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Abstract
Finding reliable train connections is a considerable issue in timetable information since train

delays perturb the timetable daily. We present an effective probabilistic approach for estimating
the reliability of connections in a large train network. Experiments on real customer queries and
real timetables for all trains in Germany show that our approach can be implemented to deliver
good results at the expense of only little processing time. Based on probability distributions for
train events in connections, we estimate the reliability of connections. We have analyzed our
computed reliability ratings by validating our predictions against real delay data from German
Railways. This study shows that we are able to predict the feasibility of connections very well.
In essence, our predictions are slightly optimistic for connections with a high rating and pretty
accurate for connections with a medium rating. Only for the rare cases of a very low rating, we
are too pessimistic.

Our probabilistic approach already delivers good results, still has improvement potential, and
offers a new perspective in the search for more reliable connections in order to bring passengers
safely to their destinations even in case of delays.
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1 Introduction and Motivation

Timetable information systems have the ability to find attractive train connections according
to criteria such as travel time, number of transfers, price, etc. The reliability of the connections
plays a crucial role since the timetable continually gets perturbed because of delays of trains.
Connections, which were found according to the timetable, may get infeasible if a scheduled
transfer is no longer possible due to arriving too late for the transfer.

State-of-the-art commercial systems predict the arrival and departure times of trains by
computing scalar delay values given in minutes. Consequently, the reliability of connections
can be rated based on only one possible delay value for each departure and arrival event in
the connection. The drawback of this approach is that the predicted delays often deviate
from the actual delays. An obviously better approach, which we present in this paper, is
to consider all possible delay values weighted by the probability of occurrence. For each
departure and arrival event of the trains in a connection, we calculate for each possible
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36 Reliability and Delay Distributions of Train Connections

delay value the probability that the train has this delay. These probability distributions are
calculated based on timetable data, latest available delay data, and waiting time policies for
transfers between trains.

Our Contribution. We introduce the reliability rating rel, which scores the reliability of
a connection in percentage terms. Our probabilistic approach allows us to calculate delay
distributions for connections and to reasonably estimate their rel-rating in order to advise
passengers against choosing connections tending to break and guide them towards more
robust ones. To our knowledge, we are the first to extend distributions for departure and
arrival events of trains to explicitly model the reliability of transfers and connections. In this
paper, we will not only present the mathematical formula to calculate these distributions
but also a computational study which demonstrates promising run-time behavior and good
quality of the results of a prototype implementation. In the outlook in Section 5.2, we
will also mention how we plan to use these distributions to improve the search for reliable
connections in our existing multi-criteria timetable information system MOTIS [5].

Related work. Delay propagation and prediction has been studied by means of deter-
ministic and stochastic models as well as simulations, especially in the field of decision
support for network dispatchers and timetabling. Experiments with a deterministic model by
Müller-Hannemann and Schnee showed that timetables can be updated with a large amount
of delay and forecast data in real time to allow for up-to-date timetable information. They
continuously adjusted their graph representing the schedule according to the real-time data
to always represent the current situation. In their multi-server architecture each timetable
information server only spends 0.1% of the day with updating and maintenance [6]. Simula-
tions are the basis of the predictions by Lu et al. [3] for various network topologies (single
and multi-track) and Murali et al. in [7]. The latter estimated delays for freight trains only.

Meester and Muns used so-called phase-type distributions in their model for stochastic
delay propagation in railway networks in [4]. Carey and Kwieciński also use approximations
in their model [2]. However, in those papers waiting policies are not respected. A nice
overview of models can be found in Yuan’s PhD thesis [8]. The stochastic model which comes
really close to our approach is due to Berger et al. [1]. They basically have the same model
for train distributions and also respect waiting policies. However, they concentrate on trains,
not on entire connections, and do not investigate reliability. We will enhance their formulas
to calculate probability distributions for connections consisting of several trains and transfers
between them.

Overview. This paper is organized as follows. In the next section, we will briefly introduce
the timetable data and operational concepts. In Section 3, we will describe our probability
distributions and how we calculate them in detail. Our experiments and computational
results will be reported on in Section 4. Finally, we conclude and present an outlook on our
future work.

