includes division, but no Montgomery multiplication. Due to the use of linked lists with
pointers instead of arrays, Fischer’s formalization is a bit more complicated than ours. Apart
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from Myreen’s work mentioned above, an implementation of Montgomery multiplication in
MIPS assembly has been formalized using Coq by Affeldt and Marti [1].

6 Conclusion

We have developed a verification environment for Spark, which is already part of the Isa-
belle 2011 release, and have applied it to the verification of a big number library. Our
implementation of RSA based on this library reaches about 40% of the speed of OpenSSL
when compiled with the -O3 option on a 64-bit platform. This is quite acceptable, given
that OpenSSL uses highly-optimized and hand-written assembly code. A further perform-
ance gain could be achieved by using a sliding window exponentiation algorithm instead of
the simpler square-and-multiply technique. The library has 743 LOCs, 316 of which (i.e.
43%) are Spark annotations. The length of the Isabelle files containing correctness proofs of
all procedures in the library, as well as necessary background theory, is 1753 lines, of which
391 lines are taken up by the correctness proof for Montgomery multiplication. Development
of the library, including proofs, took about three weeks. In the future, we plan to use the
library as a basis for an implementation of elliptic curve cryptography. A more long-term
goal is to embed the Spark semantics into Isabelle, to further increase the trustworthiness
of VC generation.
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A RSA Encryption / Decryption

The implementation of the RSA encryption and decryption algorithm is shown in Fig. 9. The
procedure Crypt computes c = me mod n, where c, m, e and n are the numbers represented
by the arrays C, M, E and N, respectively. When used for encryption, c is the ciphertext, m the
plaintext message, e the public exponent, and n the modulus, where n is the product of two
prime numbers p and q, and e ·dmod ((p−1) · (q−1)) = 1. The same procedure can be used
to compute the plaintext from an encrypted message, i.e. m = cd mod n. Before calling the
Montgomery exponentiation algorithm explained in Appendix B, the procedure precomputes
the values R2 mod n and −n−1

0 mod b. Since the exponentiation algorithm requires several
auxiliary arrays for storing intermediate results of the computation, we define an array type
of fixed length, which will be used for the message M, the modulus N and the ciphertext C:

subtype Mod_Range is Natural range 0 .. 63;
subtype Mod_Type is Bignum.Big_Int (Mod_Range);

This allows the Crypt function to allocate memory for the auxiliary arrays, rather than
requiring the caller of Crypt to pass suitable arrays as arguments. We have set the length
of Mod_Type to 64, meaning that it can contain values with 64 · 64 = 4096 bits, which is
sufficient for most practical applications. However, the algorithm and its correctness proof
would work equally well for different lengths of Mod_Type. Note that the length of the
exponent E is still unconstrained and need not be the same as the length of the modulus.
Indeed, it is quite common to choose public and private exponents that have a different
length.

procedure Crypt
(E : in Bignum.Big_Int;
N : in Mod_Type;
M : in Mod_Type;
C : out Mod_Type)

is
Aux1, Aux2, Aux3, RR : Mod_Type;
N_Inv : Types.Word32;

begin
Bignum.Size_Square_Mod (N, N’First, N’Last, RR, RR’First);

N_Inv := Bignum.Word_Inverse (N (N’First));

Bignum.Mont_Exp
(C, C’First, C’Last,
M, M’First,
E, E’First, E’Last,
N, N’First,
Aux1, Aux1’First,
Aux2, Aux2’First,
Aux3, Aux3’First,
RR, RR’First,
N_Inv);

end Crypt;

Figure 9 Implementation of RSA algorithm.
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B Exponentiation

The implementation of exponentiation using Montgomery multiplication is shown in Fig. 10.
This procedure computes the result a = xe mod m, where a, x, e and m are the numbers
represented by the arrays A, X, E and M, respectively. The algorithm needs a number of
auxiliary variables to store intermediate values. These intermediate values are big numbers
whose size is not known at compile time, but depends on the size of the unconstrained arrays
passed as arguments to the procedure. Since Spark does not allow the dynamic allocation
of memory for data structures, these auxiliary variables need to be created by the caller, and
passed to the procedure as arguments, too. This is why Mont_Exp has the extra arguments
Aux1, Aux2, and Aux3. The parameter RR must contain the big number R2 mod m, and
1+M_Inv ·m0 modb = 0. We start by initializing Aux1 with the big number 1. The variable
Aux3, which we use as an accumulator for computing the result, is set to 1̃ = R mod m

using Mont_Mult (see §4.1). Moreover, we store x̃ in Aux2. The algorithm uses the square-
and-multiply approach. It processes the exponent from the most significant bit to the least
significant bit. In each iteration Aux3 is squared, and the result stored in A. If the current
bit of the exponent is set, A is multiplied with Aux2 (containing x̃), and the result is stored
in Aux3 again, otherwise A is just copied back to Aux3. The invariant of the inner loop is

Num_Of_Big_Int (Aux1, Aux1_First, A_Last - A_First + 1) = 1 and
Num_Of_Big_Int (Aux2, Aux2_First, A_Last - A_First + 1) =
Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *
Base ** (A_Last - A_First + 1) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
Num_Of_Big_Int (Aux3, Aux3_First, A_Last - A_First + 1) =
Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) **
(Num_Of_Big_Int (E, I + 1, E_Last - I) * 2 ** (Word_Size - 1 - J) +
Universal_Integer (E (I)) / 2 ** (J + 1)) *

Base ** (A_Last - A_First + 1) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1)

After termination of the loop, Aux3 is converted from “Montgomery format” to the “normal
format” again by Montgomery-multiplying it with 1 and storing the result in A.
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procedure Mont_Exp
(A : out Big_Int; A_First : in Natural; A_Last : in Natural;
X : in Big_Int; X_First : in Natural;
E : in Big_Int; E_First : in Natural; E_Last : in Natural;
M : in Big_Int; M_First : in Natural;
Aux1 : out Big_Int; Aux1_First : in Natural;
. . .

RR : in Big_Int; RR_First : in Natural;
M_Inv : in Word)

is
begin

Initialize (Aux1, Aux1_First, Aux1_First + (A_Last - A_First));
Aux1 (Aux1_First) := 1;

Mont_Mult
(Aux3, Aux3_First, Aux3_First + (A_Last - A_First),
RR, RR_First, Aux1, Aux1_First, M, M_First, M_Inv);

Mont_Mult
(Aux2, Aux2_First, Aux2_First + (A_Last - A_First),
X, X_First, RR, RR_First, M, M_First, M_Inv);

for I in reverse Natural range E_First .. E_Last
loop

for J in reverse Natural range 0 .. Word_Size - 1
--# assert . . .

loop
Mont_Mult

(A, A_First, A_Last,
Aux3, Aux3_First, Aux3, Aux3_First,
M, M_First, M_Inv);

if (E (I) and 2 ** J) /= 0 then
Mont_Mult

(Aux3, Aux3_First, Aux3_First + (A_Last - A_First),
A, A_First, Aux2, Aux2_First,
M, M_First, M_Inv);

else
Copy (A, A_First, A_Last, Aux3, Aux3_First);

end if;
end loop;

end loop;

Mont_Mult
(A, A_First, A_Last,
Aux3, Aux3_First, Aux1, Aux1_First, M, M_First, M_Inv);

end Mont_Exp;

Figure 10 Implementation of exponentiation.
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Abstract
This paper presents a framework for binary code analysis that uses only SAT-based algorithms.
Within the framework, incremental SAT solving is used to perform a form of weakly relational
value-set analysis in a novel way, connecting the expressiveness of the value sets to computational
complexity. Another key feature of our framework is that it translates the semantics of binary
code into an intermediate representation. This allows for a straightforward translation of the
program semantics into Boolean logic and eases the implementation efforts, too. We show that
leveraging the efficiency of contemporary SAT solvers allows us to prove interesting properties
about medium-sized microcontroller programs.
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1 Introduction

Model checking and abstract interpretation [15] have long been considered as formal ver-
ification techniques that are diametrically opposed. In model checking, the behavior of a
system is formally specified with a model. All paths through the system are then exhaustively
checked against its requirements, which are classically specified in some temporal logic. Of
course, the detailed nature of the requirements entails that the program is simulated in a
fine-grained fashion, sometimes down to the level of individual bits. Since the complexity of
this style of reasoning naturally leads to state explosion [11], there has thus been much interest
in representing states symbolically so as to represent states that share some commonality
without duplicating their commonality. As one instance, Boolean formulae have successfully
been applied to this task [10].

By way of comparison, the key idea in abstract interpretation [15] is to abstract away
from the detailed nature of states, and rather represent sets of concrete states using geometric
concepts such as affine [20] or polyhedral spaces [16]. A program analyzer then operates
over classes of states that are related in some sense — for example, sets of states that are
described by the shape of a convex polyhedron — rather than individual states. If the number
of classes is small, then all paths through the program can be examined without incurring
the problems of state explosion. Further, when carefully constructed, the classes of states
can preserve sufficient information to prove correctness of the system. However, sometimes
much detail is lost when working with abstract classes so that the technique cannot infer
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0x42 : ANDI R1 15
0x43 : ADD R0 R1
0x44 : LSL R0
0x45 : BRCS label
0x46 : INC R0

Figure 1 The target of the conditional branch BRCS label depends on the carry flag after the
left-shift; this value, in turn, depends on R0 and R1 on input.

useful results; they are too imprecise. This is because the approach critically depends on
the expressiveness of the classes and the class transformers chosen to model the instructions
that arise in a program. It is thus desirable to express the class transformers, also called
transfer functions, as accurately as possible. The difficulty of doing so, however, necessitates
automation [26, 32], especially if the programs/operations are low-level and defined over
finite bit-vectors [5, 6]. Recent research has demonstrated that automatic abstraction on top
of sophisticated decision procedures provides a way to tame this complexity for low-level
code [4, 5, 6, 21, 22, 32]. Using these approaches, a decision procedure (such as a SAT or
SMT solver) is invoked on a relational representation of the semantics of the program in
order to automatically compute the desired abstraction. Since representing the concrete
semantics as a Boolean formula has become a standard technique in program analysis (it is
colloquially also referred to as bit-blasting), owing much to the advances of bounded model
checking [12], such encodings can straightforwardly be derived.

1.1 Value-Set Analysis using SAT
This paper studies and extends the algorithm of Barrett and King [4, Fig. 3], who showed
how incremental SAT solving can be used to converge onto the non-relational value sets of a
bit-vector characterized by a Boolean formula. When applying their technique to assembly
code, however, the non-relational representation may be too imprecise. This is because blocks
in assembly code frequently end in a conditional jump. This instruction, paired with the
preceding ones, encodes certain constraints on the involved registers. For example, the 8-bit
AVR code in Fig. 1 depends on two inputs R0 and R1, which are used to mutate R0 and
R1. Control is transfered to label if the instruction LSL R0 (logical left-shift of R0) sets the
carry flag; otherwise, control proceeds with the increment located at address 0x46.

To precisely approximate the value sets of R0 at the entries and exits of each block, it
is thus necessary to take the relation between the registers and the carry flag into account.
For the values of R0 in instruction 0x46, e.g., one has to distinguish those inputs to the
program which cause the carry flag to be set from those which lead to a cleared carry flag.
To capture this relation, we argue that it is promising to consider a bit-vector representing
not only R0, but simultaneously the carry flag (or any other status flag the branching
instruction ultimately depends on). Suppose the initial block in Fig. 1 starting at address
0x42 is described by a Boolean formula ϕ. Our description relies on the convention that
input bit-vectors are denoted r0 and r1, respectively, whereas the outputs are primed.
Further, each bit-vector r takes the form r = 〈r[0], . . . , r[7]〉. Additionally, the carry flag on
output is represented by a single propositional variable c′. Rather than projecting ϕ onto
r0′ for value-set analysis (VSA), one can likewise project ϕ onto the extended bit-vector
〈r0′[0], . . . , r0′[7], c′〉. By decomposing the resulting value sets into those with c′ cleared and
those with c′ set, we obtain a 9-bit value-set representation for an 8-bit register that takes
some relational information into account; it is thus weakly relational. The first contribution
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of this paper is a discussion and experimental evaluation of this technique, where status flags
guide the extension of bit-vectors for VSA.

1.2 Intermediate Representation for Assembly Code
Implementing SAT-based program analyzers that operate on low-level representations requires
significant effort because Boolean formulae for the entire instruction set of the hardware
have to be provided. These encodings can then, e.g., be composed to represent the semantics
of basic blocks. Although supporting the entire instruction set is merely an engineering
task, this situation is rather unsatisfactory if the program analyzer shall support different
target platforms. Indeed, the instruction set of different hardware platforms often varies only
in minor details, yet the sheer number of different instructions makes the implementation
(and testing, of course) complex. To overcome this complexity, we propose to decompose
each instruction into an intermediate representation (IR) [3, 9], where the instruction is
characterized as an atomic sequence of basic operations. Each of the basic operations can
then straightforwardly be translated into Boolean logic, thereby providing a representation
that depends on few primitive operations only. We further elaborate on several characteristics
of the IR and discuss our experiences with connecting VSA with Metamoc [18], a tool
that performs worst-case execution time analysis using timed automata. In Metamoc, the
system abstraction is generated on top of a static VSA.

1.3 Structure of the Presentation
To make this paper self-contained, Sect. 2 recapitulates the algorithm of Barrett and King [4].
The paper then builds towards the above mentioned contributions using a worked example
in Sect. 3. The key ingredients of our framework are:
1. translate a given binary program into our IR,
2. express the semantics of the translated program in Boolean logic,
3. compute projections onto the relevant bit-vectors, and perform VSA using SAT solving

until a fixed point is reached.
Each of these steps for the example program in Fig. 1 is discussed in its own subsection in
Sect. 3. Then, Sect. 4 discusses an extension of the example to weak relations between different
registers, before Sect. 5 presents some experimental evidence from our implementation. The
paper concludes with a survey of related work in Sect. 6 and a discussion in Sect. 7.

2 Primer on Value-Set Analysis

The key idea of Barrett and King [4, Fig. 3] is to converge onto the value sets of a register
using a form of range analysis based on binary search [13]. Let ϕ denote a Boolean formula
that characterizes a bit-vector r. From an encoding ψ of an instruction or basic block, ϕ can
be obtained by projecting ψ onto r, e.g., using incremental SAT solving [8] or BDDs [23].

2.1 Range Analysis using Incremental SAT
In the first iteration, the algorithm computes an over-approximation of the values of r by
determining the least and greatest values r1

` and r1
u of r subject to ϕ. These values are

obtained by repeatedly applying a SAT solver to ϕ in conjunction with blocking clauses.
To illustrate the principle, consider determining r1

` . If the bit-vector r is w bits wide, the
unsigned value of r, denoted 〈〈r〉〉 =

∑w−1
i=0 2i · r[i], is bound to the range 0 ≤ 〈〈r〉〉 ≤ 2w − 1,
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and so is 〈〈r1
`〉〉. Since 〈〈r1

`〉〉 is uniquely determined, the constraint 0 ≤ 〈〈r1
`〉〉 ∧ 〈〈r1

`〉〉 ≤ 2w − 1
can be expressed disjunctively as µ` ∨ µu where:

µ` = 0 ≤ 〈〈r1
`〉〉 ≤ 2w−1 − 1

µu = 2w−1 ≤ 〈〈r1
`〉〉 ≤ 2w − 1

To determine which of both disjuncts characterizes r1
` , it is sufficient to test the formula

∃r : ϕ∧¬r[w− 1] for satisfiability. If satisfiable, then µ` is entailed by r1
` , and µu otherwise.