2 Train Operation

The timetable. For our work we use real-world timetables without simplifying assumptions.
The timetable is the current timetable of German Railways Deutsche Bahn AG. Besides the
scheduled times for arrival and departure events we also respect the transfer times required
to change trains (dependent on the size of the station and the platforms the trains stop at).
There is also the possibility to walk a short distance from one station to another, e.g. from a
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main station to its smaller local train station, called a footpath.

Waiting policies. In daily operations, a set of policies, the waiting time rules, describes
the maximum amount of time a train will wait to allow passengers a transfer from a delayed
feeder. Each train may have a number of feeders with different applicable waiting times. The
connecting train will leave delayed if one of its feeders is delayed and the arrival time plus
the required transfer time from the feeder is not later than the scheduled departure time
plus waiting time.

Real-time data. We constantly receive current delay data for German trains in a live-feed
from Deutsche Bahn AG. This delay data is integrated into our representation of the timetable
and used to update our probability distributions. These messages state that a train has
arrived or departed at a certain point in time (either on time or delayed), and are denoted
as is-messages.

3 Probability Distributions

3.1 Our Model
A timetable TT := (TR, S,EC) consists of a set of trains TR, a set of stations S, and a
set of elementary connections EC. Each ec ∈ EC is defined by its events deps1 and arrs2

corresponding to the departure event at station s1 ∈ S and the arrival event at station s2 ∈ S.
Each train tr ∈ TR consists of a set of successive elementary connections eci, where the arrival
event of eci and the departure event of eci+1 are at the same station. Let DEP be the set of
all departure events, ARR the set of all arrival events, and EVENTS := DEP ∪ARR. For
each event event ∈ EVENTS, sched(event) : EVENTS 7→ N is the scheduled time-stamp of
the event given in minutes. A delay d ∈ Z is the difference between the scheduled time-stamp
and the actual time the event occurs. According to a policy in German Railways operation
no train is allowed to depart before its scheduled departure time. Therefore, departure delays
are non-negative.

The minimal standing time stand(tr, s) defines how long train tr has to wait at station s
after its arrival and before its departure. The necessary transfer time from a train tr1 ∈ TR
into another train tr2 ∈ TR is denoted by transfer(tr1, tr2). According to the waiting time
rules, the maximal waiting time of tr2 for tr1 at station s ∈ S is defined by wait(tr2, tr1).
At a given station s, a train f ∈ TR is a potential feeder for another train tr ∈ TR if a
transfer from f into tr is possible, tr would wait for f for at least 1 minute according to
the waiting time rules, and the difference between the scheduled departure time of tr and
the scheduled arrival time of f is not greater than a given parameter γ. Currently, we use
γ = 30, since the transfer times are at most 20 and the waiting times at most 10 minutes.
For each departure event deptr,s of train tr at station s there exists a set of feeder trains
FD(tr, s) ⊂ TR. The maximal waiting time of tr2 at station s for any feeder is defined by
waitmax(tr, s) := maxf∈FD(tr,s){wait(tr, f)}.

Let (Ω, A, P ) be a discrete probability space with sample space Ω, σ-algebra A, and
probability measure P . We use discrete random variables X : Ω 7→ N for mapping
train events to time-stamps. We define the discrete random variable Xevent : Ω 7→
{sched(event), sched(event) + 1, . . .} which is the actual time of event ∈ EVENTS given
in minutes.

We assume that the distributions of the arrival times of all feeder trains of a given train
are stochastically independent. This assumption does not hold for all feeder trains, especially
if two feeders have a common feeder or are disturbed by a common reason (e.g. a problem at
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38 Reliability and Delay Distributions of Train Connections

a certain track). The derived delay distributions may be biased as conjectured by Meester
and Muns [4]. This fact warrants further investigation.

Input distributions. For each elementary connection ec of train tr from deptr,s1 to
arrtr,s2 , there is a set Xtravel = {Xd

travel | d ∈ N} of probability distributions for the travel
time. Xd

travel is the conditional distribution of the travel time of ec given a departure delay
d ∈ N0 in minutes. They represent the potential of making up for the current delay and the
possibility of further delays on ec. We generate these travel time distributions depending on
the scheduled travel time of the elementary connections.