This tactic follows directly from the bit-vector representation of unsigned integer values.
Suppose that ∃r : ϕ ∧ r[w − 1] is satisfiable, and thus 0 ≤ 〈〈r1

`〉〉 ≤ 2w−1 − 1. We proceed by
decomposing this refined characterization into a disjunction µ′` ∨ µ′u where

µ′` = 0 ≤ 〈〈r1
`〉〉 ≤ 2w−2 − 1 µ′u = 2w−2 ≤ 〈〈r1

`〉〉 ≤ 2w−1 − 1

as above, and testing ∃r : ϕ ∧ ¬r[w − 1] ∧ ¬r[w − 2] for satisfiability. Repeating this step w
times gives r1

` exactly. We can likewise compute r1
u and thus deduce:

∀r : ϕ ∧ (〈〈r1
`〉〉 ≤ 〈〈r〉〉 ≤ 〈〈r1

u〉〉)

2.2 Value-Set Analysis using Incremental SAT
The key idea of VSA is then to repeatedly apply this technique so as to alternatingly remove
ranges from and add ranges to the initial interval [〈〈r1

`〉〉, 〈〈r1
u〉〉]. It does so using alternating

over- and under-approximation as follows. In the first iteration of the algorithm, the value
set then contains all values in the computed range, i.e., V1 = {r1

` , . . . , r
1
u}. In the second

iteration, the algorithm infers an over-approximate range of non-solutions within V1 and
removes this range from V1. This gives an under-approximation V2 of the actual value
set of r. To get this result, the algorithm computes the least and greatest non-solutions
r2

` and r2
u within the range V1. The bounds are derived using dichotomic search based

on ¬ϕ rather than ϕ. An under-approximation of the value set of r is then obtained by
eliminating {r2

` , . . . , r
2
u} from V1, i.e., V2 = V1 \ {r2

` , . . . , r
2
u}. The under-approximation V2

is extended by adding an over-approximate range of solutions to V2. The algorithm thus
proceeds by determining solutions r3

` and r3
u within the range r2

` , . . . , r
2
u. This turns the

under-approximation V2 into an over-approximation V3 = V2 ∪ {r3
` , . . . , r

3
u}, again followed

by under-approximation. After a finite number k of iterations, no further solutions are found
which are not contained in Vk. The algorithm then terminates and returns the value-set Vk.

3 Worked Example

Our approach is to first translate each instruction in a program from a hardware-specific
representation into an intermediate language. Liveness analysis [34] is then performed to
eliminate redundant (dead) operations from the IR. It turns out that liveness analysis is
much more powerful in assembly code analysis than in traditional domains; this is due to
side-effects on the status word, which includes flags such as the carry oder negative flags.
Many instructions have side-effects, yet, few of them actually influence the behavior of the
program. The elimination of dead operations is followed by a conversion of each block into
static single assignment (SSA) form [17]. The semantics of each block in the IR is then
expressed in the computational domain of Boolean formulae. To derive over-approximations
of the value sets of each register, we combine quantifier elimination using SAT solving [8]
with VSA [31].
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Table 1 Operand-size identifiers used in the IR.

Identifier Meaning Size Example
.b Bit 1 XOR.b R0:0 R0:1 R0:2
.B Byte 8 AND.B R0 R0 #15
.W Word 16 INC.W R1 R1
.DW Double Word 32 ADD.DW R0 R1 R2

3.1 Translating a Binary Program
Recall that assembly instructions typically have side-effects. The instruction ANDI R1 15
from Fig. 1, for instance, computes the bit-wise and of register R1 with the constant 15 and
stores the result in R1 again. However, it also mutates some of the status flags, which are
located in register R95 (in case of the ATmega16). Our IR makes these hidden side-effects
explicit, which then allows us to represent large parts of the instruction set using a small
collection of building blocks. However, this additional flexibility also implies that some
hardware-related information has to be included in the IR, most notably operand sizes
and atomicity (instructions are executed atomically, and thus cannot be interrupted by an
interrupt service routine). We tackle these two problems by representing a single instruction
as an uninterruptible sequence of basic operations, and by postfixing the respective basic
operation with one of the operand-size identifiers given in Tab. 1. In our encoding, the first
operand is always the target, followed by a varying number of source operands (e.g., bit-wise
negation has a single source operand whereas addition has two). The AVR instruction
ANDI R0 #15 (logical-and with immediate) then translates into AND.B R0 R0 #15, thus far
ignoring the side-effects. The side-effects are given in the instruction-set specification [1,
p. 20], which we translate the following Boolean formula:

r95′[1] ↔
∧7

i=0 ¬r0′[i] ∧ r95′[2] ↔ r0′[7] ∧
¬r95′[3] ∧ r95′[4] ↔ r95′[2]⊕ r95′[3]

Given the classical bit-wise operations, these side-effects are encoded (with some simplifica-
tions applied and using an additional macro isZero) as:

AND.B R1 R1 #15; MOV.b R95:3 #0; MOV.b R95:2 R0:7;
MOV.b R95:4 R95:2; MOV.b R95:1 isZero(R0);

The other instructions can likewise be decomposed into such a sequence of building blocks,
and then be conjoined to give a sequence that describes the instructions 0x42 to 0x45 from
Fig. 1 as follows (note that some auxiliary variables are required to express the side-effects
of ADD R0 R1 in location 0x43):

0x42 : AND.B R1 R1 #15; MOV.b R95:3 #0; MOV.b R95:2 R1:7;
MOV.b R95:4 R95:2; MOV.b R95:1 isZero(R1);

0x43 : MOV.B F R0; ADD.B R0 R0 R1; MOV.b R95:1 isZero(R0);
MOV.b R95:2 R0:7; XOR.b R95:4 R95:2 R95:3; AND.b R95:0 F:7 R1:7;
NOT.b d R0:7; AND.b e R1:7 d; OR.b R95:0 R95:0 e;
AND.b e d F:7; OR.b R95:0 R95:0 e; AND.b e F:7 R1:7;
AND.b R95:3 e d; NOT.b f F:7; NOT.b g R1:7;
AND.b f f g; AND.b f f d; OR.b R95:3 R95:3 f;

0x44 : MOV.b R95:5 R0:3; MOV.b R95:0 R0:7; LSL.B R0 R0 #1;
MOV.b R95:2 R0:7; XOR.b R95:3 R95:0 R95:2; XOR.b R95:4 R95:2 R95:3;
MOV.b R95:1 isZero(R0);

0x45 : BRANCH (R95:0) label #0x46;

Clearly, the side-effects define the lengthy part of the semantics. Hence, before translating
the IR into a Boolean formula for VSA, we perform liveness analysis [28] and in order to
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eliminate redundant assignments, which do not have any effect on the program execution.
This technique typically simplifies the intermediate program representations — and thus the
resulting Boolean formulae — significantly because most side-effects do not influence any
further program execution, and so does liveness analysis for the given example:

0x42 : AND.B R1 R1 #15;
0x43 : ADD.B R0 R0 R1;
0x44 : MOV.b R95:0 R0:7; LSL.B R0 R0 #1;
0x45 : BRANCH (R95:0) label #0x46;

Indeed, similar reductions can be observed for all our benchmarks. It is thus meaningful with
respect to tractability to decouple the explicit effects of an instruction from its side-effects.
Of course, the effectiveness of liveness analysis depends on the target architecture.

3.2 Bit-Blasting Blocks
Expressing the semantics of a block in Boolean logic has become a standard technique in
program analysis due to the rise in popularity of SAT-based bounded model checkers [12].
To provide a formula that describes the semantics of the simplified block, we first apply
SSA conversion (which ensures that each variable is assigned exactly once). We then have
bit-vectors V = {r0, r1} on input of the block, bit-vectors V ′ = {r0′, r1′, r95′} on output,
and an additional intermediate bit-vector r0′′. The most sophisticated encoding is that of
the ADD instruction, which is encoded as a full adder with intermediate carry-bits c. Given
these bit-vectors, the instructions are translated into Boolean formulae is follows:

ϕ0x42 =
∧3

i=0(r1′[i]↔ r1[i]) ∧
∧7

i=4(¬r1′[i])

ϕ0x43 = (
∧7

i=0 r0′′[i]↔ r0[i]⊕ r1′[i]⊕ c[i]) ∧ ¬c[0]∧
(
∧6

i=0 c[i+ 1]↔ (r0[i] ∧ r1′[i]) ∨ (r0[i] ∧ c[i]) ∨ (r1′[i] ∧ c[i]))
ϕ0x44 = (r95′[0]↔ r0′′[7]) ∧ (

∧7
i=1 r0′[i]↔ r0′′[i− 1]) ∧ ¬r0′[0]

Observe that instruction 0x45 does not alter any data, and is thus not included in the above
enumeration. Then, the conjoined formula

ϕ = ϕ0x42 ∧ ϕ0x43 ∧ ϕ0x44

describes how the block relates the inputs V to the outputs V ′ using some intermediate
variables (which are existentially quantified). In the remainder of this example, we additionally
assume that our analysis framework has inferred that R0 is in the range of 110 to 120 on
input of the program, and that ϕ has been extended with this constraint.

3.3 Value-Set Analysis for Extended Bit-Vectors
The algorithm of Barrett and King [4, Fig. 3] computes the VSA of a bit-vector v in unsigned
or two’s complement representation as constraint by some Boolean formula ψ. It does
so by converging onto the value-sets of v using over- and under-approximation. However,
the drawback of their method is that it requires vars(ψ) = v, i.e., ψ ranges only over the
propositional variables in v. To apply the method to the above formula ϕ and compute the
value-sets of r0 ∈ V on entry, e.g., it is thus necessary to eliminate all variables vars(ϕ) \ r0
from ϕ using existential quantifier elimination. Intuitively, this step removes all information
pertaining to the variables vars(ϕ) \ r0 from ϕ. In what follows, denote the operation of
projecting a Boolean formula ψ onto a bit-vector v ⊆ vars(ψ) by πv(ψ). In our framework,
we apply the SAT-based quantifier elimination scheme by Brauer et al. [8], though other
approaches [24] are equally applicable.
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3.3.1 Projecting onto Extended Bit-Vectors
As stated before, it is our desire to reason about the values of register R0 on the entries of
both successors of instruction 0x45. These values correspond to the values of the bit-vector
r0′. Yet, we also need to take into account the relationship between r0′ and the carry flag
r95′[0]. We therefore treat o = r0′ : r95′[0], where : denotes concatenation, as the target
bit-vector for VSA, and project ϕ onto o, denoted π0(ϕ). Then, πo(ϕ) describes a Boolean
relationship between r0′ and the carry flag r95′[0].

3.3.2 Value-Set Analysis
We finally apply the VSA to πo(ϕ) so as to compute the unsigned values of R0 on entry of
both successor blocks of 0x45. Since R0 is an 8-bit register, and the representing bit-vector
is extended by the carry-flag to give o, we clearly have 0 ≤ 〈〈o〉〉 ≤ 29 − 1. VSA then yields
the following value-sets:

〈〈o〉〉 ∈
{

220, 222, . . . , 252, 254,
256, 258, . . . , 268, 270

}
Observe that the values in the range 28 ≤ 〈〈o〉〉 ≤ 29 − 1 reduced by 28 correspond to those
values for which the branch is taken. Likewise, the values of 〈〈o〉〉 in the range 0 ≤ 〈〈o〉〉 ≤ 28−1
correspond to the values for which the branch is not taken. Hence, the results of VSA are
interpreted as follows:

The value-set 〈〈r0′〉〉 ∈ {220, 222, . . . , 252, 254} is propagated into the successor block
0x46. This is because it is possible that the branch is not taken for these values.
The value-set 〈〈r0′〉〉 ∈ {256, 258, . . . , 268, 270} is reduced by 256 to eliminate set carry-flag,
which gives 〈〈r0′〉〉 ∈ {0, 2, . . . , 12, 14} as potential values if the branch is taken.

In this example, the definition of the carry flag is straightforward: the most significant
bit of R0 in instruction 0x44 is moved into the carry. This is not always the case. As an
example, recall the lengthy definition of the effects of ADD R0 R1 on the carry flag in Sect. 2.1
(consisting of one negation, three conjunctions and three disjunctions). By encoding these
relations in a single formula and projecting onto the carry-flag conjoined with the target
register, our analysis makes such relations explicit.

4 Weak Relations Between Registers

It is interesting to observe that the approach introduced in Sect. 3.3 can likewise be applied
to derive relations between different bit-vectors that represent different registers. This
tactic gives a weakly relational value-set representation. Suppose we apply strategy to the
extended bit-vector o′ = r0′ : r0[7]. Applying VSA to o′ then yields results in the range
0 ≤ 〈〈o′〉〉 ≤ 29 − 1. Following from the encoding of unsigned integer values, the results
exhibit which values r0′ on output can take for inputs such that either

0 ≤ 〈〈r0〉〉 ≤ 127

or

128 ≤ 〈〈r0〉〉 ≤ 255

holds. If VSA yields a value such that the most significant bit of o′ is set, then 〈o′[0], . . . ,o′[7]〉
determines a value that is reachable if 〈〈r0〉〉 ≥ 128. Likewise, if o′[0] is cleared, then
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〈o′[0], . . . ,o′[7]〉 determines values reachable if 〈〈r0〉〉 ≤ 127. Clearly, a more precise char-
acterization of the relation between r0 and r0′ can be obtained by applying VSA to
o′′ = o′ : r0[6], which partitions the reachable output values according to the inputs:

0 ≤ 63,
64 ≤ 127,
128 ≤ 191, and
192 ≤ 255.

Yet, the payoff for the increase in expressiveness is higher computational complexity. In
fact, the payoff is two-fold. First, the efficiency of SAT-based quantifier elimination decreases
as the number of propositional variables to project onto increases. Second, the size of the
resulting value-sets increases, and thus the number of SAT calls to compute them.

5 Experimental Evidence

We have implemented the techniques discussed in this paper in Java using the Sat4J
solver [25]. The experiments were performed with the expressed aim of answering the
following questions:

How does the translation of the instructions into an IR affect the performance of SAT-
based value-set analysis? This is of interest since the decoupling of the side-effects from
the intended effect of the instruction allows for a more effective liveness analysis than
implemented in tools such as [mc]square [33].
How does analyzing extended bit-vectors affect the overall performance compared to the
SAT-based analysis discussed in [31]. Their analysis recovers weakly-relational information
using alternating executions of forward and backward analysis so as to capture the relation
between, e.g., a register R0 and the carry-flag after a branching has been analyzed, whereas
our analysis tracks such information beforehand.