3.2 Distributions for Connections
For each train event, we have already defined the scheduled time sched(event). In fact, the
actual time of an event could be shifted according to delays. We intend to predict the delay
of an event by analyzing the time interval in which the event could take place. For each
minute in this interval, we determine the probability that the train event actually occurs at
this point in time. Hereby, a probability distribution arises and can be used as a prediction
for the event time. In this section, we explain in detail how probability distributions of train
connections are calculated.

Definition of connection. A connection c defines a feasible path s1, s2 . . . sn between
a start station s1 and a target station sn by a set of successive elementary connections
ECc = {ec1, ec2, . . .} ⊂ EC. Two successive elementary connections eci and eci+1 either
belong to the same train tr, or to two different trains tr1 and tr2. In the second case, there
is a feasible transfer between tr1 and tr2 at the corresponding station s. The difference
between the departure time of train tr2 and the arrival time of train tr1 at station s is greater
than or equal to the required transfer time between these two trains, which is denoted by
transfer(tr1, tr2). There also exists a special case of transfers, where after leaving train tr1
at station s1 a footpath is used in order to walk to another station s2 and to enter the
departing train tr2. In this case, the required walking time is used as the required transfer
time between the two trains. A connection is denoted as direct connection if all elementary
connections ECc belong to the same train.

Definition of probability distribution. Let tstart, tend ∈ N be two timestamps defining
the bounds of a time interval. The probability distribution of a departure event is determined
by calculating the probabilities P

(
Xdep = t

)
for all t ∈ [sched(deptr2,s), tend]. The right

bound tend of the interval is chosen so that there is no time t > tend with P
(
Xdep = t

)
> 0.

The probability distribution of an arrival event is determined by calculating the probabilities
P
(
Xarr = a

)
for all a ∈ [tstart, tend], whereby the bounds are chosen so that there is no

time a /∈ [tstart, tend] with P
(
Xarr = a

)
> 0. We denote a distribution of an event by

pd(event) ⊂ Rw where w = (tend − tstart) + 1, and define it as a tuple of probabilities
according to all minutes in the corresponding time interval. The distribution of a connection
pd(c) is equal to the distribution of its last arrival event.

3.2.1 Calculation of Distributions
Considering ECc = {ec1, ec2, . . .}, starting with the first departure of the connection, we
calculate the distribution of each event until we reach the last arrival. We have to distinguish
between departures with and without transfer at the station. In this section, we explain in
detail how the probability distribution for a departure event after a transfer is calculated.
Then, we will mention how this approach is modified for the other cases. Figure 1 illustrates a
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departure of train tr2 after a transfer from train tr1, with FD(tr2, s) = {f1, f2}. Theoretically,
tr1 could also be a feeder of tr2. In that case, it is treated separately in some of the
formulas and not together with the other feeders. Recall that a train has to wait at a
station for a minimal standing time after its arrival to allow boarding and leaving the train.
Therefore, the distribution of the departure event deptr,s depends on the preceding arrival
arrtr,s, on the set of its feeders FD(tr, s), and in case there is a transfer into tr2, also on the
arriving train tr1. The feasibility of the transfer only depends on whether or not the transfer
time transfer(tr1, tr2) from tr1 to tr2 is satisfied. Note that the feeders can only introduce
additional delays.

tr
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f
2

arrivals
at station s

dep
tr, s

transfer
2

transfer
1

transfer

tr
2

standing
tr

2

Figure 1 Departure of train tr2 after a transfer from train tr1.