We have applied the analysis to various benchmark programs for the Intel Mcs-51 mi-
crocontroller, which we have used before to evaluate the effectiveness of our analyses [31,
Sect. 4]. VSA is used to compute the target addresses of indirect jumps, where bit-vectors
are extended based on the status flags that trigger conditional branching (like the carry-flag
in the worked example). Decoupling the instructions from the side-effects led to a reduction
in size of the Boolean formulae of at least 75%. Experimental results with respect to runtime
requirements are shown in Tab. 1. Compared to the analysis in [31], the runtime decreases
by at least 50% for the benchmarks, due to fewer VSA executions. The computed value-sets
are identical for this benchmark set.

To investigate the portability of our IR to other architectures, we have implemented a
compiler from ARM assembly to the sketched IR. We have done so within the Metamoc [18]

Table 2 Experimental results for SAT-based VSA using extended bit-vectors.

Name LoC # instr. Runtime
Single Row Input 80 67 1.42s
Keypad 113 113 1.93s
Communication Link 111 164 1.49s
Task Scheduler 81 105 6.77s
Switch Case 82 166 8.09s
Emergency Stop 138 150 0.91s
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toolchain which already provides support for disassembling ARM binaries and reconstructing
some control flow. Furthermore, Metamoc contains formal descriptions of instruction
effects. We translated these formal descriptions to the required IR format manually, requiring
approximately one day. Translating a different platform to the IR uncovered a few areas where
we might beneficially extend our intermediate language: the ARM architecture excessively
uses conditional execution of instructions. In this situation, an instruction is executed
if some logical combination of bits evaluates to true; otherwise, the instruction is simply
skipped. Compilers for ARM use such constructs frequently to simplify the control structure
of programs, leading to fewer branches. Adding support for such instruction features is
fundamental to support different hardware platforms. We have chosen to support such
behavior by means of guarded execution. Each operation can be annotated with a guard. If
the guard evaluates to true, the corresponding instruction is executed, and otherwise it is
the identity. The translation of this construct into Boolean logic is then trivial.

6 Related Work

In abstract interpretation [15], even for a fixed abstract domain, there are typically many
different ways of designing the abstract operations. Ideally, the abstract operations should be
as descriptive as possible, although there is usually interplay with accuracy and complexity.
A case in point is given by the seminal work of Cousot and Halbwachs [16, Sect. 4.2.1] on
polyhedral analysis, which discusses different ways of modeling multiplication. However,
designing transfer functions manually is difficult (cp. the critique of Granger [19] on the
difficulty of designing transformers for congruences), there has thus been increasing interest in
computing the abstract operations from their concrete versions automatically, as part of the
analysis itself [5, 6, 21, 22, 26, 29, 30, 32]. In their seminal work, Reps et al. [32] showed that
a theorem prover can be invoked to compute an transformer on-the-fly, during the analysis,
and showed that their algorithm is feasible for any domain that satisfies the ascending chain
condition. Their approach was later put forward for bit-wise linear congruences [22] and
affine relations [5]. Both approaches replace the theorem prover from [32] by a SAT solver
and describe the concrete (relational) semantics of a program (over finite bit-vectors) in
propositional Boolean logic. Further, they abstract the Boolean formulae offline and describe
input-output relations in a fixed abstract domain. Although the analysis discussed in this
paper is based on a similar Boolean encoding, it does not compute any transformers, but
rather invokes a SAT solver dynamically, during the analysis. Contemporaneously to Reps
et al. [32], it was observed by Regehr et al. [29, 30] that BDDs can be used to compute
best transformers for intervals using interval subdivision. The lack of abstraction in their
approach entails that the runtimes of their method are often in excess of 24h, even for 8-bit
architectures.

The key algorithms used in our framework have been discussed before, though in different
variations. In particular, VSA heavily depends on the algorithm in [4, Fig. 3], which is
combined with a recent SAT-based projection scheme by Brauer et al. [8]. Comparable
projection algorithms have been proposed before [24, 27], but they depend on BDDs to
obtain a CNF representation of the quantifier-free formula (which can be passed to the SAT
solver for value-set abstraction). By way of comparison, using the algorithm from [8] allows
for a lightweight implementation. The value-set abstraction, in turn, extends an interval
abstraction scheme for Boolean formulae using a form of dichotomic search, which has (to
the best of our knowledge) first been discussed by Codish et al. [13] in the context of logic
programming. Their scheme has later been applied in different settings, e.g., in transfer
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function synthesis [6] or a reduced product operator for intervals and congruences over finite
integer arithmetic [7]. Reinbacher and Brauer [31] have proposed a similar technique for
control flow recovery from executable code, but they do not extend their bit-vectors for VSA.
They thus combine SAT-based forward analysis with depth-bounded backward analysis to
propagate values only into the desired successor branches.

Over recent years, many different tools for binary code analysis have been proposed, the
most prominent of which probably is CodeSurfer/x86 [2]. Yet, since the degree of error
propagation is comparatively high in binary code analysis (cp. [30]), we have decided to
synthesize transfer functions (or abstractions, respectively) in our tool [mc]square [33] so
as to keep the loss of information at a minimum.

7 Concluding Discussion

In essence, this paper advocates two techniques for binary code analysis. First of all, it
argues that SAT solving provides an effective as well as efficient tool for VSA of bit-vector
programs. Different recent algorithms — most notably projection using prime implicants
and dichotomic search — are paired to achieve this. The approach thereby benefits from
the progress on state-of-the-art SAT solvers. Secondly, the efforts required to implement
a SAT-based program analysis framework largely depend on the complexity of the target
instruction set. To mitigate this problem, we have proposed an intermediate representation
based on decomposing instructions and their side-effects into sequences of basic operations.
This significantly eases the implementation efforts and allows us to port our framework to
different hardware platforms in a very short time frame. Our experiences with the AVR
ATmega, Intel MCS-51 and ARM9 hardware platforms indicates that adding support for
a hardware platform can easily be achieved within one week, whereas several man-months
were required otherwise. In particular, testing and debugging the implementation of the
Boolean encodings is eased. In this paper, we have not presented a formal semantics for the
IR, mostly because it is straightforward to derive such a semantics from existing relational
semantics for flow-chart programs over finite bit-vectors. Examples of such semantics are
discussed in [22, Sect. 4] or [14, Sect. 2.1].
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Abstract
Formal methods are making their way into the development of safety-critical systems. In this
paper, we describe a case study where a simple 2oo3 voting scheme for a shutdown system was
verified using two bounded model checking tools, CBMC and EBMC. The system represents
Systematic Capability level 3 according to IEC 61508 ed2.0. The verification process was based
on requirements and pseudo code, and involved verifying C and Verilog code implementing the
pseudo code. The results suggest that the tools were suitable for the task, but require considerable
training to reach productive use for code embedded in industrial equipment. We also identified
some issues in the development process that could be streamlined with the use of more formal
verification methods. Towards the end of the paper, we discuss the issues we found and how to
address them in a practical setting.
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1 Introduction

Companies developing safety-critical systems must balance between safety requirements
imposed by standards and productivity requirements. On the one hand, the higher the safety
integrity requirements, the more time and effort are needed for validation and verification
activities. On the other hand, companies producing less safety-critical systems often face
fierce competition and are required to put more emphasis on the overall efficiency of the
development process.

Certification is another driving force in the field. Many companies are trying to get their
products certified in order to help marketing efforts. The new machinery directive in the
EU, for instance, is still based on self-declaration in the case of most type of machines; the
manufacturer labels the product with the “CE” marking without formal type examination.
However, certification by an independent assessment organization may still be required by
customers and/or for marketing reasons. It is also seen as an important step if an accident
should occur and investigation of the development practices takes place.
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IEC 61508 [15] is a basic standard on functional safety; a new edition 2 of the standard was
released in April 2010. The standard classifies safety-critical systems into four Safety Integrity
Levels (SILs), SIL 4 corresponding to the most critical and SIL 1 the least critical type of
system. The standard presents methods used for the verification and validation of safety-
critical hardware and software. For each SIL level, there is a set of Highly Recommended,
Recommended and Not Recommended methods. In addition, for the use of some methods
the standard does not indicate any recommendation on certain SIL levels.

Systems can be composed of elements and subsystems having a predetermined Systematic
Capability (SC) on the scale 1-4 corresponding to the SIL level of the whole system. For
example, SIL 3 level systems can be composed of elements having SC 3 or 4 when used
according to the instructions given in the elements’ safety manuals. IEC 61508 is not
harmonized, i.e. it does not fulfill the requirements of the European directives as such, but is
often referred to by other, harmonized, standards (such as EN ISO 13849-1 and EN 62061)
in relation to requirements imposed on the development of safety-critical systems.

Formal methods are considered an important technology in the development of safety-
critical systems. While the scalability and usability of tools still pose challenges in the
development of non-safety-critical systems, safety-critical systems are somewhat different
in this respect. On higher SIL/SC levels there are fewer productivity constraints and
perhaps more time to learn new techniques that can help in validation and verification efforts.
Moreover, safety-critical systems should be kept rather simple in order to limit the needed
verification and validation activities. Thus, in spite of the scalability problems, it it often
feasible to prove correct at least some parts of the system using formal methods. Moreover,
formal methods are well represented in the IEC 61508 standard for developing high SIL level
systems. They can also be used on lower SIL levels to replace some less formal techniques,
such as certain types of testing.

Nevertheless, there have been major impediments in using formal methods. Performance
of the old tools and the computing power available was too limited in order to solve real
life problems. Moreover, special expertise was required to use the tools. Nowadays, there is
evidence in the literature that new tools can solve practical problems given the increased
computing resources available. Unfortunately, however, there is still lack of user experience
reports that would discuss the required expertise to use the modern tools.

Towards these ends, we describe a case study where we experimented with a formal
verification technology in an industrial case study. The case study subject was a simple 2oo3
(2-out-of-3) voting scheme used for redundancy in a SC 3 level shutdown system. The system
development is being done according to the IEC 61508 standard and certification is being
conducted by an independent organization.

In the case study we treat a typical industrial development where pseudo-code (or
programming language code in, e.g., C) is first written and shown correct relative to
requirements of the module under development. This is then handed off to a separate
development team as the basis of a hardware or firmware design in a low-level hardware
design language such as Verilog or VHDL. This too must be shown correct relative to (often
more detailed) requirements. The main practical tasks are (1) to ensure that the high- and
low-level properties checked actually express the needed requirements and are easy to write,
(2) to facilitate verifying the pseudo-code level relative to the properties, and (3) to similarly
show that the chip design satisfies the needed properties, while showing consistency with the
upper level solution.

For verification we used two bounded model checking tools, CBMC and EBMC [6]. Model
checking as a technology does not require as high a level of expertise as, for instance, theorem
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proving. Moreover, these tools were easily available and supported the input formats we
were able to work with. In addition, they support the existing development process and no
major changes in the work flow are required.

While the standard does not require the use of formal verification in the case of this
particular system, formal verification can complement less formal verification methods, such
as testing and simulation, and somewhat ease the certification process. Moreover, if the
development process could be changed in the future to better take advantage of the formal
verification technology, some of the less formal techniques could possibly be replaced with it.

Since the verified system is very simple, the focus of this paper is on reporting experiences
in using the verification tools in the particular industrial context of safety-critical systems
development rather than in the verification technology itself. The results of the case study
suggest that while suitable tools might be hard to find, together with the process changes,
they could provide better evidence for the correctness of the system. Should it be possible
to replace some informal techniques with more formal ones, productivity gains could also
be achieved. Nevertheless, the efficient use of model checking tools requires expertise, so
considerable training may be needed in order to equip the developers with the skills necessary
to use such tools.

The structure of the paper is as follows: In Section 2 we present the background of the
tools used in the case study and discuss related work on how formal methods and related
tools are used in various tasks in software and hardware development. Section 3 introduces
the case study. Due to confidentiality restrictions, some details of the shutdown system have
been omitted. Finally, the lessons learned from the case study are discussed in Section 4.

2 Model Checking Safety-Critical Systems

In this section, we first introduce the basic concepts related to model checking in general
and bounded model checking in particular. Then we move on to discuss related work on
how formal methods and related tools are used in various tasks in software and hardware
development.

2.1 Model Checking and Bounded Model Checking
Model checking [8] is a formal verification technique in which all possible execution paths
of a model of a system or component are checked for a given property, where the model
must have a finite number of possible states (although there can be infinite computations).
The property to be checked is generally given in some form of temporal logic [18]. This
allows expressing assertions about the final values of a module, invariants that should be true
also at intermediate stages, as well as assertions about, e.g., responsiveness of a system to
requests or stimuli. The model of the system is called a Kripke structure, and is a graph with
nodes that each represent a state of the system, and directed edges where each represents an
operation that moves the system from the source state to the target.

The main problem with model checking is that the number of states in a system can
become unmanageably large. Thus model checking techniques are intended to overcome
this difficulty. Among the classic approaches are representing the states symbolically in
data structures known as binary decision diagrams (BDD’s), and creating smaller "abstract"
models that combine many states into one (so that if the smaller model is shown correct for
a desired property, the original model is also guaranteed to be correct).

Model checking tools originally had their own notations for expressing the models, e.g.,
in the SMV model checking tool [7]. The tool and its notation were used either to show that
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a design of a key algorithm was correct, or code was translated to the notation of the tool
involved [11].

More recently, tools have been developed to directly take as input the code of the
component to be checked (e.g., in C or Java), and to use assert statements to indicate
at what point an assertion should be correct. In addition, the underlying technology of
model checkers has changed: today it is common to translate both the model (or code) and
the assertions to a complex boolean formula, and use a SAT (satisfiability) solver [19] or
extended techniques called SMT [20] to determine whether the formula can be made true
for some assignment of values to the variables in it. In fact, the formula constructed is
equivalent to encoding the execution of the model, and asserting the negation of the property
we want. Thus finding a set of values for the variables in the formula is equivalent to finding
a counterexample for the property, because it represents a computation of the system that
does not satisfy the desired property.

Both in order to create smaller models, and to ensure that any counterexample execution
paths are as short as possible, bounded model checking has been used. In this approach,
a bound is put on the length (number of states) of paths that will be checked. Thus for
some n, all possible paths of length up to n are checked. If a counterexample is found, it
can be analyzed to detect the bug. While if none exists for paths up to n, the bound can be
increased, until a bound longer that any path in the program is reached, or the user decides
that longer paths can be ignored.

Modules to ensure safety-critical properties of industrial software often regulate control
or repeatedly test whether shut-down is necessary. Such modules are generally limited in
their state-space, and each round of application is bounded in length. Thus bounded model
checking is appropriate, and often can achieve full verification. Full model checkers, such
as SATabs are appropriate for larger programs, but, as noted on the home webpage of that
tool [23], can only automatically check for restricted properties such as array bounds, buffer
overflows, or built-in exceptions, because of the needed abstraction step in going from code
to a model.

In this work we show a case study where the computations are of a fixed length at each
activation of the module investigated, so many of the more complex issues are irrelevant. We
investigate whether tools for bounded model checking are sufficiently robust and user-friendly
to be practically used to verify and increase the reliability of software or firmware embedded
in industrial equipment.

In this case study, we used two bounded model checkers, namely CBMC and EBMC
[6]. The former enables software model checking and supports ANSI-C and C++ as input
languages. The tool performs verification by first unwinding the code loops and then passing
the results in an equational form to a decision procedure (e.g., a SAT solver). In many cases,
the tool can check that enough unwinding is performed, and thus the complete state space
is considered in the analysis (sound verification). If the formula that encodes the program
unwindings is satisfiable, i.e., contains an invalid program path, then the tool will produce
a counterexample. There are also command-line options to limit the number of times the
loops are unwound or the number of program steps to be processed, and to stop checking
that enough unwinding is done; this allows using the tool for bug hunting in cases where no
useful bound exists and properties cannot be proven correct. On the other hand, EBMC is
a tool for hardware verification supporting input in Verilog and related formats. However,
VHDL is not among the supported input formats. Both tools are available in binary format
for Windows, Linux and MacOS.
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2.2 Related Work
In the following, we describe some application examples of formal verification techniques
in relation to software and hardware development. It is worth paying attention to the way
model checking is used and what kind of impact it has for the development process and
overall quality.

Björkman et al. [4] verified stepwise shutdown logic in the nuclear domain and used
model checking in the traditional way: the design was converted to a dedicated verification
model and the requirements in the specification were translated into logical formulae. They
used a model checking tool for proving that the verification model satisfies the formulae.
Obviously, this use of model checking is rather demanding and laborious because of the model
transformations needed, but it has some advantages as well. Already while constructing
formal models, many omissions and contradictions become clearly visible, and larger systems
can be verified because irrelevant details can be omitted from the abstract verification model.

The cited experiment shows the most valuable benefit of formal methods too. Because
all of the modeled behavior is fully covered, no issue can hide itself in the verification model.
However, the proof is valid only if the abstract verification model corresponds to the design
and the formulae cover all of the requirements. One of today’s research challenge is to find
new ways of applying formal methods so that the artifacts used in proofs would be more
closely related to the specification, design and implementation languages used in mainstream
software and hardware development; this would reduce the need for error-prone manual
transformations.

Even though formal methods may not be applicable always as such, they can still be
helpful. For example, testing can benefit from their use. Angeletti et al. [1] reported
an experiment in the railway domain where bounded model checking was used to semi-
automatically generate test cases in order to gain full coverage requested by the EN 50128
guidelines for the software development of safety-critical systems at SIL 4 level.

In the experiment, the C code was augmented with failing assertions and the CBMC
tool was used to compute the values of input parameters for each assertion to be reached.
Obviously, the mere values of input parameters are not enough for defining test cases; in
order to be useful, the test case must contain checks against the expected outputs. In our case
study, such checks were encoded directly as conditions in assertions and verified on the fly.
Unfortunately, the paper by Angeletti et al. does not state directly how the expected values
were obtained and why on-the-fly verification was not used. A system of a few thousand
lines of C code may be too large to be model checked, so the approach we used in our case
study may not have been applicable as such, and unlike in our approach, test cases can be
used to verify and validate the SUT in binary form without the source code.

In theory, any model having operational semantics can be verified by means of model
checking and state transition systems can be used to model many other aspects of the systems
than behavior in normal conditions. For example, there is a special Statecharts variant called
Safecharts for modeling safety issues and their relations to functional properties [9].

In Safecharts there are special states for normal and defunct states for the components of
the system and transitions between them. Events associated with those transitions model
the breakdowns and reparations of the components. When these special states and events
are synchronized with the states and actions of the functional layer, the behavior of the
system can be modeled and formally verified, not only in normal operation, but in those
situations in which parts of the system do not function properly [12]. This is very useful
if the system cannot reach a safe stable state without controlled operations. In aerospace
and nuclear domains this requirement is obvious, but also in the case of complex and big
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machines there might be a need to shutdown slowly to prevent further breakdowns.
In addition to facilitating testing, formal verification can significantly reduce the need

for testing. Kaivola et al. [16] used formal verification as the primary validation vehicle for
the execution cluster of the Intel Core i7 processor and dropped most of the usual RTL
(Register Transfer Language) simulations and all coverage driven simulation validation. They
concluded that verification required approximately the same amount of work as traditional
pre-silicon testing. Although not zero, the number of bugs that escaped to silicon was lower
than for any other cluster.

In addition to describing how formal verification could replace testing, Kaivola et al.
sketch some prerequisites for verification to be applicable in practice. In contexts where
model checking can replace simulation-based testing, it can be seen as a clever and effective
way of conducting exhaustive simulation.

Nevertheless, even a company like Intel has taken quite some time to introduce formal
verification into the development process. Most likely the story began in 1994 when the
Pentium FDIV bug was found [22] and seven years later they reported that they had verified
the Pentium 4 floating-point divider [17]. As a pioneer in the field, Intel has made enormous
investments in formal verification and for others, effort is likely far more moderate. Still,
it may take considerable effort to establish the confidence needed to be able to supercede
existing verification methods with more formal ones. However, they can used to complement
the existing ones and provide diversity when needed.

The systems in the examples discussed above have very high integrity requirements and
two of them are also large from the verification point of view. For example, the execution
cluster of i7 is responsible for the functional behavior of all of the more than 2700 distinct
microinstructions. The majority of safety-critical systems are much smaller and may not have
such high integrity requirements. Nonetheless, formal methods can be a feasible alternative
for the quality assurance of those because small verification problems are not as laborious to
solve as it is generally thought and even small systems can have peculiar and critical faults,
which can be almost impossible to find by other means.

3 Case Study

We now present our case study on using model checking to verify a simple element in a
safety-critical system. In more detail, the goal was to use model checking tools to verify the
implementation of the 2oo3 voting scheme in a SC 3 level shutdown system. This voting
scheme (also known as triple-modular redundancy) is very popular in safety-critical systems
because it provides a good compromise between safety and availability. Since availability is
an important factor in industrial systems, such compromises are often searched for.

There are three distinct modules which receive the same input (from one, two or three
different sensors) and shutdown is started when at least two out of three modules suggest it.
In this case, the design follows the idle current design, i.e. the output is active when there
is no need to shutdown the system. When at least two out of three inputs are active, the
output is also active. If only one or zero inputs are active or the power is lost, the output
should indicate a need to start the shutdown procedure. In practice, each input is a Boolean
value, one indicating a normal situation and zero indicating the need to shutdown the system.
If two or three of the input values equal zero, the voter unit outputs value zero and the
shutdown procedure begins. If only one input equals zero, the process can continue (with a
possible log message indicating some potential problem in the corresponding module). Thus,
the system is able to mask a fault in one of the modules, allowing the system to continue its
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operation. The interested reader is referred to [24, p. 132] for more elaborate discussion on
this voting scheme.

3.1 Working with the Pseudo Code

In this case the development process is such that the basic requirements are refined first
and then translated into pseudo code. Typically, the pseudo code is augmented with a short
textual description that may specify some basic properties of the solution depicted as pseudo
code. The pseudo code is then implemented with a suitable concrete language; VHDL in
case a programmable hardware solution is preferred. The tests for the implementation are
derived from the requirements, which are managed in a requirements management tool.

The first stage of the case study was to verify the pseudo code. The tool used for formal
verification was CBMC (version 3.9) and for that purpose the pseudo code was manually
translated into C code. Since the implementation of the voting scheme with Boolean values
is very simple, manual translation was considered adequate in this particular case. Moreover,
because of the simplicity of the code, it was possible to derive eight test cases (23) that
covered all possible input and output combinations.

The test cases were encoded as assertions in the C code and verified with the tool. This
process also revealed that the property specified in conjunction with the associated pseudo
code was somewhat vague and incomplete; the informal description didn’t cover all the
input/output combinations. We think that this represents a typical case of specifying simple
designs: even though the requirements should be explicit and complete, it is very easy to
ignore some details since the design is considered obvious.

The C code used with CBMC is listed in Figure 1. There are three parameters, cor-
responding to three inputs to the system; the OCHY_Voter_State variable is the output.
The actual voting is implemented in the statement where OCHY_Voter_State gets assigned
a value. The assertions corresponding to the eight test cases follow the assignment. The
structure of the assertions was chosen to support understandability in the absence of the
implication operator; another possibility would have been to use not and or operators to
substitute for implication (and give the original form with the implication operator in a
comment above the assertion, for instance). The current form also shows the locality of
assertions in C.

3.2 Working with the VHDL Code

The second stage was to verify the actual implementation of the pseudo code in VHDL.
Ideally, the verification tool should accept VHDL as input language, but for practical reasons
we chose EBMC (version 4.1). Since EBMC uses Verilog as its input language, we first
translated the VHDL code to Verilog using a VHDL to Verilog RTL translator tool [10]
(version 2.0). The verification process was not as straightforward as in the case of the C code.
We struggled with the syntax and the use of the tool since the information available with the
installation package and on the tool website [6] was more limited than in case of CBMC. A
significant practical difference with the tools was that the assertions were considered global
in EBMC and local in CBMC. This made the reuse of assertions developed for the C code
impossible.

Figure 2 shows how the voting is implemented in the Verilog code. The always block gets
executed on the rising edge of either the clock or the reset signal. If the reset is active (zero),
then the output is zero. Otherwise the voting occurs. Interestingly, the implementation
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#include<assert.h>
void foo(int OCHY_comparator_state_ICH1,

int OCHY_comparator_state_ICH2,
int OCHY_comparator_state_ICH3) {

int OCHY_Voter_State = 0;

OCHY_Voter_State =
(OCHY_comparator_state_ICH1 || OCHY_comparator_state_ICH2) &&
(OCHY_comparator_state_ICH1 || OCHY_comparator_state_ICH3) &&
(OCHY_comparator_state_ICH2 || OCHY_comparator_state_ICH3);

if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 1)
&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 1);

}
if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 1)
&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 1);

}
if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 0)
&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 1);

}
if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 1)
&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 1);

}
if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 0)
&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 0);

}
if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 1)
&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 0);

}
if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 0)
&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 0);

}
if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 0)
&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 0);

}}

Figure 1 The C code and the eight assertions verified with CBMC.

in VHDL did not directly correspond to the original pseudo code, but had && (and) in the
innermost level and || (or) in the outermost level.

The code shown is generated by the translator tool from the original VHDL source. In
practice, with the active low reset signal, it would make more sense to use a falling edge
instead of rising edge to trigger the code block. However, the block gets triggered with the
next rising edge of the clock signal in any case, so this did not affect the verification task.

The code shown in Figure 3 shows a part that was added to the Verilog code only for the
purposes of verification. There are now three new registers: voter_state_check_in_pos,
voter_state_check_in_neg, and voter_state_ check. The value one of the first register
should imply a voting result one. Correspondingly, the value one of the second register should
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always @(posedge clk or posedge rst_n) begin
if(rst_n == 1’b 0) begin

voter_state_i <= 1’b 0;
end else begin

if((ICH1_comparator_state_och_in == 1’b 1 &&
ICH2_comparator_state_och_in == 1’b 1) ||

(ICH1_comparator_state_och_in == 1’b 1 &&
ICH3_comparator_state_och_in == 1’b 1) ||

(ICH2_comparator_state_och_in == 1’b 1 &&
ICH3_comparator_state_och_in == 1’b 1))

begin
voter_state_i <= 1’b 1;

end
else begin

voter_state_i <= 1’b 0;
end

end
end

Figure 2 The implementation of the voting code after VHDL to Verilog translation.

reg voter_state_check_in_pos;
reg voter_state_check_in_neg;
reg voter_state_check;

initial begin
voter_state_check_in_pos = 0;
voter_state_check_in_neg = 0;
voter_state_check = 1;

end

Figure 3 The added verification code in Verilog – part 1.

imply a voting result zero. The value of the third register should always be one if the system
is working correctly. Since registers in Verilog have unknown initial values by default, the
new registers are assigned initial values in the initial block.

Figure 4 shows the actual assertion block that gets triggered similarly to the original
voting block. If the reset is not active and at least two of the inputs are one, the first new
register gets value one. Correspondingly, if the reset is not active and at least two of the
inputs are zero, the second new register gets value one. The third new variable gets assigned
a value indicating whether the value of the first new register implies the voting result and
the value of the second one implies the negation of the voting result.

One should note that the assignments are non-blocking, i.e. the right-hand side of each
of the assignments is evaluated first. The assignment to the left-hand side is delayed until all
the evaluations have been done.

The structure of the code block enables adding and removing “test cases” (input com-
binations in the context of the corresponding expected output value) from the statements
and the expression 1’b 0 ensures that the assertions work also without any “test cases”. We
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always @(posedge clk or posedge rst_n) begin
voter_state_check_in_pos <= rst_n & (1’b 0

| (ICH1_comparator_state_och_in & ICH2_comparator_state_och_in)
| (ICH1_comparator_state_och_in & ICH3_comparator_state_och_in)
| (ICH2_comparator_state_och_in & ICH3_comparator_state_och_in)
);

voter_state_check_in_neg <= rst_n & (1’b 0
| (!ICH1_comparator_state_och_in & !ICH2_comparator_state_och_in)
| (!ICH1_comparator_state_och_in & !ICH3_comparator_state_och_in)
| (!ICH2_comparator_state_och_in & !ICH3_comparator_state_och_in)
);

voter_state_check <= (!voter_state_check_in_pos | voter_state_i) &
(!voter_state_check_in_neg | !voter_state_i);

assert (voter_state_check);
end

Figure 4 The added verification code in Verilog – part 2 (please note the use of bitwise operators).

think that this is a robust, easy-to-use and reusable solution, since it allows extending the
assertions with new properties incrementally. However, since the code in this case study is
simple, the benefits are not so visible here.

The solution can be extended into more complex systems. For each bit of output two new
registers and assignments to them are added, as well as corresponding terms to the expression
of the final assignment. For each bit of input a new term is added to the relevant bitwise
conjunctions of the assigned expressions for each expected output value. The assignment
for an expected output value is placed into an always block corresponding to the situations
where the value of the output may change in the code to be tested. However, this method is
limited to stateless systems; a system with internal memory cannot be handled in such a
straightforward manner.

One practical problem related to the inexperience of the person using the bounded model
checking tools was that it was seemingly easy to verify properties that did not correspond to
the actual requirement. For this reason we used a fault seeding technique where we introduced
errors to the properties and checked whether it was possible to verify the erroneous properties.
If not, we also checked that the counterexample provided by the tool corresponded to the
seeded error. In practice, the errors seeded were more or less random changes made to the
properties, i.e. we did not follow any systematic pattern. We think that this is a useful and
practical technique for engineers without much experience in using model checking tools
since it can be used to help determine whether a specification actually captures the desired
intention, as is done with tests of vacuity [3, 2], where it is determined whether a subproperty
is actually needed in the specification. This allows, for example, showing that an implication
is true “by default” because the left side is always false.