Considering the departure event deptr2,s after a transfer from train tr1, now, we are able
to calculate the probability distribution of this event. The departure takes place in the
interval [sched(deptr,s), tend]. We distinguish between these cases:
1. Train tr2 departs at its scheduled time sched(deptr,s).
2. Train tr2 departs at time t ∈ [sched(deptr,s) + 1, sched(deptr,s) + waitmax(tr, s)]. In this

time interval the train may have to wait for its feeders.
3. Train tr2 departs at t ∈ [sched(deptr,s) + waitmax(tr, s) + 1, tend]. In this time interval the

train does not have to wait for any feeder.
In all three cases, a feasible transfer from tr1 to tr2 has to be ensured. In the following, we
present the formulas to calculate the probabilities for the minutes of each subinterval.

3.2.1.1 Departing at the scheduled time

A departure at time t = sched(deptr2,s) is possible if
tr2 arrives at time t2 ≤ t− stand(tr2, s),
tr1 arrives at time t1 ≤ t− transfer(tr1, tr2),
and tr2 does not have to wait for any other feeder.

We use this formula to calculate the probability:

P
(
Xdep = t

)
= P

(
Xarrtr2,s

≤ t− stand(tr2, s)
)
· P
(
Xarrtr1,s

≤ t− transfer(tr1, tr2)
)

· PnoWaitingForFeeders
(
tr2, s, t

)
The term PnoWaitingForFeeders

(
tr2, s, t

)
corresponds to the probability that the train tr2 does

not have to wait for any other feeder. The formula is omitted due to space restrictions.
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3.2.1.2 Departing within the waiting interval

Train tr2 departs delayed at time t ∈ [sched(deptr2,s) + 1, sched(deptr,s) + waitmax(tr, s)] in
one of the following cases:
1. The delayed departure at time t is because of a delay of arrtr2,s. This happens if

tr2 has a delay and arrives exactly at time t2 = t− stand(tr2, s),
tr1 arrives at time t1 ≤ t− transfer(tr1, tr2),
and tr2 does not have to wait longer for any other feeder.

2. The delayed departure at time t is only because of waiting time rules. This happens if
tr2 arrives at time t2 < t− stand(tr2, s),
tr2 has to wait for tr1 or for at least one of the other feeders. This probability is
denoted by Pwaiting(tr2, s, t) (formula omitted due to space restrictions).

We use this formula to calculate the probability:

P
(
Xdep = t

)
= P

(
Xarrtr2,s = t− stand(tr2, s)

)
· P
(
Xarrtr1,s ≤ t− transfer(tr1, tr2)

)
· PnoWaitingForFeeders(tr2, s, t)

+ P
(
Xarrtr2,s < t− stand(tr2, s)

)
· Pwaiting(tr2, s, t)

3.2.1.3 Departing after the waiting interval

Train tr2 departs at time t ∈ [sched(deptr,s) + waitmax(tr, s) + 1, tend] if
tr2 is delayed so that it does not have to wait longer for any feeder,
and tr1 arrives at time t1 ≤ t− transfer(tr1, tr2).

To calculate this probability, we simplify the previous formula as follows:

P
(
Xdep = t

)
= P

(
Xarrtr2,s = t− stand(tr2, s)

)
· P
(
Xarrtr1,s ≤ t− transfer(tr1, tr2)

)
By applying the above formulas, we are able to calculate the distribution for a departure

after a transfer. Distributions for normal departure events without transfers can be obtained
by modifying these formulas. Since there is no train tr1 anymore, we only have to consider
the train itself and its feeders. When a departure is the first departure event of a train, the
arrival time of the train at the station is ignored.

3.2.1.4 Arriving at a given time

The probability distribution of the arrival time depends on the distribution of Xdep and the
corresponding Xd

travel distributions. We obtain the probability P
(
Xarr = a

)
analogous to

the Bayes’ theorem:

P
(
Xarr = a

)
=

a∑
d=0

P
(
Xd

travel = a− d
)
· P
(
Xdep = d

)
.

3.2.1.5 Probability of connection break

To calculate the distribution of our connection, we only consider the cases in which all transfers
in the connection are feasible. These probabilities sum up to 1 if there are no transfers in the
connection or if the transfers are feasible in all possible scenarios. After each transfer, this
sum may decrease if a connection break is possible. For each distribution pd, we define the
probability that the connection is not feasible: Pbroken(pd) = 1−

∑
t∈[tstart,tend] P

(
Xdep = t

)
.
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3.2.1.6 Treatment of is-messages

When distributions for events in the past are calculated, it may happen that we already have
received a real-time is-message for an event so that the actual time is already known. In this
case a one-point distribution can be used: pd(event) = {0 . . . p . . . 0}, where the probability p
equals 1− Pbroken(pd) and corresponds to the known actual time of the event.