All the assertions shown in the figures were verified with the tools. The bound value
we used with EBMC was relative low, though. Once we became familiar with the tool, we
noticed that the bound given to the tool as a command line option made a big practical
difference. First, in some cases, it was possible to find problems in the assertions only when
the value of the bound was high enough. This should be taken into account when using the
fault seeding technique. Second, while the execution time of the tool with low bound values
was reasonable (bound value 1000 corresponded roughly to 10 seconds in verification time
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with a regular laptop computer), the execution took much more time with higher bound
values due to the state space explosion. We also ran into some warning messaging concerning
solver inconsistencies and one segmentation fault. Nevertheless, the tools were considered a
good choice for the purposes of this small case study. However, especially the EBMC tool
would be much more appealing from the practical point of view if a proper user manual and
documentation were available.

Regarding future work, creating the test code as used in the case study can be cumbersome
if inputs and outputs are numerous. More complicated inputs and outputs such as integers
have to be handled bit by bit, which causes even more work. However, since the test code
is very regular, it could be generated automatically with a suitable assisting tool. The
registers and assignments can be created based on a list of outputs, with those of more
complex types converted to a number of single-bit outputs. The expressions for the expected
value assignments can be similarly created based on a listing of input combinations with
the corresponding outputs, which may be given for example as a CSV (Comma Separated
Values) file. In this way test cases can be converted into assertions in the code with little
effort using Excel sheets created by test engineers, for instance.

4 Discussion

Even though our case study was small-scale in terms of the code checked, it helped us to
identify some potential problems and partial solutions in the context of using model checking
techniques to verify safety-critical systems. In more detail, the analysis of the results of the
case study led to the following recommendations.

First, formal verification is seen useful at least in simple cases like the one studied. It
was possible to develop a generic assertion mechanism for the code translated from VHDL to
Verilog, which should be reusable in the verification of similar designs and further supported
by assisting tools. Training would still be needed, though, in order to get engineers to use
the tools.

While reusing assertions is seen to be beneficial, understanding how to develop effective
assertions would need further training in the next step after basic training, unless this is
solved by assisting tools. We think that starting with simple “test cases” before moving
towards verifying more complicated properties can help in this process. In addition, we
recommend using the fault seeding technique where errors are introduced to the properties
for the purposes of checking whether it is possible to verify the erroneous properties; in our
case this helped us to catch errors in the assertions.

Second, the tools used in this study worked well, but their scalability is still unknown. It
would also be better if the VHDL code could be checked directly without the translation
process to Verilog, unless a (certified) translator that could be trusted is found.

Third, the design flow in this particular case could be improved by specifying the properties
associated with the requirements more precisely. This would allow detecting errors and
inconsistencies already in the requirements capturing phase, as this phase is widely recognized
to be critical. In an ideal case, the same properties could be translated into assertions used in
the formal verification of the VHDL code. These kinds of properties and assertions could be
reused in the case of modifications in a regression testing fashion; they could ease the burden
of reverification needed in case of modifications that affect many elements. In addition, there
might be some generic high level properties and assertions that could be used by different
projects as sanity checks for a set of implementations sharing commonalities.

Fourth, experimenting first with tiny systems is highly recommended. Model checking
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suffers from the state explosion problem like any other formal verification technique and
with bigger systems more expertise is required to specify the system and requirements in
a way that can be handled with the computing resources available. Moreover, complex
specifications are more error prone to write and harder to check.

One practical problem related to the tools might be to find a suitable formal verification
tool. Formal verification tools capable of analyzing VHDL exist, such as [13, 5]. Due to high
license costs, however, it might be more economical to buy formal verification as a service
(see, for instance [21]), if a company has only a limited need for such a tool. This option
would also require less training. Another tool-related issue is certification: in principle, the
software tools used in developing safety-critical systems should be certified by independent
bodies [14, p. 83]. While certification is commonly used for compilers, we are not aware
of any certified formal verification tool; this might become an issue in the future on high
SIL/SC levels.

To conclude, the practical case study as well as the review of the related work show
that model checking is a useful technique in the development of safety-critical systems.
While there still are many problems to be solved, the tools are getting more scalable and
user-friendly. In particular, it would be essential to provide tools that can work directly on
the pseudo or source code used in the development and that require only basic training to be
useful. Moreover, the whole development process could be streamlined with the support of
such tools. While the standards regulating the development practices in the safety-critical
domain are recommending the use of formal verification tools, the biggest problem seems to
be related to training, and methodological introduction into the development process that
could be eased with the help of simple assisting tools that, for instance, use input formats
familiar to the users.
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Abstract
We describe a tool framework for certifying properties of sequential function chart (SFC) based
system specifications: CertPLC. CertPLC handles programmable logic controller (PLC) de-
scriptions provided in the SFC language of the IEC 61131–3 standard. It provides routines to
certify properties of systems by delivering an independently checkable formal system description
and proof (called certificate) for the desired properties. We focus on properties that can be de-
scribed as inductive invariants. System descriptions and certificates are generated and handled
using the Coq proof assistant. Our tool framework is used to provide supporting evidence for
the safety of embedded systems in the industrial automation domain to third-party authorities.
In this paper we focus on the tool’s architecture, requirements and implementation aspects.

Digital Object Identifier 10.4230/OASIcs.SSV.2011.57

1 Introduction

Discovering and validating properties of safety critical embedded systems has been a research
topic during the last decades. Automatic verification tools based on model checking and
static analysis techniques are used in various software and hardware development projects.
Automatic verification tools are successfully applied to increase confidence in the system
design. However, even the verdicts about systems provided by automatic verification tools
may be erroneous, since automatic verification tools are likely to contain errors themselves:
they use sophisticated algorithms, resulting in complicated implementations. Due to this
high level of complexity of their algorithms and the underlying theory, they are hardly ever
considered as trustable by certification authorities.

In contrast to general purpose higher-order theorem provers, an automatic verification
tool possesses a high degree of automation, but it does not achieve the same level of trusta-
bility and is usually specialized towards a problem-specific domain. Higher-order theorem
provers, like Coq [13], are based on a few deduction rules and come with very small, simple,
and trusted proof checkers which are based on type checking algorithms and provide a high
level of confidence.

For this reason we provide a verification / certification environment based on higher-
order theorem provers. It may be used to re-check properties that have been discovered by
automatic verification tools or stated by humans in the first place. If such a check is run
successfully in the higher-order theorem prover one lifts these properties to the high level of
confidence provided by the higher-order theorem prover.

Based on our ideas on certification of properties for a modeling language [8] and our
work on a certificate generating compiler [5] we present a tool framework CertPLC which
emits certificates and allows reasoning about properties of models for programmable logic
controller (PLC) provided in the sequential function chart (SFC) language of the IEC 61131–
3 standard [17]. Our work comprises a generation mechanism for Coq representations
of our models – a kind of compiler that emits Coq readable files for given models. In
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addition to this, it comprises other related proof generation mechanisms and a framework
for supporting proofs that properties of these models do hold. Our Coq certificates – system
description, properties and their proofs – are based on an explicit semantics definition of the
SFC language, thereby ensuring that correctness conditions hold for the system described
in the certificate.

The Coq environment has been accepted by French governmental authorities in a certi-
fication to the highest level of assurance of the Common Criteria for Security [12].

In this paper we focus on the following aspects of the CertPLC tool framework:
– tool architecture,
– proof generation and the construction of certificates,
– and additional implementation issues.

Furthermore, we give an overview on usage scenarios, the formalized SFC semantics and
present and discuss general characteristics of the methodology. A long version of this paper
is available as a report [4]. In the current state of implementation the tool framework
is applicable for standard PLC described using SFC. An exemplary usage with another
language: function block diagrams (FBD) is also described to illustrate the flexibility of the
described framework. The support of other languages and a detailed investigation of case
studies are not subjects of this paper.

Our certification framework is mostly characterized by:
– The usage of an explicit semantics for properties and systems. This is human

readable, an important feature to convince certification authorities.
– The focus on the PLC domain and the integration in an existing tool.
– A high degree of automation – compared to other work using higher-order theorem
provers, that still allows human interaction.

– The integration into an existing tool for graphically designing PLC: EasyLab [2]. The
high expressiveness of our semantics framework is largely facilitated by the usage of a higher-
order theorem prover.

1.1 Certification
In the context of this paper we define

certification as the process of establishing a certificate.
automatic certification is the process of establishing a certificate automatically.
In our work certificates comprise a formal description of a system, a formal description
of a desired property and a proof description (a proof script or a proof term) that this
property does hold.
certificate checking is the process of checking that the property does indeed hold for the
formal system description in the certificate. This checking is done by using the proof
description in the certificate.

1.2 The Trusted Computing Base in Certification
Apart from components like operating system and hardware, in our certification approach,
the trusted computing base (TCB) comprises the certificate checker (the core of the Coq
theorem prover) and the program that generates formal PLC descriptions for Coq auto-
matically. The check that these descriptions indeed represent the original PLC can be done
manually. One goal for the generation is human readability to make such a check feasible at
least for experienced users. Not part of the TCB are the proof description and its generation
mechanism. The proof description only provides hints to the certificate checker. In case of
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faulty proof descriptions a valid property might not be accepted by a certificate checker. It
can never occur that a faulty property is accepted even if wrong proof descriptions are used.
Thus, our approach is sound, but not necessarily complete.

1.3 Related Work
Notable milestones on frameworks to certify properties of systems comprise proof carrying
code [16]. Proofs for program-specific properties are generated during the compilation of
these programs. These are used to certify that these properties do indeed hold for the
generated code. Thus, users can execute the certified code and have, e.g., some safety
guarantees. At least two problems have been identified:
1. Properties have to be formalized with respect to some kind of semantics. This is some-

times just implicitly defined.
2. Proof checkers can grow to a large size. Nevertheless, they have to be trusted.
The problem of trustable proof checkers is addressed in foundational proof carrying code
[1, 22]. Here the trusted computing base is reduced by using relatively small proof checkers.
The problem of providing a proof carrying code approach with respect to a mathematically
founded semantics is addressed in [20]. In previous work we have also addressed the problem
of establishing a formal semantics for related scenarios [5, 8].

Formal treatment of PLC and the IEC 61131–3 standard has been discussed by a larger
number of authors before. Formalization work on the semantics of the Sequential Function
Charts is given in [10, 11]. This work was a starting point for our formalization of SFC
semantics.

The paper [3] considers the SFC language, too. Untimed SFC models are transformed
into the input language of the Cadence SMV tool. Timed SFC models are transformed into
timed automata. These can be analyzed by the Uppaal tool.

Another language of the IEC 61131–3 standard used for specifying PLC are function
block diagrams (FBD). Work in the formal treatment of FBD can be found in [23]. The
FBD programs are checked using a model-checking approach. A Coq formalization of
instruction lists (IL) – also part of the IEC 61131–3 standard – is presented in [18].

The approach presented in [21] regards a translation from the IL language to an inter-
mediate representation (SystemC). A SAT instance is generated out of this representation.
The correctness of an implementation is guaranteed by equivalence checking with the spec-
ification model.

1.4 Overview
We present the IEC 61131–3 standard, including the SFC language and its semantics as
formalized in Coq in Section 2. The tool environment in which our CertPLC tool frame-
work is supposed to be used and an overview about the tool’s architecture is described in
Section 3. The CertPLC ingredients and their interactions are described in some detail in
Section 4. Typical proofs that can either be generated or hand-written by using our seman-
tics are discussed in Section 5. Finally, an implementation overview and a short evaluation
is given in Section 6. A conclusion is featured in Section 7.

2 IEC 61131–3, SFC, Semantics and Certification

In this section we sketch the semantics of sequential function charts (SFC). The description in
this section is based on our earlier work [6] which is influenced by the descriptions in [10, 11].

SSV’11
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Figure 1 A loop in the SFC language.

Furthermore, we present some work on the integration of function block diagrams (FBD)
into our tool framework.

2.1 The SFC Language
Our tool framework works with PLC described in the SFC language. The SFC language
is a graphical language for modeling PLC. It is part of the IEC 61131–3 standard and
frequently used together with other languages of this standard. In such a case, SFC are
used to describe the overall control flow structure of a system. The standard is mainly used
in the development of embedded systems in the industrial automation domain.

The standard leaves a few semantical aspects open to the implementation of the PLC
modeling and code generation tool. In cases where the semantics is not well defined by the
standard we have adapted our tool to be compatible with the EasyLab [2] tool.

Syntax

Syntactically we represent an SFC as a tuple (S, S0, T, A, F, V, ValV ). It comprises a set of
steps S and a set of transitions T between them. A step is a system location which may
either be active or inactive in an actual system state, it can be associated with SFC action
blocks from a set A. These perform sets of operations and can be regarded as functors that
update functions representing memory. The mapping of steps to sets of action blocks is done
by the function F . Memory is represented by a function from a set of variables V to a set
of their possible values ValV . S0 ⊆ S is the set of initially active steps.

A transition is a tuple (Sin, g, Sout). It features a set of states that have to be enabled
Sin ⊆ S in order to take the transition. It features a guard g that has to be evaluated to
true for the given system state. g is a function from system memory to a truth value – in
Coq we formalize this as a function to the Prop datatype. A transition may have multiple
successor steps Sout ⊆ S. The types ValV that are formalized in our SFC language comprise
different integer types and boolean values.

Figure 1 shows an example SFC structure realizing a loop with a conditional branch.
The execution starts with an initialization step Init. After it has been processed control may
pass to either Step2 or to a step Return. Once Step2 has been processed control is passed
to Init again.

Please note, that in addition to loops and branches SFC allow for the formalization of
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parallel processing and synchronization of control. This is due to the multiple successor and
predecessor steps in a transition.

Semantics

Semantically the execution of an SFC encounters states, which are (m, a, s) tuples. They
are characterized by a memory state m, the function from variables to their values, a set of
active action blocks a that need to be processed and a set of active steps s.

The semantics is defined by a state transition system which comprises two kinds of rules:
1. A rule for processing of an action block from the set of active action blocks a. This

corresponds to updating the memory state and removing the processed action block
from a.

2. A rule for performing a state transition. The effect on the system state is that some
steps are deactivated, others are activated. Each transition needs a guard that can be
evaluated to true and a set of active steps. Furthermore, we require that all pending
action blocks of a step that is to be deactivated have been executed.

It is customary to specify the timing behavior of a step by time slices: a (maximal)
execution time associated with it. In our work, this is realized using special variables that
represent time.

2.2 The FBD Language
Function block diagrams are a language from the IEC 61131–3 standard used to model
the behavior of action blocks in SFC. Other languages that may be used for this purpose
comprise instruction lists (IL) and ladder diagrams (LD).

FBD comprise two basic kinds of elements: function blocks and connections between
them. Each function block represents an instruction. There are special instructions for
reading and writing global variables. Edges between function blocks are used to model
dataflow. Thus, FBD are used to describe functions.

Apart from the basic functionality, FBD may contain cycles in their dataflow description.
Semantically such a cycle must feature a delay element. Variable values associated with such
an FBD are computed in an iterative process.

In the case of cyclic dependencies an FBD has to be associated with a time slice, a
maximal time – number of iterations – for the execution of the FBD. Thus, on an abstract
level, FBD may still be regarded as functions and as SFC action blocks.

We have formalized an FBD syntax and semantics framework in Coq that follows the
description above. Most parts of this, however, are only to be used manually by users who
manually change system descriptions and corresponding proofs.

3 The Tool Setting

In this section we describe our CertPLC tool’s architecture and usage scenarios. Figure 2
shows the CertPLC ingredients and their interconnections. In an invocation of the tool
framework an SFC model is given to a

representation generator which generates a Coq representation out of it. This is
included in one or several files containing the model specific parts of the semantics of the
SFC model. The Coq representation is human readable and can be validated against
the original graphical SFC specification by experienced users.

The same SFC model is given to a
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CertPLC
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Figure 2 CertPLC overview.

proof generator which generates Coq proof scripts that contain lemmas and their
proofs for some basic properties that state important facts needed for machine handling
of the proofs of more advanced properties.

In order to achieve a certificate one needs a property that the certificate shall ensure. One
needs to formalize this desired property. The property is proved in Coq by using either
a provided tactic or a hand written proof script. Our provided tactics use the generated
properties and their proofs – provided by the proof generator – and a collection of

proofs and tactics, a kind of library. It contains additional preproved facts and tactics
which may be used to automatically prove a class of properties.

System description, used lemmas and their proofs, and the property and its proof form a
certificate.

Furthermore, our tool framework comprises a Coq library that can be used by generated
and non-generated Coq files. It allows storage of often used definitions in addition to the
elements described so far. We have formalized some behavioral definitions of PLC blocks
which are typically modeled in other languages than SFC.

Usage Scenario
CertPLC is developed to support the following standard usage scenario:

A PLC is developed using the following work-flow:
1. Establishing requirements,
2. and derive some early formal specification.
3. Based on this specification the overall structure – e.g., the control flow – is specified

using the SFC language. More fine-grained behavioral aspects are textually specified,
e.g., by annotating the SFC structure.

4. Taking the requirements and this specification, developers potentially using the help
of automatic verification tools derive and specify consistency conditions and properties
that must hold. Some consistency conditions may directly correspond to a subset of
the requirements.

Regarding 3) the SFC structure is modeled in the graphical EasyLab tool or imported
into EasyLab.
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Regarding 4) properties and SFC action blocks are specified using the Coq syntax by
trained developers. It is not required to do any proofs in Coq for this.
CertPLC generates representations for the PLC specification. Together with the prop-
erties a certificate is established automatically or with user interaction: the choice of
tactics and in some-cases hand-written proof script code.
The PLC development is further refined and fine grained parts may be implemented
using other languages from the IEC 61131–3 standard.
Certificates may be either regenerated – if possible – or manually adapted – in case of
unsupported language elements that may occur during the refinement – to cope with
possible changes.

The certificate can be distributed and analyzed independently by third parties. One overall
goal is to convince certification authorities and potential customers of the correctness of
PLC with the help of certificates. Since the certificates are independent of the original
development and its tools some confidential data (e.g., the certificate generation mechanism
and the analysis algorithms used to discover properties of the system) does not have to be
revealed during the process of convincing customers or certification authorities.

The described usage scenario can be adapted. It is, e.g., possible to integrate hand
written specifications and proofs.

4 The CertPLC Tool Environment and Coq

In this section we describe Coq specific parts of the CertPLC tool. We present some static
Coq code that is generic to our framework. Furthermore, we present some PLC specific
example Coq code – definitions and proofs – to demonstrate aspects of its generation.

Taking the semantics sketch of SFC in Section 2 the semantic representation of the SFC
structure is encoded in Coq as a transition system. For each given SFC SFC we generate
a Coq representation. It specifies a set of reachable states and a transition relation.

4.1 Realization Using Generic and Generated Files
In order to certify properties of PLC we need files that contain semantics of systems, inter-
esting properties and proofs of these properties. Some of these files are generic, i.e., they
can be used for a large class of PLC, properties, and proofs. CertPLC provides a library of
static files that contain generic aspects. Other files are highly specific to distinct PLC. For
each PLC CertPLC generates files that are just needed for this particular PLC, properties
formulated on it, and proofs that can be conducted on it.

In particular the following aspects are generic, thus, stored in static files:
Generic definitions and templates for SFC:

Datatype definitions and derived properties of these datatypes.
Definitions for building blocks: SFC action blocks, FBD blocks, and common combi-
nations of these blocks.
Generic semantics framework comprising an instantiable state transition relation and
a generic definition for a set of reachable states.

CertPLC is designed to support tactics for solving certain proof aspects. In particular
we distinguish:

Tactics that contain an overall proof structure, deal with certain system structures
and property structures.
Tactics that solve arithmetic constraints.

The following aspects are individual for each PLC, thus, they are generated:
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A state transition like representation of SFC formalized using generic SFC definitions
and a concrete definition of reachable states instantiating a generic SFC definition.
Lemmas containing system-specific facts on the PLC and their proofs.

Furthermore, the properties that shall hold are of course specific to each PLC. Their verifi-
cation is done by either using a tactic that assembles the generic and non-generic parts of
the proof or by some hand-written proof script adaptations.

4.2 Generic / Static Parts of the Coq Infrastructure
Here we describe generic parts of the Coq parts in our CertPLC tool framework. These
are realized as static Coq files and can used by the dynamically created files.

Datatypes

Datatypes which we have formalized for SFC comprise integers of different length (8,16,32
bit, unbounded) and bools. In Coq they are stored using the datatype nat of natural
numbers plus a flag that tags them as being members of an integer type. Operators working
on these integers perform operations compliant with the type. An easy integration of other
bounded integer formalizations (as used e.g., in [15]) is also possible.

Other datatypes like floating point are seldomly used in PLC applications. They are
not yet supported, although they could be integrated relatively easy: The basic semantics
definitions in our framework are able to support a much richer type system, even dependent
datatypes.

Building Blocks

Building blocks define common elements for the construction of PLC. Two levels of building
blocks can be distinguished:

Function blocks that are intended to become part of FBD.
Predefined action blocks. These may be, but do not have to modeled using FBD.

As mentioned in Section 3 we have formalized some of these blocks. Further formalization
of blocks should be done together with new case studies since different application domains
have different sets of FBD and SFC elements. FBD elements that are highly specific to a
single application or an application domain are highly common in PLC. For FBD we have
experienced even vendor specific elements for the basic arithmetic operations.

Generic Semantics Framework

The Coq realization of the SFC syntax follows the description presented in Section 2. For
compatibility with the EasyLab tool and to ease generation we distinguish between steps
and step identifiers in our Coq files, thereby introducing some level of indirection. Most
importantly, our semantics framework comprises a template for a state transition relation of
PLC systems and a template for defining the set of reachable states. In order to realize this,
we first define generic instantiable predicates that formalize a state transition relation. We
provide a predicate executeAction defined in Figure 3 to give a look and feel. It formalizes
the effect of the execution of an action block: The predicate takes two states (sometimes
called configurations c and c′) and returns a value of type Prop. We require four conditions
to hold in order to take a state transition:
1. An action block a needs to be active.
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Definition executeAction:
fun c c’ =>

let ’(m,activeA,activeS) := c in
let ’(m’,activeA’,activeS’) := c’ in

(exists a, In a activeA /\ m’ = a m /\
activeA’ = remove Action_eq_dec a activeA) /\
activeS = activeS’.

Figure 3 The executeAction predicate.

2. The memory mapping after the transition is the application of a to the previous memory
mapping. This is the updating of the memory by executing the action block.

3. The action block a is removed from the set of active action blocks during the transition.
4. The rest of the state does not change.
Another predicate stepTransition formalizes the effect of a transition from a set of SFC steps
to another. Here we require the following items:
1. The validity of the transition (guard expression).
2. The memory state may not change.
3. The activation of steps is conform to the semantics.
4. The activation and requirements of action blocks is semantics conform.

Using these predicates we define inductively the set of reachable states as a predicate.
It depends on an initial state (comprising a list of initially active steps), and a transition
relation. It is defined following the description in Section 2.

Structural Tactics

CertPLC supports structural tactics that perform the most basic operations for proofs of
properties. They work with semantics definitions based on our generic semantics framework.
Depending on the property such a tactic is selected by the user and applied as the first
step in order to prove the desired property. Different tactics have to be selected by the
user: Selection depends on whether the property is some kind of inductive invariant –
the default case mostly addressed in this paper – or another class of properties. We have
identified several other classes that are relevant for different application domains. Such a
tactic is applied as the first step in order to prove the desired property. These tactics already
perform most operations concerning the system structure. Especially for the non-standard
cases, tactics applications may leave several subgoals open. These may be handled with
more specialized tactics tailored for the corresponding characteristics of these proof-goals.

Arithmetic tactics

Arithmetics tactics solve subgoals that appear at later stages in the proof. They may be
called by structural tactics or work on open subgoals that are left open by these tactics.
They comprise classical decision procedures like (e.g., Omega [19] – its implementation in
Coq).

Up till now, we are only using existing tactics designed by others. However, we are
also working on tactics that combine arithmetic aspects with other system state dependent
information.
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( Init::nil ,
fun m => ((fun (x : int16) => x <int16 10 ) (m VAR_x) ),
Step2::nil )

( Step2::nil ,
fun m => ((fun (x : int16) => 1 ) (m VAR_x) ),
Init::nil )

( Init::nil ,
fun m => ((fun (x : int16) => x >=int16 10 ) (m VAR_x) ),
Return::nil )

Figure 4 Generated transition rules in Coq.

Lemma aux_1:
forall s, SFCreachable_states s -> (forall a, In a (snd s) ->

( a = action_Init \/ a = action_Step2 )).

Figure 5 An automatically generated basic property.

4.3 Semantics Definitions as State Transition Systems
As seen in Section 4.2 we only need to instantiate a template in order to create a system
definition that captures the semantics of our PLC. We need to provide at least a set of
initially active steps, a transition relation, and action block definitions.

For the initial step, we provide an initial memory state, where all values are set to a
default value and a single active entry step.

The transition relation is generated by translating the SFC transition conditions into
Coq. The generated Coq elements of the transition relation for the SFC depicted in Figure 1
are shown in Figure 4. Three tuples are shown, each one comprises a set of activated source
steps, a condition and a set of target steps activated after the transition. It can be seen that
the condition maps a variable value mapping – part of the SFC state – to a truth condition
– returning the type Prop. The types used in this expression are 16-bit integer types.

Appropriate action blocks are selected by their names. In addition, to this, we generate
several abstract datatype definitions for identifying steps with names and identifiers and
function blocks and action blocks.

4.4 Automatically Generated Proofs for System-specific Facts
CertPLC is designed to automatically generate for each system basic properties and proofs.
These prove some system-specific facts of the system. These proofs are used automatically
by tactics, but can also be used manually to prove additional user defined properties of
systems.

One important fact that needs to be proven is that only those action blocks may appear
in the set of currently active action blocks that do belong to the actual system definition.
Our proof generator generates an individual lemma and its proof for each PLC. Figure 5
shows such a lemma for an SFC that comprises just two possible action blocks: action_Init
and action_Step2. The predicate SFCreachable_states is created by instantiating a template
definition from the generic semantics framework for a concrete PLC. In and snd (second) are
Coq functions to denote membership in a set and select an element of a tuple, respectively.
In the case at hand snd selects the set of active action blocks from a state. The proof
script itself is also generated. It comprises an induction on reachable states of the concrete
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system. Depending on the number of action blocks in the PLC it can typically comprise
several hundred applications of elementary Coq tactics.

The certification of properties is the key feature of CertPLC. Users write their desired
properties in Coq syntax. This does not require as much understanding of the Coq envi-
ronment as one could think at a first glance. All that is required is writing a logical formula
that captures the desired property.

5 Automatic Certification of Invariant Properties

In this section we describe the principles of automatically proving properties correct. Proof
scripts encapsulating these principles are generated by the CertPLC framework compo-
nents as described in Section 4. We focus on inductive invariants.

5.1 Proof Structure for Inductive Properties
We start with an inductive invariant property I and an SFC description of a PLC SFC .
Following the ideas presented in [8] the structure of a proof contained in our certificates
is realized by generated proof scripts, generic lemmas and tactics. They establish a proof
principle that proves the following goal:

∀ s . s ∈ ReachableSF C =⇒ I(s)

The set of reachable states for SFC is denoted ReachableSFC . JSFC K specifies the state
transition relation (cf. Section 4). First we perform an induction using the induction rule
of the set of reachable states. This rule is automatically established by Coq when defining
inductive sets. After the application the following subgoals are left open:

I(s0) for initial states s0 I(s) ∧ (s, s′) ∈ JSFC K =⇒ I(s′)

The first goal can be solved in the standard case by a simple tactic which checks that all
conditions derived from I are fulfilled in the initial states.

For the second goal the certificate realizes a proof script which – in order to allow efficient
certificate checking – performs most importantly the following operations:

Splitting of conjunctions in invariants into independently verifiable invariants.
Splitting of disjunctions in invariants into two independently verifiable subgoals.
Normalizing arithmetic expressions and expressions that make distinctions on active
steps in the SFC.
Exhaustive case distinctions on possible transitions. Each case distinction corresponds
to one transition in the control flow graph of the SFC. A typical case on a transition
from a partially specified state s to a partially specified succeeding state s′ can have the
following form:

∀ s s′ .

I(s) and case distinction specific conditions on s ∧
case specific transition conditions that need to be true to go from s to s′ ∧
case distinction specific definition of s′ =⇒ I(s′)

The case distinction specific parts in such a goal can, e.g., feature arithmetic constraints,
which can be split into further cases.
Some of the cases that occur can have contradictions in the hypothesis. Consider for ex-
ample an arithmetic constraint for a variable from a precondition of a state contradicting
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with a condition on a transition. These contradictions result from the fine granularity of
our case distinctions. Some effort can be spent to eliminate contradicting cases as soon
as possible (cf. [8]) which can speed up the checking process.
Unlike in classical model-checking we get the abstraction from (possibly infinite) con-
crete states to (finite) arcs in the control flow graph almost for free. Thus, in our case
distinctions, we do not have to regard every possible state, we rather partition states
into classes of states and reason about these classes symbolically.
The final step comprises the derivation of the fact that the invariant holds after the tran-
sition from the transition conditions and the decision of possible arithmetic constraints.

[8] features a completeness result for a class of inductive invariants for a similar problem.

5.2 Proving Non Inductive Invariants
The main focus of CertPLC is on inductive invariants, However, additionally we have es-
tablished a collection of preproved lemmas useful for proving the (un-)reachability of certain
states. In particular the following cases turned out to be necessary in our case studies:

State s can only be reached via a transition where a condition e must be enabled, s is
not initial, e can never be true in the system, this implies s can not be reached.
Under system specific preconditions: Given an expression over states e, if e becomes true
the succeeding state will always be s. This is one of the few non-inductive properties.
However, the proof of this benefits from a proof that e can only become true in an
explicitly classified set of states. This can be provided by one of the techniques above.

Additional consistency properties may be certified by hand-written proof scripts. This,
however, requires some level of expertise in Coq.

6 Additional Implementation Aspects and Evaluation

Here we describe additional implementation aspects that are not covered in the previous
sections and provide a short evaluation.