3.2.2 Reliability-Rating of a Connection
The sum of the calculated probabilities of the last arrival event, excluding Pbroken(pd), equals
the probability that the connection is feasible. It can be used to rate the reliability of the
connection and is defined as rel(c) = 1− Pbroken(pd).

3.3 Distributions for Trains
We have already mentioned that, to calculate the distribution of an event, the distributions of
all preceding events have to be known. For a departure event we need the arrival distributions
of all involved feeders and if there is a transfer at the station also the arrival distribution of
the arriving train we want to change from. All other required distributions will be calculated
according to our approach introduced above. We calculate the probability distributions of the
train events with the same formulas which we use for the events of connections, whereby there
are no transfers over the course of trains. Our approach to calculate probability distributions
for train events is similar to the approach presented in [1]. Since it would be very inefficient
to calculate the distributions of all involved trains for every connection, we calculate for all
train events in the timetable an initial probability distribution at the beginning of the day.
Whenever an is-message for an event is received, its distribution is replaced by a one-point
distribution by setting the probability of the actual event time to 1. Then the distributions
of all of its succeeding events are recalculated. Recursively, for each of these events the
distributions of all their succeeding events have to be recalculated. To restrict the number of
affected nodes, if the distribution of an event changes only negligibly we do not recompute the
distributions of its succeeding events. In order to keep the timetable up to date, is-messages
are introduced into the graph every minute on each day.

4 Computational Study

4.1 Setup
Our computations were carried out on different desktop PCs with Pentium i5-2400 quad-core
CPUs and 16 GB of RAM. We prepared time-expanded graphs for a number of two-day
periods1 as used for our multi-criteria timetable-information system MOTIS when taking
delays into account [6]. A feeder edge is introduced if a train f is a potential feeder for
another train t, the difference between arrival of f and departure of t is at most γ minutes,
and a waiting time rule applies between f and t at the station. Currently, we use γ = 30
minutes. The graphs have between 1.7M event nodes, 0.9M train edges, and 80k feeder edges
(smallest graph for Saturday and Sunday), 1.9M - 2.0M event nodes, about 1.0M train edges,
and 94-100k feeder edges (Sunday and Monday SuMo, respectively Friday and Saturday
FrSa) and 2.2M event nodes, 1.1M train edges, and 111k feeder edges (weekday only graphs).

1 A two-day period is needed to cover long running trains and overnight connections
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Table 1 Run-times and numbers of processed messages for updating train distributions with
real-time information from is-messages.

Day Messages Run-time
(total) (per min) (total) (per min) peak

Monday 454,325 315 154.88s 108.0ms 630ms
Tuesday 436,379 303 150.25s 104.6ms 540ms
Wednesday 399,073 277 140.15s 97.5ms 560ms
Thursday 436,142 302 161.68s 112.5ms 790ms
Friday 432,574 300 157.49s 109.6ms 650ms
Saturday 431,531 299 145.05s 101.0ms 620ms
Sunday 405,161 281 140.79s 98.0ms 610ms

4.2 Computational Results

Initial distributions. For three weeks in June 2012, we repeatedly calculated the initial
distributions and averaged over three runs per day. The average time required on weekdays
only is 74.7s, for SuMo and FrSa graphs 65.0s resp. 67.7s and for weekend graphs 57.8s. Note
that in daily operations these computations can be executed beforehand and read from a file
at start-up.

Real-time update for train distributions. The run-times and number of processed
is-messages for updating the train distributions for one test week in June is given in Table 1.
Each day we received between 399k and and 454k is-messages. Updating the distributions
each minute with the newly arrived is-messages takes 140s to 162s for the whole day. So
a server is less than 0.2% of the day busy with updates to the distributions. The average
computation time per minute lies between 98ms an 113ms, the peak at 610ms to 790ms, still
below one second.