The Coq representation generator is implemented as an Eclipse plug-in in Java using the
IEC 61131–3 meta model of EasyLab and the Eclipse Modeling Framework (EMF) [14]. Rep-
resentations and lemmas + proofs for basic properties are generated for Coq 8.3. Likewise
our libraries for tactics, lemmas and SFC action blocks are formalized using this version.
The realization of this representation generator can be regarded as a simple compiler or
model to model transformation. A kind of visitor pattern is used to pass through the model
representation in EMF format and emit corresponding Coq code. The generation of PLC
specific lemmata and their proofs is similar to code generation. A visitor picks all necessary
information and generates the lemma text and its proof script. Some storage of intermediate
information is needed. The setup is similar to the techniques used in [8] and [9].

Likewise our work builds upon the PLC semantics of EasyLab which we have formally
described [6] and realized in Coq. A combination of our SFC semantics with a semantics
of the instruction list (IL) language and an associated case study can be found in [7].

7 Conclusion and Future Work

In this paper we have presented the CertPLC environment for certification of PLC We
described the architecture of the tool framework, possible usage scenarios, the technical re-
alization, and parts of the Coq semantics. CertPLC is aimed at the formal certification of
PLC descriptions in the SFC language. Nevertheless, some features of FBD are integrated.



J. O. Blech 69

Future work shall extend this support and aims at integrating other languages from the IEC
61131–3 standard. At the current state, the implementation of the tool is sufficient to handle
SFC comprising standard elements and smaller invariants efficiently. We believe that the
generic parts common to most SFC verification work are realized in CertPLC. The tool
framework is designed such that it is easily extendable, e.g., with additional tactics, arith-
metic decision procedures and building blocks for SFC and FBD elements. Such additions
– which might be used only in certain problem and application domains – are subject to
future work.
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Abstract
Abstracted semantics of instructions of processor-based architectures are an invaluable asset for
several formal verification techniques, such as software model checking and static analysis. In
the field of model checking, abstract versions of instructions can help counter the state explosion
problem, for instance by replacing explicit values by symbolic representations of sets of values.
Similar to this, static analyses often operate on an abstract domain in order to reduce complexity,
guarantee termination, or both. Hence, for a given microcontroller, the task at hand is to find
such abstractions. Due to the large number of available microcontrollers, some of which are even
created for specific applications, it is impracticable to rely on human developers to perform this
step. Therefore, we propose a technique that starts from imperative descriptions of instructions,
which allows to automate most of the process.
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F.3.2 Semantics of Programming Languages

Keywords and phrases Model Checking, Static Analysis, Hardware Description Languages
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1 Introduction

Formal verification of software for embedded systems is crucial for multiple reasons. First
of all, such systems are often used in safety-critical fields of applications, such as chemical
plants, where failures of the controlling system may result in severe injuries or even fatalities.
Furthermore, applying corrections after delivering a system to the customer may be inpracti-
cable or costly, for instance in the case of devices embedded into cars. Such scenarios may
be avoided by formal verification, for instance software model checking [4, 2].

1.1 Focus
The focus of our work is model checking and static analysis [5] of binary code for microcon-
trollers. For this purpose, we need to lift the given concrete semantics of the instructions of
which the binary consists to their abstract counterparts in the respective domain. In the case
of model checking, the sought-after abstract version of each instruction should be able to
operate not only on conventional two-valued boolean logic, but on a variant of three-valued
logic. This allows for certain abstractions to be applied, which can help avoid the state
explosion problem. In the case of static analysis, the abstracted instruction should provide
information on memory locations it reads and writes, plus on how executing it affects the
control flow.
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Deriving abstract semantics from concrete semantics is a task that is usually performed
manually, thus exploiting the knowledge of an expert in the associated fields. While this
may be suitable for verification tools that are not likely to be modified very often, such
as for high level languages, this is not applicable in the embedded domain, where a wide
variety of different platforms is available to the developer. In case the platform is switched
to a different microcontroller, which uses a different instruction set, the previous work on
abstraction has to be done anew.

1.2 Approach
In order to reduce the necessary effort, we propose to conduct the abstraction on an already
executable form of the instructions, that is, a description in an imperative programming
language. In our setting, such a description can also be used to generate an instruction set
simulator, which can build the state space for model checking programs for the described
platform.

1.3 Contribution
In this paper, we make the following contributions:

We describe how microcontroller instruction sets can be translated into a form that allows
for automatic analysis of certain properties.
Based on the results of these analyses, we can then derive abstract semantics that are more
suitable for state space building than the concrete semantics. As an example, we detail
how to obtain the necessary semantics for an abstraction called delayed nondeterminism,
which can be used in model checking.
We detail the generation of static analyzers for different platforms based on the afore-
mentioned analyses.

1.4 Outline
The rest of this paper is structured as follows. In Sect. 2, we illustrate the tools we used
in our contribution. Next, to motivate our work, we provide an example that illustrates
the effects of an inappropriate modeling of instructions. The actual work on automatically
deriving abstract semantics is contained in Sect. 4. The next-to last section focuses on related
work (Sect.5), and Sect. 6 concludes this paper.

2 Preliminaries

In this section, we detail the environment of our contribution. First, we summarize the main
features of the [mc]square model checker, which uses several of the abstraction techniques
we are interested in. Next, we focus on a specific technique, called delayed nondeterminism.
Finally, we present some features of a hardware description language that serves as a starting
point for our automatic derivation of instruction semantics.

2.1 The [mc]square Assembly Code Model Checker
[mc]square [13] is an explicit-state model checker for microcontroller binary code. Given
a binary program and a formula in Computation Tree Logic (CTL), [mc]square can
automatically verify whether the program satisfies the formula, or create a counterexample in
case the program violates the formula. Atomic propositions in formulas may be statements
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about the values of general purpose registers, I/O registers, and the main memory. Currently,
[mc]square supports the Atmel ATmega16 and ATmega128, Intel MCS-51, and Renesas
R8C/23 microcontrollers. Furthermore, it can verify programs for Programmable Logic
Controllers (PLCs) written in Instruction List (IL).

[mc]square builds state spaces for conducting the actual model checking by means of
special simulators. These can execute the programs under consideration just like simulators
provided by hardware vendors, by applying the semantics of instructions to a model of the
system’s memories, and simulating the effects of interrupts, I/O ports, and on-chip peripherals.
The key difference, however, is that simulators in [mc]square support nondeterminism to
model unknown values, and also provide certain abstractions. Nondeterminism is introduced
into the system by I/O ports, timers, and interrupts. I/O ports communicate with the
environment, of which we have to assume that it can show any behavior, i.e., any value might
be present in I/O registers. Timers are modeled using nondeterminism because [mc]square
deliberately abstracts from time, resulting in the value of timer registers to be unknown.
Finally, interrupts are nondeterministic events because an active interrupt may occur or not
occur, and both cases need to be considered for model checking. In case a nondeterministic
bit has to be instantiated to a deterministic 0 or 1, the simulator performs the necessary
step.

The state creation process in [mc]square operates as follows:
Load a state into the simulator.
Determine assignments needed for resolving nondeterminism.
For each assignment

If the assignment indicates the occurrence of an enabled interrupt, simulate the effect
of that interrupt. Otherwise, execute the current instruction.
Evaluate truth values of atomic propositions.

Return resulting states.

Using and resolving nondeterminism creates an over-approximation of the behavior exhib-
ited by the real hardware, allowing [mc]square to check for safety properties. Instantiation
of n nondeterministic bits usually results in 2n successor states (i.e., exponential complexity),
which is why immediate instantiation of all nondeterministic bits is infeasible. Therefore,
several abstraction techniques are implemented in [mc]square to prevent this. Within
the scope of this paper, we focus on two of these: first of all, a technique called delayed
nondeterminism, details on which are given in the next section, and second, on techniques
that are enabled by static analyses. The latter is an optional preprocessing step performed
before conducting the actual model checking, during which analysis results can be used to
apply abstractions such as Dead Variable Reduction [17, 14].

2.2 Delayed Nondeterminism
An instantiation of nondeterministic bits results in an exponential number of successor
states. Deterministic simulation triggers instantiation whenever an instruction accesses a
nondeterministic memory cell, hence it cannot avoid the exponential blowup. However, at
least on RISC-like load-store-architectures like the Atmel ATmega microcontrollers, the
instruction in question usually only copies the content of the cell to some other cell, for
instance a register. It does not modify the value or use it as an argument, as would an
arithmetic or logic instruction. Delayed nondeterminism [11] is an abstraction exploiting this
observation. Instead of immediately resolving the nondeterminism, a nondeterministic value
is propagated through memory. Only when an instruction actually needs the deterministic
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value, the cell is instantiated. As a result, all the paths starting at the original read instruction
are not created at all. This approach proves particularly useful in case a value consisting
of multiple nondeterministic bits is read, of which only a few bits are actually needed, for
instance by an instruction testing a single bit.

2.3 Description of Microcontrollers Using SGDL
The concept of [mc]square requires the tool to be hardware-dependent. While this provides
great accuracy as to hardware peculiarities, and also the ability to provide easy to understand
counterexamples, it necessarily results in the obvious disadvantage of additional effort
whenever adding support for a new platform. In order to compensate for this, [mc]square
features an extensible architecture, and additionally contains a complete programming system
for creating simulators in a high level language. The language is called Sgdl, and a compiler
for Sgdl is part of [mc]square. Sgdl is a hardware description language specifically
tailored to describe microcontroller architectures, providing elements for describing entities
such as instructions, memories, and interrupts. In the following, we only introduce those
parts relevant for analyzing instruction semantics. Further details on Sgdl are provided in
[7, 6], and details on its precursor language from the AVRora project are available from [16].

I Example 1. Excerpt from the Sgdl description of the Intel MCS-51

format OPCODE_IMM8_IMM8 = {opcode[7:0], imm8_1[7:0], imm8_2[7:0]};

subroutine performCJNE(leftVal:ubyte, rightVal:ubyte,
target:SIGNED_IMM8) : void {
if (leftVal != rightVal) {

$pc = $pc + target;
if (leftVal < rightVal) $CY = true;
else $CY = false;

}
};

instruction "cjne_acc_direct_rel" {
encoding = OPCODE_IMM8_IMM8 where {opcode = 0b10110101};
operandtypes = {imm8_1 : IMM8, imm8_2 : SIGNED_IMM8};
instantiate = {};
dnd instantiate = {};
execute = {

performCJNE($ACC, $sram(imm8_1), imm8_2);
};

};

In the example, an instruction called cjne_acc_direct_rel is declared. The binary encoding
of this instruction consists of an 8 bit wide opcode and two operands, each of which is also 8
bits wide. Within the scope of this instruction, these 8 bit operands are to be interpreted as
signed 8 bit integers, using two’s complement representation. The concrete semantics are
described within the execute section of the instruction element. Global variables, i.e., the
resource model of the simulated device, are accessed by prefixing the according identifier with
a $ or a # (not in this example), whereas local variables are always accessed with neither.
Function calls are also possible, in this example for externalizing the CJNE functionality,
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which is shared by the different variants of the CJNE instruction (the MCS-51 instruction
set contains four of these, each for a different addressing mode).

In case an instruction may encounter nondeterministic values in some addresses it
accesses, the developer can indicate that the simulator should instantiate these by adding an
instantiate entry to the instruction. Any address contained in the set will be instantiated.
The dnd instantiate section has the same semantics, but is used only when the simulation
type is set to use delayed nondeterminism.

Global memories in Sgdl consist of two parallel structures to allow for nondeterminism.
The first structure is the value, which is accessed using the aforementioned dollar symbol.
The second structure is the nondeterminism mask. Both structures together represent values
in ternary logics, with the semantics that a bit is nondeterministic iff its nondeterminism
mask is set to 1. If the mask bit is set to 1, then the content of value becomes irrelevant, as
logically, it could be either 0 or 1. Hence, generated simulators force it to 0, thus guaranteeing
consistent states and additionally removing a potential distinguishing feature of states (which
in some cases reduces the size of the state space).

A typical instruction set description in Sgdl contains between 2.000 and 4.000 lines of
code, depending on the number of instructions and overall complexity of the device.

2.4 Notations
I Definition 2. Alphabet for ternary logics
The alphabet for ternary logics is defined as Σ := {0, 1, n}. A word of length m over Σ∗ is
then a sequence of letters representing bits that are either explicitly 0, 1, or could be both.

I Example 3. The word w := 000n 0000 can be instantiated to the explicit values 0000 0000
and 0001 0000.

I Definition 4. Values of a memory cell
Let x be a memory cell of m bits width. Then

val(x) denotes the content of x.
ndm(x) denotes the content of the nondeterminism mask of x.

val and ndm are bit vectors that can be combined to represent a value in ternary logic.
Whenever a bit in ndm(x) is set to 1, then that bit is considered to be n ∈ Σ, i.e., the content
of val(x) for that bit becomes irrelevant.

3 A Motivational Example

As an example, consider the following instruction, which is part of the instruction set of the
Atmel AVR family of microcontrollers:

IN R0, TIFR

This instruction reads the value of the timer interrupt flag register, TIFR, and copies it into
the general purpose register (GPR) R0. No flags are altered by this instruction. Accordingly,
the semantics of the instruction, as depicted in the instruction set manual (ISM) are

Rd← I/O

where Rd is a GPR, and I/O is an I/O register. Being an I/O register, TIFR may contain
nondeterministic data. Hence, we either need to instantiate all nondeterministic bits immedi-
ately, or propagate this information into the destination, in this example R0. For simulation
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(i.e., state space building), the optimal abstract semantics would be

val(R0)← val(TIFR) (1)
ndm(R0)← ndm(TIFR) (2)

To achieve the latter, we have several options:
1. Implement explicit code for copying. This approach requires a human developer to

inspect the instruction semantics in the ISM, and implement the necessary code into the
simulator.

2. Naive automatic approximation. Whenever an instruction depends on at least one
nondeterministic input bit

Check if all output bits allow nondeterminism. To obtain the output bits without
analyzing the instruction code, it suffices to execute the instruction once, then revert
the resulting machine state to the original state.
If all output bits allow nondeterminism, set all of them to nondeterministic.
Else instantiate all input bits, and execute the instruction using the concrete semantics
from the ISM.

While the first approach, using a developer, can always yield the optimal solution, it is
also the most inappropriate one. Instruction sets usually consist of hundreds of instructions,
and each of those has to be lifted from the concrete to the abstract. Furthermore, this is
a very simple example, in which the developer can hardly introduce any mistakes. Other
examples, like complex arithmetic instructions, can easily cause the developer to forget
maybe the one or other flag bit, which may result in the state space generator containing a
correct implementation for one simulation type (e.g., fully deterministic simulation based on
the concrete semantics), and a faulty one for another type (e.g., delayed nondeterminism).