The minor run-time fluctuations do not only depend on the number of messages or the
different sizes of the timetable graphs (cf. Section 4.1), as we can see in the table. Additionally,
the number of actual delays2, the amount of time a train is delayed, the number of events
dependent on the delayed events, the length of delayed trains, and the distribution over time
of the delay messages3 influence the computation time.

Distributions for connections. We calculated the distributions for 100,000 diverse
connections obtained from answering real customer queries to our timetable information
system MOTIS (see [5]). The average run-time per connection is 0.652ms. The minimum
and maximum run-times are 0.362 ms and 0.916 ms, respectively.

4.3 Evaluation

4.3.1 Test Connections
We evaluated our model by periodically checking real connections. To do so, we queried
MOTIS with a set of real queries combined with the top 100 relations in Germany4, 8948

2 some messages only state that a train is on time
3 delays for earlier events potentially influence more distributions than delays for later events
4 Most highly requested source-destination pairs as provided by Deutsche Bahn AG



M. Keyhani, M. Schnee, K. Weihe, and H-P. Zorn 43

relations in total.
Over 3 days we tracked 223,873 connections with an average of 1.5 transfers and an

average duration of 231 minutes. We used MOTIS to check each connection and recompute
the distributions and rel-ratings according to the up to then known delays a) before departure,
b) every 75 minutes while traveling, and c) after arrival. From this data we created a subset
of 76,095 connections for which we could ensure that the connection checker used real-time
information from is-messages for most of its events at transfer stations. Connections without
transfers do not have a rel-rating worth investigating. Hence, we removed direct connections
from the dataset, leaving 63,524 samples.

We compared the predicted rel-rating before departure (see Section 3.2.2) to the actual
connection feasibility. For this, we used the MOTIS check connection feature to determine
whether all transfers of a connection are indeed feasible.

4.3.2 Evaluating Connection Reliability

Figure 2 compares the predicted rel-rating with the actual outcome. We grouped the
rel-ratings to intervals of 10% plus an extra bin for the interval (99,100] and plotted the
connection check results for each of those bins (see Figure 2). The dark area in bin (a,
b] represents the percentage of feasible connections which had a reliability rating ∈ (a, b].
Analogously, the bright area in bin (a, b] represents the percentage of infeasible connections
which had a reliability rating ∈ (a, b]. The numbers of connections assigned to the bins are
different, and the width of each bin represents the number of connections in it. There are
more connections with a higher rating than connections with a lower rating in the data set.
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Figure 2 Predicted rel-rating versus actual outcome. Connections are grouped by their rel-ratings.
Bar width represents number of connections in group. (light=connection infeasible, dark=connection
feasible).
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Table 2 Different rel-rating intervals with
the share of all connections and the percentage
of feasible ones of all connections in that interval.

Table 3 Properties of the arrival distribu-
tions.

rel- Connections
rating % feasible % of total
0−40 39.67 2.00

40−70 57.12 10.43
70−100 88.20 87.56

Expected Breadth of
Delay Distribution

Min. 0.005 2.00
Median 0.715 9.00
Mean 1.476 13.29
Max. 21.823 61.00

Table 2 summarizes the data illustrated in the figure in larger intervals, corresponding to
low, medium, and high reliability.

We found that of 49,071 connections with a rel-rating between 70% and 100%, the
connection checker marked 6,568 or 11.8% as broken, while with 88.2% of the connections
the passenger arrived at the target destination (Table 2). These connections account for
87.56% of the dataset. Connections with rel-ratings between 40% and 70% (10.4% of the
dataset) were feasible in 57.1% of the cases. We see that for rel-ratings of more than 40%,
the prediction was pretty accurate. In Figure 2 we can see that we are slightly optimistic for
the intervals with a rel-rating higher than 70%. For rel-ratings lower than 40% the prediction
was too conservative: fewer than predicted connections actually broke. This was the case
for only 2% of tracked connections. The small sample size in that region might account for
these results.

4.3.3 Analysis of Arrival Distributions
The evaluation of arrival distributions required us to ensure that the last arrival event of
the connection was backed by an is-message. Also, only feasible connections are taken into
account, further reducing the evaluation set to 31,620 connections.

4.3.3.1 Computed Distributions

Table 3 shows the expected values (interpreted as delays in minutes) and the breadth of
the distributions. We define the breadth of a distribution as the minimal interval covering
all non-zero probability values. A small average breadth distribution limits the necessary
computation steps for estimating the individual arrival distributions. Furthermore, we see
that the expected value for delays averaged over all connections is small but higher than 1,
which is consistent to what we expect from the observed data.

4.3.3.2 Better Input Distributions

The analysis of our distributions and reliability ratings reveals room for improvement. We
are sure that better input distributions will increase the quality of our results.

The travel time distributions play a crucial role in the quality of the arrival distributions.
Presently, we generate synthetic travel time distributions which depend on the possible delays
of departure events and scheduled travel times, in a preprocessing step. Our distributions
already incorporate the potential of trains to catch up delays on driving sections as well
as to get more delayed. The latter case could occur e.g. when delayed trains have to let
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other trains to overtake. In the future, we will use travel time distributions provided by our
cooperation partner, German Railways. These distributions are learned from months of real
delay data.

Currently, we only consider the feeders for the first departure event of each train. In case
the train has no feeders at the first stop or they arrive early enough, the probability that
it departs on schedule equals 1. However, the departure can be delayed because of other
factors like malfunctions, availability of the rails and trains, organizational issues, etc. We
will receive starting distributions from German Railways for the first departures of the trains
respecting these operational reasons. A convolution of our calculated departure distributions
with these start distributions at the first departures would lead to more realistic results.

5 Conclusions and Future Work

5.1 Conclusion
We have presented a probabilistic approach for estimating the reliability of train connections.
Several experiments on real customer queries and real timetables for all trains in Germany
showed good results.

Initial propagation can be precomputed off-line in at most 75s. Updating with real-time
information occupies the server less than 0.2% of the day. To determine the distribution for
one connection takes less than 1ms.

We have shown that the predicted rel-ratings are valid approximations of the relative
frequency of feasible connections. This could be verified by using real-time information for
connection-checking. Only for the rare cases of very low rel-ratings, our predictions are too
pessimistic. They are slightly optimistic for highly reliable connections and pretty accurate
for the remaining ones.

5.2 Future Work

Use of more realistic distributions. We will integrate more realistic travel time
distributions and starting distributions from German Railways to improve the quality of our
predictions. In a later step, we plan to learn travel time distributions from is-messages and
real timetable data regarding influential factors such as travel time, delay at departure, train
category, stations on the route, weekday and daytime, and existing dependencies between
trains.

Investigation of the independence assumptions. As mentioned in Section 3.1, the
independence assumption is not always fulfilled. This implies that a departure distribution
is not calculated correctly if there is a dependency between the arriving feeders. An analysis
of the effect on the computed distributions is not trivial. We plan to further investigate this
aspect with the use of our real timetable and delay data.

Comparison with a non-probabilistic approach. Once more realistic travel time
distributions are used, it will be interesting to compare our model with other approaches.
We plan a comparison with a non-probabilistic model which rates reliability of connections
by analyzing the buffer times at the transfers in the connection.

Improved search for reliable connections. In this paper, we have shown that applying
probability distributions is an effective approach for measuring the reliability of connections
reasonably. We intend to integrate this probabilistic approach into our timetable information
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system MOTIS [5] in order to provide searching for reliable connections. The first idea is
to integrate the rel-rating as a new criterion in the multi-criteria search. A more complex
approach is to find not only one reliable connection but a connection graph containing
a reference connection and further alternative connections. The idea is to calculate the
distributions not only on the basis of a single connection but considering several possible
connections. The arrival distribution will then be composed of the distributions of the
reference connection and all of its alternatives. Such a connection graph provides highest
reliability for reaching the target station, and allows to reroute the passenger to an alternative
connection if the rel-rating of the reference connection decreases.
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