Compared to this, the proposed naive implementation of the automatic approach certainly
has the advantage of far less manual effort. Moreover, it guarantees an over-approximation
of instruction behavior, therefore preserving the model checker’s ability to check safety
properties. The disadvantage, however, is that it is grossly inaccurate. Consider the following
machine state:

val(R0) = 0000 0001 (3)
ndm(R0) = 0000 0000 (4)

val(TIFR) = 0000 0000 (5)
ndm(TIFR) = 1000 0000 (6)

Executing the example instruction using the naive abstract semantics will change this to the
following machine state:

val(R0) = 0000 0000 (7)
ndm(R0) = 1111 1111 (8)

val(TIFR) = 0000 0000 (9)
ndm(TIFR) = 1000 0000 (10)

That is, the source register, TIFR, retains its single nondeterministic bit, while the previously
deterministic target register R0 becomes completely nondeterministic. The consequences of
this change depend entirely on the next instructions accessing R0 (note that this need not
necessarily be the immediately next instructions). In case the next instruction accessing R0 is
a bit test instruction such as SBIC (i.e., skip next instruction if bit is clear), only a single bit
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may be instantiated. In this case, the naive approach would yield the desired result, which is
to avoid instantiation until the value of nondeterministic bits is actually needed. However,
in case the next instruction is a comparison, such as CPI R0, 128, the naive approach will
result in an instantiation of 8 nondeterministic bits, yielding 256 successor states. Compared
to this, the optimal approach would copy only 1 nondeterministic bit from TIFR to R0, thus
the instantiation triggered by executing CPI would result in only 2 successors.

The disadvantage of the naive implementation is due to the fact that it marks all bits
written by the instruction as nondeterministic. Such an approximation is overly pessimistic
for IN, as there is a direct mapping of input bit i to output bit i in the equally wide registers
TIFR and R0. For operations such as ADDC Rd, Rr (addition with carry), however, there is
no such mapping. Instead, the value of a target bit may depend on the values of several bits
in the input. Thus, without any additional knowledge about the actions performed by an
instruction, the pessimistic assumption that any output may result, is actually an appropriate
one. In the following sections, we illustrate a concept how to gain such information, and
produce a smaller over-approximation.

4 Deriving Abstract Semantics

In this section, we focus on abstract semantics for delayed nondeterminism and static analysis.
Throughout the section, we use the term input of an instruction as a synonym for the sets of
locations read by it, and analogously the term output for the set of written locations.

4.1 Prerequisites
Certain invariants regarding memory locations must always hold in both the concrete and
the abstract semantics of instructions, as they are needed to preserve expressiveness:

Operands. We assume that operands are always deterministic. This is guaranteed by
construction, as they are instantiated once by the disassembler.
Addresses. Addresses must always be deterministic, as a nondeterministic address used
in an instruction may result in any (visible) address to be read or written. Especially on
devices with memory-mapped I/O, this could also have an impact on device behavior.
Control flow. Any memory location relevant for control flow must remain deterministic.
This applies to status registers, but not to general purpose registers. Nondeterministic
control flow is undesirable because of a severely reduced expressiveness (e.g., a status
register indicating that the last computation yielded a result that was zero, negative,
and odd). The direct implication is that control-flow relevant instructions must always
operate on deterministic data.
Arithmetics and logics. Any computation involving a nondeterministic value yields
a nondeterministic result. If the target of the assignment requires the result to be
deterministic, then all variables involved in the computation have to be instantiated first.

4.2 Identifying the Control Flow Type
As pointed out in Sect. 4.1, all control-flow relevant operations require their input to be
deterministic. The task at hand is therefore to separate jump and branch instructions from
arithmetic/logic and data transfer instructions. Furthermore, for our second goal, generating
an operative static analyzer, we do not only need to generate transfer functions for each
instruction (i.e., an abstract semantics), but also establish a flow relation for creating the
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conduct RDA

RD from entry node? branch

regular jump

reads/writes stack top?

call return

1 RDs 2 RDs

yes no

write
read

initial classification
refinement none

Figure 1 Classification strategy for control flow type.

control flow graph (CFG). The latter requires analyses to find out the number of succeeding
instructions, and their addresses.

Both goals can be achieved by means of certain static analyses of the execute sections
and subroutines in the Sgdl description. As the language supports function calls, all
analyses have to be conducted interprocedurally. Three analyses suffice: Reaching Definitions
Analysis (RDA), Read Variable Analysis (RVA), and Written Variable Analysis (WVA).
RDA is a standard textbook analysis [10], RVA is basically the collecting semantics of Live
Variables Analysis (LVA) (i.e., an LVA with a constant empty kill function), and WVA is
the counterpart of RVA with respect to written variables. The overall idea is to analyze
write accesses to the program counter. Figure 1 illustrates the classification algorithm, which
works as follows:

Construct the control flow graphs for the current instruction and all called functions.
All instructions implicitly increment the program counter by their own size, so insert one
reaching definition (RD) into the entry node of the instruction CFG.
Conduct the analyses.
Classify instructions based on the number and origin of RDs reaching the exit node:

1 RD from the entry node: regular instruction
1 RD, but not from the entry node: program counter is inevitably overwritten with a
single value, i.e., an unconditional jump instruction
2 RDs: a conditional jump

Refine the classification: jump instructions manipulating the stack could be call or return
instructions, depending on whether they read / write the content of the program counter
from / to the stack. Use RVA and WVA results to distinguish these.

The second step, obtaining the value written at runtime into the program counter, is
part of the next section. Technically, it consists of two steps: first, use the RDA to locate
assignments to the program counter, and second, backtrack and collect all subexpressions on
the right hand side of such assignments. The resulting expression can then be evaluated at
runtime on concrete instances of the instruction.
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4.3 Analysis of Data Flow
An analysis of the data flow has to identify the effects of individual assignments to global
variables. The goal of the analysis is to identify possible propagations of nondeterminism and
also the opposite, variables that must not be nondeterministic when executing the instruction.
Formally:

Let α be an instruction consisting of individual statements α0, . . . , αm,

αi ∈ {memidentifieri(addr_expri)← expri,

localvar_identifier← expri,

call fi(argsi)},
1 ≤ i ≤ m (11)

Let Addrα be the set of identifiers known to be used as an address within the scope of α,
and initialize Addrα := ∅. Let Var(expr) be the set of variables occurring in expr . Let
C ⊆ N × Addresses × Addresses be a copy relation, wherein each entry is of the form
(instruction id, source, target).

I Definition 5. Initial data flow analysis algorithm
If α has been identified by the control flow algorithm as a jump, skip it. Else:

For all αi ∈ α
If αi = memidentifieri(addr_expri)← expri:
Addrα := Addrα ∪ Var(addr_expri)
Addrα := Addrα ∪ Var(addr) for all addresses addr occuring in expri.
If expri = memidentifierj(addr) for some memory identifier j and address addr, add
an entry (i, memidentifierj(addr),
memidentifieri(addr_expri) to the copy relation C

If α = call fi(argsi)}: apply this algorithm to the called function to obtain a summary
of function effects. Join resulting summary into analysis information of caller.

Next, refine the initial analysis results by collecting subexpressions referenced in expres-
sions. The goal is to relate identifiers used as addresses back to the operands and global
resources visible at the beginning of the instructions’s execute block. This can be achieved
by a backwards search through the CFG. In case the analysis should fail in this for a given
expression (possible due to branches in the CFG, indicating the value for a subexpression is
not unique), there are two possible continuations, depending on the type of the expression:
if the expression is known to be used an an address, either in reading or in writing, we need
to mark all identifiers used in the instruction for instantiation. Otherwise, if the expression
is known to be used as the right-hand side (rhs) value in an assignment, we have to replace
it by a value that is marked completely nondeterministic.

4.4 Synthesis of Abstract Semantics
Following completion of control and data flow analysis, we can generate abstract semantics
for each instruction.

4.4.1 Delayed Nondeterminism
Instructions are considered as a list of individual assignments. For each of these, apply a
translation rule. It is necessary to also add the original concrete semantics to the output
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because it might be necessary, during execution, to revert to it, and in the process of that,
instantiate all nondeterminism in the input. This can happen if at least one of the assignments
tries to write to an address that has to remain always deterministic (cf. the requirements
detailed in Sect. 4.1).

I Definition 6. Translation rules for assignments
Let αi = memidentifier(addr_expr)← expr.

Let Instα be the set of locations that have to be instantiated before executing α. Initially,
Instα := Var(addr_expr).

Replace addr_expr, expr by the collected subexpressions, such that both expressions
depend only on global variables and operands. If this is not possible because the analysis
has failed, see below for a recovery strategy. Else, the abstract version α̂i of α is defined by

If the copy relation C created during analysis contains an entry (i, src, trgt), then α̂i :=
[val(src) := val(trgt);ndm(src) := ndm(trgt)]
Else (data is modified, so instantiate to generate concrete values)

Instα := Instα ∪Var(expr)
α̂i := αi

Recovery strategy: for expressions whose composition cannot be analyzed, the obvious
solution is to assign a nondeterministic value to the target. In case this is not desirable,
for instance because the target is a frequently accessed or very wide register (i.e., many
nondeterministic bits would be created), a fallback would be to instantiate every input of
this instruction, and use the concrete semantics instead. Thus, no improved semantics is
available for this instruction, but at least it is guaranteed that the abstraction would not
actually result in state explosion instead of preventing it.

Using these translation rules yields the semantics of delayed nondeterminism. An obvious
improvement concerns the condition for instantiation, which, in the above version, is if any
computation is performed, then instantiate all inputs. Therefore, all arithmetic instructions
will instantiate all of their inputs because they necessarily contain at least one such αi. A
more permissive condition exploits the computation rules for ternary logic:

For all operators in the input language, i.e., +,−, ∗, /, . . ., introduce new abstract versions
+̂, −̂, ∗̂, /̂, . . .. Semantics are those of their concrete counterparts, except that the abstract
versions operate also on nondeterministic (n) bits. For instance, 0 +̂n = n +̂ 0 = 1 +̂n =
n +̂ 1 = n, 0 ∗̂n = 0, 1 ∗̂n = n, and analogously for all other operators.
For each rhs expression in an assignment, create an abstract syntax tree representation
Conduct a tree pattern matching, as described by Aho et al. [1], and apply tree rewriting
rules, to replace the operators in the expression by their abstract counterparts.

These advanced rules then leave only two cases for forced instantiation of all inputs: first,
an address expression that cannot be discomposed into its components, and second, an
attempted write to a location marked as must always remain deterministic.

4.4.2 Static Analysis
Using the results from the the control flow type analysis, it is possible to identify, for each
instruction, the number of successors and their address, either absolute or relative. Therefore,
given a program consisting of instances of these instructions, we can reconstruct the control
flow graph from the disassembled binary representation of the program. Furthermore, the
data flow analysis algorithm presented in the last section necessarily identifies read and
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written memory locations, i.e., provides a starting point for generating transfer functions for
analyses such as RDA and LVA.

[mc]square already provides a framework for static analysis, which can conduct analyses
in case the developer provides a CFG and transfer functions for the named analyses. Therefore,
the actual generation of an operative analyzer is reduced to the task of generating the necessary
code from the existing analysis results.

5 Related Work

HOIST is a system by Regehr [12] that can derive static analyzers for embedded systems, in
their case for an Atmel ATmega16 microcontroller. This is similar to our approach. The key
difference is that they do not use a description of the hardware, but either a simulator or the
actual device. For a given instruction that is executed on the microcontroller, HOIST conducts
an exhaustive search over all the possible inputs, and protocols the effects on the hardware.
These deduced transfer functions are then compacted into binary decision diagrams (BDDs),
and eventually translated into C code. While this mostly automatic approach can provide
very high accuracy in instruction effects, it certainly has the disadvantage of exponential
complexity in the number of parameters for an instruction. Our approach does not depend
on this, and is also automated, but the correctness of the results depends on the correctness
of the description of the hardware. Moreover, HOIST is limited to analyzing ALU operations,
whereas our analyzer, Sgdl-Sta, can analyze any kind of instruction.

Chen et al. [3] have created a retargetable static analyzer for embedded software within
the scope of the MESCAL project [8]. Similar to our approach, they process a description of
the architecture, which in their case is called a MESCAL Architecture Description (MAD).
Automatic classification of instructions for constructing the CFG is apparently also possible
in their approach, and they hint at that this is possible due to some attributes present in the
MAD that allow identification of, for instance, the program counter. However, no further
detail is provided on the ideas involved in classification. The generated analyzer is suitable
for analyzing worst case execution time of certain classes of programs intended to run on the
hardware.

Schlickling and Pister [15] also analyze hardware descriptions, in their case VHDL code.
Their system first translates the VHDL input into a sequential program, before it applies
well-known data flow analyses such as constant propagation analysis. These analyses are
then used to prove or disprove worst case execution time properties of the hardware. In
contrast to this, we concentrate on the way the resource model is altered by instructions,
deliberately neglecting timing.

Might [9] focuses on the step from concrete to abstract semantics for a variant of lambda
calculus. In their examples, they also relate their work to register machines, which, albeit
a concept from theory, share some commonalities with real-world microcontrollers. They
point out the similarities between the two semantics, and how to provide analysis designers
with an almost algorithmic approach to lifting the concrete to the abstract. Hence, the
foremost difference to our approach is that their contribution is certainly more flexible, as
they rely on an expert. Compared to this, our approach is intentionally restricted to only a
few abstractions, but for these, it is fully automated.
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6 Conclusion

This paper shows that a single description of an instruction-set architecture, given as an
implementation in a special-purpose imperative programming language, can serve as a
starting point for generating several verification tools. We have shown how to switch from
register transfer-level semantics based on concrete values to a partially symbolic technique,
called delayed nondeterminism. To this end, we have described static analyses used on the
imperative descriptions, by which the intention behind instructions becomes visible and ready
for translation. Furthermore, these analyses can also be used to obtain a characterization of
instructions needed for analyzing the code for the target platform.

The concepts developed in this contribution should be applicable not only to [mc]square
and the Sgdl system, but to any model checker interpreting assembly code. In order to
verify the concepts, we have implemented a static analyzer for Sgdl, called Sgdl-Sta.
So far, we have successfully verified the ideas concerning classification of instructions into
control flow classes. Classifying the instruction sets of both the ATmega16 and the MCS-51
microcontrollers can be achieved in less than 10 seconds. Additionally, we have used the
analysis results for generating an operative static analyzer for the ATmega16 simulator,
which enables a variant of Dead Variable Reduction [17] for this simulator. Hence, a direction
for future work will be the implementation of the other concepts, especially the creation of
the abstract semantics for delayed nondeterminism, and a comparison between the derived
and the manually implemented versions of this abstraction technique.

Clearly, the results indicate that abstraction for hardware-dependent model checkers can,
to a certain degree, be achieved automatically. Thus, it is not strictly necessary to have an
expert in both model checking and embedded systems available, who is then to perform a
fine-tuning of such tools. A practical implication of this improvement is that it might be
possible for a non-expert to retarget a model checker to a new platform, at least in case the
set of automatically derivable abstractions suffices. Therefore, we consider it necessary to
conduct further research on other abstractions, and figure out to what extent it is possible
to derive their semantics as well. Obvious directions for this include lifting the concrete
semantics to interval semantics (i.e., the value of a memory cell is only known to be in an
interval, instead of several distinct values), and easing our restrictions on nondeterministic
control flow.
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